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1 Preliminaries
• Hermitian, skew-Hermitian, unitary,normal,orthogonal, diagonalizable, defective, positive definite matri-

ces

• real/imaginary part of matrices

• characterization of normal matrices

• Schur form

Theorem 1.1 (Schur Real Form). For every matrix A ∈ Rn×n there exists an orthogonal real matrix Q such
that QTAQ = T where T is block triangular with 1× 1 of 2× 2 blocks.

Theorem 1.2 (Polar Form). For every matrix A ∈ Cn×n there exists an unitary matrix U and an Hermitian
positive semidefinite matrix S such that A = US.
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Theorem 1.3 (Gerschgorin). The G. disks of a matrix A are defined as

D(ai,i, Ri) = { z ∈ C | |z − ai,i| ≤ Ri } , Ri =

n∑
j=1,j 6=i

|ai,j |.

The eigenvalues of A are contained in the union of G. disks, called G . If G has a connected component consisting
of p circles, then it will contain exactly p eigenvalues of A.

Notice that you can repeat the same reasonings with AT since it has the same eigenvalues.

1.1 Stability

Definition 1.1. A matrix A ∈ Cn×n is said to be Stable if <(λi(A)) < 0 for every eigenvalue of A,
and it is Positive Stable if −A is stable.

Notice that a positive stable matrix is not necessarily positive definite (meaning that its hermitian part is
positive definite), but the converse is true. In fact

A =

(
1 a
0 1

)
(A+AH)/2 =

(
1 a/2
a/2 1

)
→ det = 1− a2

4
> 0 ⇐⇒ a2 < 4

The stability comes from the dynamical system ẋ = Ax, where the solution x(t) converge to zero if and only if
A is stable. In the field of differential equation, we have the heat problem, where ut = ∆u and the resulting A
is negative definite.

Theorem 1.4 (Bendixson). If A = H1 + iH2 ∈ Cn×n, where H1, H2 are Hermitian, then every eigenvalue λ of
A is bounded by

λmin(H1) ≤ <(λ) ≤ λmax(H1), λmin(H2) ≤ =(λ) ≤ λmax(H2).

Proof. If Ax = λx, where x is unitary, then

x∗Ax = λ =⇒ <(λ) = <(x∗Ax) = x∗H1x, =(λ) = =(x∗Ax) = x∗H2x

and then use the bounds

λmin(H1) ≤ x∗H1x ≤ λmax(H1), λmin(H2) ≤ x∗H2x ≤ λmax(H2).
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In the real case A ∈ Rn×n, then A is positive definite iff xTAx > 0 for every nonzero real vector x, since if
we decompose A = H + S into Hermitian and skew-Hermitian part, then

xTAx = xTHx+ xTSx, (xTSx)T = −xTSx =⇒ xTAx = xTHx.

Lemma 1.1 (Kellog). Given A = H1 + iH2 the usual decomposition, if A is positive semi-definite then

‖(αI −A)(αI +A)−1‖2 ≤ 1 ∀α > 0,

and if A is positive definite, then

‖(αI −A)(αI +A)−1‖2 < 1 ∀α > 0.

Proof.

‖(αI −A)(αI +A)−1‖2 = sup
x∈Cn/{0}

‖(αI −A)(αI +A)−1x‖2
‖x‖22

If we call y = (αI +A)−1x, then

‖(αI −A)(αI +A)−1x‖22
‖x‖22

=
‖(αI −A)y‖22
‖(αI +A)y‖22

=
α2‖y‖22 − 2α<(y∗Ay) + ‖Ay‖22
α2‖y‖22 + 2α<(y∗Ay) + ‖Ay‖22

≤ 1

where the last inequality holds because <(y∗Ay) ≥ 0. It is < 1 if A is positive definite, since <(y∗Ay) ≥ γ > 0
for every y.

Given the classic dynamical system ẋ = Ax we can use the Crank-Nicolson scheme for the discretization. If
x0 = x(0), xk = x(k∆t), then

xk+1 = (I − 2

∆t
A)−1(I +

2

∆t
A)xk.

We assume A a stable matrix and negative definite. In this case ‖xk‖ → 0 as k goes to zero, in accordance
to the analytical solution x(t) = exp(tA)x0. The matrix (I − 2

∆tA)−1(I + 2
∆tA) is a rational approximation of

exp(∆tA), and it is called (1, 1)-Padè Approximation.

Suppose now that A is Skew-Hermitian A = iH. This is positive (and negative) semidefinite, and

‖(I − βA)(I + βA)−1‖2 = ‖(I − βiH)(I + βiH)−1‖2 = 1

since (I −βA)(I +βA)−1 is unitary, with eigenvalues of the form (1−βiλ)/(1 +βiλ) with λ ∈ R. This is called
the Cayley Transform that brings the real line into the unitary circle.

An other example is

i
δψ

δt
= Hψ, ψ(0) = ψ0 ∈ Cn, ‖ψ0‖2 = 1

that is called Schrodinger Equation, with H Hermitian and solution

ψ(t) = exp(−itH)ψ0

but the matrix is unitary, so ‖ψ(t)‖2 = 1. We can use Crank-Nicolson and obtain

ψk+1 = ψ((k + 1)∆t) = (I − βiH)−1(I + βiH)ψk, β = 2/∆t.

