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1 Introduction
In this document we will discuss about an algorithm due to finding approximate
Maximal Bi-clique in a bipartite graph.

We use a clustering method as a first step, and assuming it is good enough,
we try to refine it by locating and eliminating impurities and errors. Since the
first cluster finding algorithm will not be inspected, the hypotheses and the
assumption made in this paper may differ from the real data.

Our main goal is to locate a Maximal Bi-clique whit an high number of
vertices on one side of the graph. More precisely, we set a least bound (cal-
led minsupport), on the left side, and cluster the nodes so that there’s a high
probability of extracting a bi-clique that respects the bound.

The two sides of the graph will be called Itemset and Item, since the original
formulation of the problem involved transactions and items, so an edge between
two elements can be read as “the item X was purchased in the transaction Y”,
or, symmetrically, “The transaction Y contains the item X”.
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2 Algorithm

2.1 Step 1: Clustering

Itemset Item

C
C’

On the first step, we use a clustering algo-
rithm, based on hash functions, in order to
detect a group of itemsets which have a lot
of common items. In the graph, it can be
read in terms of neighbours, in fact the se-
lected nodes will have many neighbours in
common.

We make the assumption that this first se-
lection of nodes (called C) is a good approxi-
mation of the left side of a maximal bi-clique,
or, to be more precise, it has few:

impurity itemset in C which has a small
intersection with the elements of C

omission itemset not belonging to C which
has a big intersection with the elements
of C

if n is the cardinality of C, we also reque-
st that n >> minsupport, so that deleting
the impurities in C do not reduce the num-
ber of nodes chosen below the lower bound
minsupport

2.2 Step 2: Neighbours
On the second step, we consider the neighbours of C, defined as the nodes which
are connected to at least one node in C, and we call this set C ′.This is also the
union of the itemset in C, thus is usually bigger then C.

Our goal is to find a subset of C ′ such that every node in it is connected to
a lot of nodes in C, so its cardinality is way smaller than the ones of C and
C ′. This time, there’s no bound on the chosen subset, but the items are most
likely already clustered, so we can use the degrees of the nodes in C ′ to extract
information about the graph.
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2.3 Step 3: Threshold on Degree

Itemset Item

C
C’

C”

For the third step, we consider the bipartite
subgraph that has C∪C ′ as nodes, with the
associated edges. Then, we study the degree
distribution of the nodes in C ′, and isolate
the nodes with the highest degrees.

To do so, we have to set a threshold on
the degrees of the nodes, that has to de-
pend, in general, by a lot of factors. Under
the assumption that the first clustering ope-
ration was good enough, however, we can
hypothesize that the distribution has some
peculiar properties.

For example, the nodes with the highe-
st degrees will have close degrees, not so
far from the cardinality of C, whereas the
majority of the nodes will have very low de-
grees, far below the minsupport constant,
and will create a long tail in the graphic of
the degrees. This phenomenon is caused by
the fact that the itemsets in C have not ma-
ny item in common, but is also amplified by
the presence of the impurities in C.

However, the main characteristic of the degree graph is the big difference
between the nodes with a high degree, and the ones with a low one, and the
nearly inexistence of nodes with intermediate degrees.

items

degrees
|C|

minsupp

k

Finding a good threshold
value k depends by the distri-
bution, but it has to follow
the inequality

|C| > k > minsupport

One of the possible k is the
mean between the maximum
of the degrees and the value
minsupport, but its efficien-
cy has yet to be tested on
real data, so we won’t discuss
further about this.

Called C ′′ the subset of
C ′ chosen by the threshold,
let’s finally find our bi-
clique.
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2.4 Step 4: Eliminate Errors

Itemset Item

T1
C

C’

C”≡ I2

For step four, we focus on C ′′ and
its neighbours.

Taken a node v, and called N(v)
the set of its neighbours, we define

T1 =
⋂

v∈C′′

N(v)

the itemsets which contains all the
item in C ′′, or, equivalently, the
nodes on the left side which are
connected to all the nodes in C ′′.
T1 will be very similar to the set C,
but it will contain the omissions,
and it will eliminate the impurities,
since the first have a lot of item in
common with C, so probably they
contain all the items in C ′′, and the
second don’t.

Since we assume that the first
step made few errors, the cardina-
lity of T1 is close to that of C, but
in general is far smaller, so it’s important that |C| >> minsupport, so that the
cardinality of T1 doesn’t fall below our bound

An other reason for considering T1 is because the subgraph composed by T1
and C ′′ is obviously a bi-clique, and in most of the cases, it’s already maximal. In
fact, we can observe that T1 can’t be expanded further without adding itemsets
which don’t contain all of C ′′. Moreover, if there was a node outside C ′′ that is
connected to all nodes in T1, it would already be in C ′, and it would have an
high degree, so it’s strange that the threshold had discarded it.

However, we can’t be sure it wouldn’t happen, so we have to resort to a last
stage

2.5 Step 5: Maximal Bi-clique
In this last step, we construct the right side of our maximal bi-clique by the
intersection of the itemsets in T1. In fact, in the notation of the precedent step,
we define

I2 =
⋂

v∈T1

N(v)

so that (T1, I2) form a bi-clique.
It is maximal since we can’t expand neither T1 or I2. In fact I2 ⊆ C ′′, so if

we can now expand T1 we could have done it in step 4, absurd; and, if we can
expand I2, it wouldn’t be the intersection of the itemsets in T1.
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3 Conclusion
This algorithm is still not complete, and it needs several tests on one hand for
proving the soundness of the assumptions made, and on the other hand for a
more precise analysis of the threshold and the distribution in step 3.

Thus the next work will be an analysis of the clustering algorithm and its
effects on real data.
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