Definition 1.2. A nonnegative matrix/vector is a matrix/vector with all entries nonnegative. They
are also called Digraphs. they are denoted as

Rn+ = {x ∈ Rn | x ≥ 0 } Rn×n+ = {A ∈ Rn×n | A ≥ 0 }

They are used usually in probability, Markov chains, spectral graph theory, M-matrices, Economics, etc.
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Definition 1.3. A ∈ Cn×n is Irreducible if there’s no permutation matrix P such that

PAPT =

(
A1,1 A1,2

0 A2,2

)
where A1,1 and A2,2 are square matrices. Otherwise A is Reducible.

Given a matrix A, we can build the associated directed graph G(A) with n nodes and there’s a link between
nodes i and j if and only if ai,j 6= 0. If A has a symmetric sparsity pattern, then the corresponding graph can
be considered not directed.

Theorem 1.5. A is irreducible if and only if the associated graph G(A) is strongly connected.

Theorem 1.6 (Perron-Frobenius). If A ∈ Rn×n+ is irreducible, then the spectral radius ρ(A) of A is a simple
eigenvalue of A with a strictly positive eigenvector x > 0. Moreover, ρ(A) increases whenever any entry of A
increases.

A counterexample for the last statement when A is not irreducible is the null matrix, when compared with
the nilpotent Jordan matrix. Any nonnegative matrix can be reduced through permutation onto a p-cyclic form

A1

A2

. . .
Ap−1

Ap


and if p > 1, the spectrum of the matrix has a p-symmetry.

Theorem 1.7 (Perron-Frobenius pt.2). If A ∈ Rn×n+ , then the spectral radius ρ(A) of A is an eigenvalue of A
with a nonnegative eigenvector x > 0.

In this case, we don’t know the multiplicity of ρ(A). For example, you an take the null matrix. In [2], you
can find a proof that makes use of the Brouwer’s fixed point theorem.

1.2 M-matrix

Definition 1.4. A matrix A ∈ Rn×n is called M-matrix (Minkowski) if A = rI −B with B nonneg-
ative and r ≥ ρ(B).

A is also non-singular if and only if r > ρ(B). Notice that in this case, if B is irreducible, then rk(A) = n− 1.

Theorem 1.8. Given a matrix A ∈ Rn×n, TFAE:

1. A is a nonsingular M-matrix

2. ai,j ≤ 0 ∀i 6= j and A−1 ≥ 0.

Proof. Assuming 1), A = rI −B with ρ(B/r) < 1, so A = r(I −B/r) is invertible. Also,

A−1 =
1

r

(
I +B/r +B2/r2 + . . .

)
so A−1 ≥ 0 since B ≥ 0.

Assuming 2), we can write A = rI − B for some r ≥ 0, B ≥ 0. Notice that r 6= ρ(B), otherwise A is not
invertible. If r < ρ(B), then take x ≥ 0 eigenvector of ρ(B) and notice that Ax = rx− ρ(B)x = (r − ρ(B))x =
y ≤ 0. As a consequence x = A−1y ≤ 0, so x = 0, that is an absurd.

12/11/18
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Consider A a real nonnegative matrix and its associated graph (V,E) = G(A). We can build the graph
associated to Ak as

G(Ak) = (V,E′) (i, j) ∈ E′ ⇐⇒ ∃ path of length k from i to j.

In particular, if A has no null entries on the diagonal, then

(i, j) ∈ E′ ⇐⇒ ∃ path of length at most k without loops from i to j.

Lemma 1.2. If A ∈ Rn×n is nonnegative and irreducible, then (I +A)n−1 is a positive matrix.

Corollary 1.1. If A is an irreducible non singular M-matrix, then A−1 > 0.

Proof. A = rI −B, r > ρ(B), B ≥ 0. A irreducible means B irreducible and

A−1 =
1

r

(
I +B/r +B2/r2 + . . .

)
and this is positive since its associated graph is complete.

Definition 1.5. An invertible matrix A is called Monotone if A−1 ≥ 0.

We have sen that nonsingular M matrix are monotone, but the converse is not true.

Equivalently, A is monotone iff Ax ≥ Ay whenever x ≥ y.

They also satisfy a version of maximum principle. Consider −∆u = f on Ω ⊆ Rn open and bounded with
Dirichlet Boundary conditions at the border u|δΩ = 0. If f ≤ 0, then it represent a ’weight’ on the surface u
that pulls it down. In fact −∆ gives out a monotone operator, so that u = (−∆)−1f ≤ 0.

Theorem 1.9. Let A ∈ Rn×n be an M-matrix. Then <(λ) ≥ 0 for every eigenvalue of A, and if A is non
singular, then <(λ) > 0.

Proof. A = rI −B, r ≥ ρ(B), B ≥ 0. We have λ(A) = r − λ(B) so

<(λ(A)) = r −<(λ(B)) ≥ 0.

In the non-singular case, r > ρ(B) and <(λ(A)) > 0.

This result shows that non singular M matrices are positive-stable, but in general they are not positive
definite. For example

A =

(
1 −3
0 1

)
is positive stable, but (A+AT )/2 is indefinite because it has negative determinant.

Theorem 1.10. If A is a symmetric M-matrix, then it is positive semidefinite, and it is positive definite if it
is not singular.

Notice that there exist positive definite non singular M-matrix that are not symmetric.

Definition 1.6. An SPD M-matrix is called Stieltjes matrix.

For example, let P be a nonnegative matrix with 0 ≤ Pi,j ≤ 1 and row stochastic. Let also x0 be a row
probability vector. We know that xk = x0P k are all probability vectors, and they describe a Discrete Markov
Process, or Markov Chain.

The common question on Markov chains are
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• Does there exist a limit steady state distribution x = limk→∞ xk?

• Does it depends on the starting state x0?

• How fast does it converge?

Notice that if xk → x, then
xk = xk−1P =⇒ x = xP

so a steady state distribution must be a right eigenvector associated to the eigenvalue 1, and it exists since
Pe = e. Moreover, ρ(P ) = 1, since ρ(P ) ≤ ‖P‖∞ = 1.

Definition 1.7. A probability vector x that satisfies xP = x is called stationary distribution of the
chain.

If A = I −PT , then it is a singular M-matrix, and the stationary distributions of the chains are the probability
vectors in the right kernel of A. A is called rate matrix, since it represents the differential in a continuous
Markov process.

We know that if P (or equivalently A) is irreducible, the eigenvalue 1 is simple, and the stationary distribution
is unique. Even in this case, though, the convergence is not assured.

For example

P =

(
0 1
1 0

)
→ x = e/2, x0 = e1 → x1 = e2 → x2 = e1 → . . .

The problem here is that P has eigenvalue −1 that has the same magnitude of 1. The cyclic behaviour happens
when there are zeros on the diagonal, so one can modify P

P → P̃ = (1− α)I + αP, α ∈ (0, 1)

where P̃ is still row stochastic but now it is aperiodic. In this case P̃ is still irreducible and it has only one
stationary distribution, and every x0 converge to it. Moreover xP̃ = x ⇐⇒ xP = x, so we are sure to obtain
the right distribution. The choice of α is determinant for the speed of the convergence.

An other example is the Laplacian matrix of a graph.

Definition 1.8. If A is the adjacency matrix of G, and d = Ae, then L = diag(d) − A is called the
Laplacian Matrix associated to G.

Exercise 1.1. Verify that L is always a singular M-matrix L = rI −B where r = maxi di = ρ(B).

Notice that L is irreducible if and only if A is irreducible if and only if G is connected, and in this case
the kernel of L is the span of the vector e. In general, the dimension of the kernel is the number of con-
nected components of G, since we can sort the nodes so that L is block diagonal with each block irreducible.
The second smallest eigenvalue λ2 of L is called Spectral Gap or Fiedler eigenvalue of G, and indicates how
connected the graph is, meaning that the largest λ2, the hardest to disconnect G (and that’s why it is also
called algebraic connectivity). The corresponding eigenvectors are called Fiedler vectors. Notice that such
eigenvector x2 is orthogonal to e, so it has positive and negative entries, and we can divide the nodes into two
sets V1, V2 depending on the corresponding sign in x2. This partition is an approximation of an optimal par-
tition of the graph such that the number of edges connecting V1, V2 are relatively small with respect to |V1| · |V2|.

It is called ’Laplacian’ since, if we consider a path graph G = (V,E) where (i, j) ∈ E ⇐⇒ |i− j| = 1, so

A =


0 1

1 0
. . .

. . . . . . 1
1 0

 L =



1 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

−1 1



7



and L is the discretization through central finite difference of the Laplacian operator on the path graph

u′′(i) ∼ −ui−1 + 2ui − ui+1

h2

Notice that in this case 0 is a single eigenvalue of L, since the graph is connected.

Given a graph G = (V,E) and a probability vector x0, consider the problem{
ẋ = −Lx,
x(0) = x0.

The solution is given by x(t) = exp(−tL)x0 for t ≥ 0. It’s easy to show that exp(−tL) ≥ 0 and it is strictly
positive for t > 0 if G is connected. Notice that { exp(−tL) | t ≥ 0 } is a semigroup, since

S(t) = exp(−tL) =⇒ S(t+ t′) = S(t)S(t′).

If G is irreducible and not directed, then L is semipositive definite and λ2 > 0, so the eigenvalues of S(t) are
1, exp(−tλ2), . . . , exp(−tλn), where the eigenvectors of S(t) are the same of L. If x1, . . . , xn is an orthonormal
basis built with eigenvector of L, where x1 = e/

√
n, then

L = λ2x2x
T
2 + · · ·+ λnxnx

T
n =⇒ S(t) = x1x

T
1 + exp(−tλ2)x2x

T
2 + · · ·+ exp(−tλn)xnx

T
n

=⇒ S(t)x0 = (xT1 x0)x1 +

n∑
i=2

exp(−tλi)(xTi x0)xi →
1

n
(etx0)e

Notice that the convergence is dominated by exp(−tλ2), so the spectral gap is also a measure of the speed of
convergence. Cases where λ2 is large are, for example, the Small World networks, like the social media graphs.

Suppose G is connected, so that d > 0. We can consider the Normalized Laplacian Graph, that may be
defined as

L1 = D−1L = I −D−1A, L2 = LD−1 = I −AD−1, L3 = D−1/2LD−1/2 = I −D−1/2AD−1/2.

In particular, D−1A is row stochastic, AD−1 is column stochastic, and D−1/2AD−1/2 is doubly stochastic.
They all represent transition matrices for Markov chains, or Random Walks on G. For example

A =


0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 1
0 0 1 1 0

→ D−1A =


0 1/2 1/2 0 0

1/2 0 0 1/2 0
1/3 0 0 1/3 1/3
0 1/3 1/3 0 1/3
0 0 1/2 1/2 0


14/11/18

2 Matrix Powers and Polynomials
Given a polynomial p(x) ∈ C[x] with degree k, we can evaluate it on a matrix A

p(x) = a0 + a1x+ · · ·+ akx
k → p(A) = a0I + a1A+ · · ·+ akA

k.

If J is the Jordan canonical form of A, with A = XJX−1 and X invertible, then

p(A) = Xp(J)X−1.

Moreover, if Ji are the Jordan blocks of J , where

J =


J1

J2

. . .
Js

 Ji =


λi 1

λi
. . .
. . . 1

λi
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then

p(A) = X


p(J1)

p(J2)
. . .

p(Js)

X−1

If we call ni the dimension of Ji and

J0 =


0 1

0
. . .
. . . 1

0


then

Jmi = (λiI + J0)m =

m∑
l=0

(
m

l

)
λm−li J l0 =


λmi mλm−1

i . . .
(
m

ni−1

)
λm−ni+1
i

λmi
. . .

...
. . . mλm−1

i

λmi


Notice that Jmi → 0 if and only if |λi| < 1, so we can state the following theorem.

Theorem 2.1. Let A ∈ Cn×n. Then

lim
m→∞

Am = 0 ⇐⇒ ρ(A) < 1.

If we want the sequence Am to be just bounded, we need ρ(A) ≤ 1 and every eigenvalue with magnitude 1
must have only uni-sized Jordan blocks (also called semi-simple or non-defective).

Recall that for any matrix norm, ρ(A) ≤ ‖A‖, and that

Am → 0 ⇐⇒ ‖Am‖ → 0.

If A is a normal matrix, with A = UDU∗, D diagonal and U unitary, then ρ(A) = ‖A‖2.

Exercise 2.1. If ‖A‖2 = ρ(A), then A is normal?

If A is diagonalizable, then

‖A‖2 = ‖XDX−1‖2 ≤ ‖X‖2‖X−1‖2‖D‖2 = k2(X)ρ(A).

Also, if A =

(
0 a
0 0

)
, then ρ(A) = 0, but ‖A‖2 = |a| that can be arbitrarily large. This leads to the Hump

Phenomenon: even if ρ(A) < 1, then Am first rises and then converges to zero.

An other example is A =

(
0.1 a
0 0.1

)
. In fact Ak =

(
10−k ka101−k

0 10−k

)
that may converge slowly to zero if

|a| is large enough.

Lemma 2.1 (Varga).

‖Ak‖2 ∼ ν
(

k

p− 1

)
[ρ(A)]k−(p−1)

where p is the size of the largest Jordan block associated to the eigenvalues λ such that |λ| = ρ(A), and

1

k2(X)
≤ ν ≤ k2(X)

with A = XJX−1.

Theorem 2.2 (Householder). Let A ∈ Cn×n. Then for every ε > 0 there exists a matrix norm such that

ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε.

It is also said as
ρ(A) = inf

‖·‖ matrix norm
‖A‖.
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Proof. Consider ‖A‖L := ‖LAL−1‖2 that is a matrix norm for every invertible matrix L. Call

A′ = A/ε, A′ = V JV −1 =⇒ V −1AV = εJ.

εJ is the Jordan form of A with ε instead of ’1’ above the main diagonal. This means that

‖A‖V = ‖εJ‖2 ≤ ‖D‖2 + ε‖E‖2 = ρ(A) + ε‖E‖2

and we can find a V for every ε > 0, so

ρ(A) ≤ inf
V
‖A‖V ≤ ρ(A).u

Recall the Cayley-Hamilton theorem:

pA(λ) = det(λI −A) =⇒ pA(A) = 0.

It means that there always exists a degree n polynomial that vanishes on A (and its eigenvalues). This is called
characteristic polynomial of a matrix. An other important polynomial is called minimal polynomial and it is
the monic polynomial qA with least degree that vanishes on A. It is unique, it vanishes on every eigenvalue of
A, and any other polynomial that vanishes on A is a multiple of qA.

Suppose A ∈ Cn×n and deg(qA) = m ≤ n. If A is invertible, then we can write the inverse as

qA(x) = a0 + a1x+ · · ·+ amx
m =⇒ A−1 = −a1

a0
I − a2

a0
A− · · · − 1

a0
Am−1.

If we want now to solve a linear system Av = b, then

v = A−1b = r(A)b, deg(r) < m.

Corollary 2.1. If A is Hermitian and A has s distinct eigenvalues, then deg(qA) = s, and thus

Av = b =⇒ v = r(A)b, deg(r) < s.

Let u ∈ Rn, ‖u‖2 = 1. The matrix A = I + uuT has minimal polynomial of degree 2, with eigenvalues 1 of
multiplicity n−1 associated with the eigenvectors u⊥ and 2 with multiplicity one associated to the eigenvector u.
The minimal polynomial is thus qA(x) = (x−1)(x−2) = x2−3x+2. It means that A−1 = 3

2A−
1
2A

2 = I− 1
2uu

T .

For any A, if f is a function for which f(A) is defined (some way), then we can find a polynomial p(x) of
degree < n such that f(A) = p(A).

Definition 2.1. Suppose A has eigenvalues λ1, . . . , λs, where λi are distinct. We say that index(λi)
is the size of the largest Jordan block associated with λi.

Notice that A is non-defective on λi if and only if index(λi) = 1.

Definition 2.2. A function f : Ω ⊆ C→ C is defined at A if for each λi ∈ Λ(A) the derivatives f (k)

exist on λi for k = 0, 1, . . . , index(λi)− 1.

In this case, if A = XJX−1, then we can define

f(A) = Xf(J)X−1, J =


J1

J2

. . .
Jr

 , f(J) =


f(J1)

f(J2)
. . .

f(Jr)
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Ji =


λi 1

λi
. . .
. . . 1

λi

 , f(Ji) =


f(λi) f ′(λi) . . . 1

(ni−1)!f
(ni−1)(λi)

f(λi)
. . .

...
. . . f ′(λi)

f(λi)


Notice that if A is diagonalizable, then f(A) = Xf(D)X−1 and

f(D) =


f(λ1)

f(λ2)
. . .

f(λn)

 =


p(λ1)

p(λ2)
. . .

p(λn)


for every polynomial p that interpolates f on λi.

For example, if A is nonsingular, let f(x) = x−1. Any polynomial that interpolates 1
x on the eigenvalues will

be very different from the actual function, since it has a vertical asymptote.

An other example is f(x) = exp(−tx), where the interpolation will not approximate well the function due to
the horizontal asymptote. Notice that if x(t) = exp(−tA)x0 is the solution to a differential problem, it can be
computed as x(t) = p(A)x0 for some polynomial.

Suppose A SPD Hermitian, and we are interested in the k lowest eigenvalues with k << n and their
eigenspaces. Call λ1, . . . , λk the wanted eigenvalues, and x1, . . . , xk the corresponding eigenvectors. If J =
Span {x1, . . . , xk }, then it is A invariant, and we usually want to compute an orthogonal projector P into J .
Suppose λk < µλk+1 and define the function

h(x) =


1 λ1 ≤ x < µ,
1
2 x = µ,

0 x > µ.

The projector will be exactly P = h(A), since

A =

n∑
i=1

λixix
∗
i =⇒ h(A) =

k∑
i=1

xix
∗
i .

A useful approximation of the step function is given by the Fermi-Dirac function

h(x) =
1

1 + exp(β(λ− µ))

that can be expanded and truncated into a Taylor polynomial or approximated with Chebychev polynomials
basis.

19/11/18

3 Stationary Iterative Methods
Let x0, c ∈ Cn and T ∈ Cn×n. For k ∈ N, consider the recurrence

xk+1 = Txk + c.

We say that the sequence {xk}k is generated by a linear first order (depends only on the previous element)
stationary method; T is called the iteration matrix of the method. It is a short-memory method since you have
to store only a matrix and two vectors for every step. It is stationary since T, c are constant in every step.

Suppose xk → x∗. In this case, by taking the limit, x∗ must satisfy

x∗ = Tx∗ + c =⇒ (I − T )x∗ = c

and it is a fixed point of φ(x) = Tx+ c. Notice that c must be in the range of I − T .

Consider the linear system Ax = b, with A ∈ Cn×n and b ∈ Cn.

11



Definition 3.1. A = B − C is a Splitting of A if B is non-singular.

In this case, a splitting generates a stationary iteration

xk+1 = Txk + c, T = B−1C = I −B−1A, c = B−1b.

If the sequence converges xk → x∗, then Ax∗ = b. Conversely, given A, T , we can ask if there exists a splitting
A = B − C such that T = B−1C.

Lemma 3.1. If A is nonsingular and 1 6∈ Λ(T ), then there exists an unique splitting A = B − C such that
T = B−1C.

Proof.
T = I −B−1A ⇐⇒ B = A(I − T )−1.

Theorem 3.1. Given A, T , there’s a splitting A = B−C such that T = B−1C if and only if ker(I−T ) = ker(A).
In the case A is singular, there are infinite many splittings.

Exercise 3.1. Prove theorem 3.1.

For example, take

A =

(
1 −1
−1 1

)
, T =

(
0 1
0 1

)
B1 =

(
1 0
−1 1

)
, B2 =

(
1 −2
−1 1

)
.

B1, B2 induces two splittings for A, T .

3.1 Convergence of Stationary Iterations
Given A nonsingular and a splitting A = B − C, take T = B−1C and c = B−1b. What are conditions for
convergence? If we call rk = b−Axk, then

xk+1 = Txk + c =⇒ xk+1 = xk +B−1(b−Axk) = xk +B−1rk.

This is useful in the cases when Axk, and thus rk, can be computed, but we don’t have direct access to A. If
the limit xk → x∗ exists, then

x∗ = Tx∗ + c =⇒ ek+1 = Tek = · · · = T k+1e0

where ek = xk − x∗. In case of convergence, ek → 0, and the necessary and sufficient condition for that to
happen for every e0 is that ρ(T ) < 1. In this case, we know there exists a matrix norm such that ‖T‖L < 1 and
that is induced by a vector norm. In fact

‖x‖L := ‖ [x, 0, . . . , 0] ‖L =⇒ ‖A‖L = sup
‖Ax‖L
‖x‖L

.

If A is singular, then T = I − B−1A =⇒ 1 ∈ Λ(T ) =⇒ ρ(T ) ≥ 1, so the convergence depends on the initial
guess x0.

Assume x0 = 0 and A nonsingular.

xk+1 = (I + T + · · ·+ T k)c, lim
k→∞

(I + T + · · ·+ T k)c = (I − T )−1c = (I − T )−1B−1b = A−1b

If we truncate the series, we have an approximate inverse

A−1 ∼
k∑
l=0

T lB−1.

If A is sparse and B diagonal, then the approximate inverse is easy to apply. It is used as a polynomial
preconditioning.

12



Convergence Rates Recall that ek = T ke0. This leads to

‖ek‖2
‖e0‖2

≤ ‖T k‖2

and this bound is sharp, in fact for every k we can find e0 such that it is an equality.

Definition 3.2. Given a matrix T ∈ Cn×n such that ‖Tm‖2 < 1 for some m ∈ N, the average rate
of convergence for m iterations associated with T is defined as

R(Tm) = − ln
[
‖Tm‖1/m2

]
= − ln ‖Tm‖2

m

Definition 3.3. The average reduction factor per iteration of {ek}k is given by

σ =

(
‖ek‖2
‖e0‖2

)1/k

.

If ‖T k‖2 < 1 then
σ ≤ (‖T k‖2)1/k = exp(−R(T k)).

The quantity Nk = 1/R(T k) measures the number of steps needed to reduce the initial error by a factor e, since
σNk ≤ 1/e.

Lemma 3.2 (Gelfand’s Formula).
ρ(T ) = lim

k→∞
‖T k‖1/k.

Thanks to Gelfand’s formula, we can define the asymptotic rate of convergence as

R∞(T ) = lim
k→∞

R(T k) = lim
k→∞

− ln
[
‖Tm‖1/m2

]
= − ln [ρ(T )]

Notice that

• ρ(T k) ≤ ‖T k‖2, so R∞(T ) ≥ R(T k).

• This is an asymptotic rate of convergence, and may happen that the convergence is very slow.

T =

(
0.99 4

0 0.99

)
=⇒ R∞(T ) = 0.01005 =⇒ N∞ = 99.5.

In reality, this case is even worse, since ‖T k‖ ≥ 1 for k ≤ 805 and ‖T k‖2 < 1/e only when k > 918.

For example,

T =


0 1

. . . . . .
. . . 1

0

→ ρ(T ) = 0 =⇒ R∞ =∞

but ‖T k‖∞ = 1 for every k < n. This is sharp if we take e0 = en.

• If T is normal, then ‖T k‖2 = ρ(T )k, so we know precisely the convergence.

• If T is diagonalizable T = XDX−1, then ‖T k‖2 ≤ k2(X)ρ(T )k, so for a large k2(X) we have a slow
convergence.

13



3.2 Richardson’s Iteration (1910)
xk+1 = xk + α(b−Axk)

where α > 0 and A is invertible. It is used as a smoother in multigrid methods. We can rearrange the iteration
and write

xk+1 − xk

α
= −Axk + b

that looks like an approximation of the derivative. It is actually connected to the Forward Euler Method applied
to the initial value problem {

ẋ = −Ax+ b

x(0) = x0

and we want ẋ→ 0 so that x converges to the solution of Ax = b. In particular, if x(t) converges for every x0

to the solution of Ax = b, then A is positive stable.
The splitting corresponding to Richardson’s Iteration is A = α−1I − (α−1I −A) and the iteration matrix is

T = B−1C = I −B−1A = I − αA.

If λj = µi + iνj are the eigenvalues of A, then the eigenvalues of T are

λj(T ) = 1− αλj = (1− αµj) + i(ανj)

and we need
ρ(T ) < 1 ⇐⇒ |1− αλj | < 1 ⇐⇒ (1− αµj)2 + (ανj)

2 < 1

so a necessary condition is

(1− αµj)2 < 1 =⇒ −1 < 1− αµj < 1 =⇒ 0 < αµj < 2

so we need in particular that A is positive stable and α not too large. The condition of positive stability is also
sufficient for an α∗ > 0 to exist s.t. the Richardson’s iteration converges for every α ∈ (0, α∗). In fact, we find

0 < α <
2µi
|λi|2

for every i, and we can set

α∗ = min
i

2µi
|λi|2

.

If A has only real positive eigenvalues (for example Hermitian positive definite) and

0 < λ1 ≤ λ2 ≤ · · · ≤ λn

then ρ(T ) < 1 for every α ∈ (0, α∗) where

α∗ = min
i

2µi
|λi|2

= min
i

2

λi
=

2

‖A‖2
≥ 2

‖A‖∞

so it is enough to have α ∈
(

0, 2
‖A‖∞

)
.

21/11/18
Under the same hypothesis, we want to minimize ρ(T ) with respect to α. We know that

λj(T ) = 1− αλj =⇒ ρ(T ) = max{|1− αλ1|, |1− αλn|}

and, as a function of α, ρ(T ) has its minimum at

αλn − 1 = 1− αλ1 =⇒ α =
2

λ1 + λn
=⇒ min

α>0
ρ(T ) =

λn − λ1

λn + λ1
.

14



α

1

λ−1
1λ−1

n

|1− αλ1|

|1− αλn|

If A is Hermitian, then the minimum is

min
α>0

ρ(T ) =
k2(A)− 1

k2(A) + 1

since k2(A) = λn/λ1. When k2(A) is low, then the spectral radius is small and the convergence is fast. On the
contrary, when k2(A) is large, then the convergence is slow, that is not always a bad thing.

Often we have λ1 ∼ 0, so the optimal value of α is very close to the bound 2/λn, so it could be dangerous.
It is thus always better to underestimate α instead of overestimate. This is the reason we estimate

α ∼ 2

‖A‖∞
≤ 2

λn

that is easy to compute and safe to use.

3.3 Ill-posed problems

Definition 3.4 (Hadamard). A mathematical problem is well-posed if the solution

• exists,

• is unique,

• it depends continuously on the data.

For example, we can take Fredholm Integral Equation of Fisrt kind. Take X = C[a, b] that is a Banach space
with norm ‖u‖∞, and consider a continuous function k : [a, b]2 → R so that the operator T defined as

(Tu)(x) =

∫ b

a

k(x, y)u(y)dy

is a linear compact operator. If we want to solve Tu = f for u, then it is an ill-posed problem, since f may not
be in the range of T and the operator may not be injective, so the solution may not exist or be unique. Even if
this is not the case, we have T compact, so T−1 is unbounded and

f̃ = f + η ∈ range(T ), Tu = f, T ũ = f̃ =⇒ ‖u− ũ‖ = ‖T−1η‖

that can be arbitrarily large, so the problem does not even depends continuously on the data.
This is an example of inverse problem, since we want to reconstruct u from f . Even if we discretize the

problem as Au = f , with A invertible, then ‖A−1‖ will be huge, since it comes from the discretization of a
compact operator.

Consider a rectangular system Ax = b, with A ∈ Rm×n. It may not have a solution, and it may not be
unique, but we can use the normal equations

• If m ≥ n, then ATAx = AT b,

• If n < m, then AAT y = b with AT y = x.

15



note that in both cases, ATA and AAT are symmetric and positive semidefinite. If rk(A) = n, then ATA is
positive definite, and if rk(A) = m, then AAT is positive definite. The normal equation are used to solve the
Least Square problem

min
x
‖Ax− b‖2

that has always a solution, and it is unique if A has full rank. Even when A has not full rank, we can require
an other condition (such as minimum norm) to restore the uniqueness. The solution is given by

rk(A) = n =⇒ (ATA)−1AT b, rk(A) = m =⇒ AT (AAT )−1b.

The problem of this approach is that

k2(ATA) = k2(AAT ) = k2(A)2

is often large, so the normal equations are very ill-conditioned and hard to solve numerically.

3.4 La??dweler’s Iteration
xk+1 = xk + αAT (b−Axk)

It is nothing but Richardson’s method applied to ATAx = AT b. If A has rank n ≤ m, then ATA is SPD and
the method converge for α ∈ (0, α∗) where

α∗ =
2

λn(ATA)
=

2

‖A‖2
, αopt =

2

σmin(A)2 + σmax(A)2
.

In real computations, we are solving a slightly perturbed system Ax = b̃, so we do not want the exact solution
x̃ = A−1b̃ that may be very far to the real solution because the perturbation may amplify through A−1. The
plot of relative error ‖x − x̃‖ wrt the number of iteration, we typically see a semi-convergence shaped like a
parabola.

k

‖x− x̃‖

kopt

If we use the SVD decomposition, we see that

A = UΣV =
∑

σiuiv
∗
i , A−1 = V ∗Σ−1U∗ =

∑ 1

σi
viu
∗
i

=⇒ x = A−1b =

n∑
i=1

u∗i b

σi
vi, x̃ = A−1b̃ =

n∑
i=1

u∗i b̃

σi
vi = x+

n∑
i=1

u∗i η

σi
vi

The problem is when σi are too small, since they boost the contamination of the perturbation η. Iteration
methods usually try to approximate a kopt where to stop, trying to confine themselves to a subspace relative to
the highest singular values, so that the approximation is good enough.

3.5 Preconditioning
In order to solve the system Ax = b, instead of Richardson we may use an iteration preconditioned by a
nonsingular matrix B

xk+1 = xk + αB−1(b−Axk).
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If B−1A is positive stable, then it will converge for α ∈ (0, α∗) with α∗ = 2/ρ(B−1A). The aim is to enlarge
ρ(B−1A), and if B−1A has real positive eigenvalues, then the convergence will be improved provided that
k2(B−1A) < k2(A). In certain sense, B−1 is an approximate inverse of A.

If A = B − C is a splitting, the stationary iteration method induced by the splitting

xk+1 = B−1Cxk +B−1b = xk +B−1(b−Axk)

is a preconditioned Richardson with α = 1. If ρ(B−1C) < 1, then the eigenvalues of B−1A lie in the disk
D(1, ρ(B−1C)), so α∗ = 2/ρ(B−1A) > 1 and α = 1 ∈ (0, α∗). So if B−1A is positive stable, then the method
converges, and if B ∼ A−1, then ρ(B−1A) ∼ 1 and α∗ ∼ 2.

3.6 Classical Iterations
Given a decomposition

A = L+D + U

where L is strictly low triangular, D is diagonal and U is strictly upper triangular, where D has full rank, the
Jacobi splitting is

A = D − (−L− U)

and the Gauss-Seidel splitting is
A = (D + L)− (−U).

These are simple methods that are not used anymore. Gauss-Seidel splitting often converges faster, but not
always.

A =

 1 −2 −2
−1 1 −1
−2 −2 1

 = I −

0 2 2
1 0 1
2 2 0

 =

 1 0 0
−1 1 0
−2 −2 1

−
0 2 2

0 0 1
0 0 0


TJ =

0 2 −2
1 0 1
2 2 0

 , TGS =

0 2 −2
0 2 −1
0 8 −6

 =⇒ ρ(TJ) = 0, ρ(TGS) = 2 + 2
√

2 > 1

so Jacobi converges in 3 steps maximum, but Gauss-Seidel diverges.

Theorem 3.2 (Stein-Rosemberg). [3] Let A = L + I + U the above decomposition (can be always put in this
form multiplying by D−1) and suppose −(L+ U) ≥ 0. Then only one of the following relations is valid:

• ρ(TJ) = ρ(TGS) = 0,

• 0 < ρ(TGS) < ρ(TJ) < 1,

• ρ(TJ) = ρ(TGS) = 1,

• 1 < ρ(TJ) < ρ(TGS).

It means that either both of the methods converge, or they both diverge, and in the first case Gauss-Seidel always
converges faster or equally as Jacobi.

Consider the GS iteration
x̃k+1 = TGSx

k + c = −(D + L)−1(Uxk + b)

modified by
xk+1 = (i− ω)xk + ωx̃k+1.

where 1 > ω > 0. This is called SOR method, and it can be written as

xk+1 = TSORx
k + c, TSOR = B(ω)−1C(ω), B(ω) =

1

ω
(D + L), C(ω) =

1− ω
ω

(D + L)− U

where A = B(ω) + C(ω). The cost is the same as GS, but the convergence is improved drastically.
We can test it on the Poisson equation −∆u = f on Ω ⊆ R2 open bounded and regular, with boundary

conditions u|δΩ = 0. Using centered FD, it reduces to a linear system Au = b. If for example Ω = (0, 1)2, then
we get

−∆u(xi, yi) ∼
−u(xi+1, yi) + 2u(xi, yi)− u(xi−1, yi)

h2
+
−u(xi, yi+1) + 2u(xi, yi)− u(xi, yi−1)

h2
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=⇒ A = T ⊗ I + I ⊗ T, T =
1

h2
trid(−1, 2,−1)

=⇒ A = h−2trid(−I,H,−I), H = trid(−1, 4,−1).

A is a SPD M-matrix and

ρ(TJ) = cos
( π
N

)
= 1− π2

2
h2 +O(h4), ρ(TGS) = 1− π2h2 +O(h4) =⇒ R∞(TGS) = 2R∞(TJ).

Using SOR, we have

ωopt =
2

1 +
√

1− ρ(TJ)2
=⇒ ρ(TSOR) =

2

1 + sin
(
π
N

) − 1 ∼ 1−O(h)

so ρ grows to 1, but the convergence is N times slower then GS.

26/11/18

4 Block Variants of Stationary Methods
Some applications lead to matrices that have a natural block structure

A =

A1,1 . . . A1,p

...
...

Ap,1 . . . Ap,p


where every diagonal block Ai,i is a square matrix. For example the 3D discrete Laplacian is

A =


T −I
−I T −I

. . . . . . . . .
−I T

 , T =


B −I
−I B −I

. . . . . . . . .
−I B

 , B =


6 −1
−1 6 −1

. . . . . . . . .
−1 6

 .

More general block tridiagonal matrix that can be founf in applications is
A1 B1

C2 A2 B2

. . . . . . . . .
Cp Ap

 .

Using a non-overlapping domain decomposition, we can break a domain Ω into a partition of Ωi. The discretiza-
tion on Ω is split into the points of the domains Ωi and the interface points, on the borders of Ωi. Suppose
we reorder the points according to the subdomains (useful for example in parallel computing), and we put the
interface points as the last ones. We can achieve the reorder through a permutation matrix P , and in the case
of the Laplacian operator in 2D, we obtain an arrow-shaped structure.

PAPT =


A1 BT1

A2 BT2
. . .

...
Ap BTp

B1 B2 . . . Bp Ã

 =

(
F GT

G Ã

)
.

Consider the 2D Stokes problem 
−∆u+∇p = f Ω ⊆ R2, open, bounded
∇ · u = 0 u : Ω→ R2

u|δΩ = g p : Ω→ R2

Upon discretization, we obtain a matrix of the form(
A BT

B 0

)(
u
p

)
=

(
f
0

)
, A =

(
L 0
0 L

)
, B =

(
B1 B2

)
.

where L is the discrete Laplacian, and B is a discrete divergence. This is an example of Saddle Point problem,
and it is represented by a symmetric indefinite matrix.
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4.1 Nested Iteration
Given a splitting A = M −N and its iteration

xk+1 = M−1(Nxk + b)

we can split again M = F −G, and replace the exact solution of Mxk+1 = . . . with a fixed number p of inner
iterations that produce an approximated solution

Fyi+1,k = Gyi,k +Nxk + b.

This is still a stationary method xk+1 = Txk + c where

T = I −B−1A, B−1 = (I − (F−1G)p)M−1 =

p−1∑
i=0

(F−1G)iF−1.

There are general convergence results for

• M-matrices and monotone matrices (A−1 ≥ 0),

• Hermitian positive definite matrices,

• diagonally dominant matrices,

• indefinite matrices of saddle point type
(
A BT

B 0

)
.

For diagonally dominant matrices, the algorithms used are Jacobi or Gauss-Seidel.

Definition 4.1 (regular). The splitting A = B − C is said to be regular if B−1 ≥ 0, C ≥ 0. It is
weak regular if B−1 ≥ 0 and T = B−1C ≥ 0.

Theorem 4.1. Let A be a monotone matrix. If the splitting A = B−C is weak regular, then ρ(B−1C) < 1, so
the iteration method is convergent.

Proof. T = B−1C = I −B−1A ≥ 0, so

(I + T + T 2 + · · ·+ Tm)(I − T ) = I − Tm+1, B−1 = (I − T )A−1 =⇒

0 ≤ (I + T + T 2 + · · ·+ Tm)B−1 = (I − Tm+1)A−1 ≤ A−1.

we have B−1 ≥ 0, so every row of B−1 must contain at least one positive entry, so (I + T + T 2 + · · ·+ Tm) has
bounded elements for every m, so it is convergent for m→∞. In particular ρ(T ) < 1.

Corollary 4.1. Let A be a nonsingular M-matric. If B is a nonsingular matrix obtained by setting to zero the
offdiagonal entries of A, then ρ(I −B−1A) < 1.

Proof. The splitting A = B−C is regular, since C ≥ 0 and B−1 ≥ 0. We have also A = rI−N , where r > ρ(N)

and N ≥ 0. we have B = rI − Ñ , where 0 ≤ Ñ ≤ N . the spectral radius is monotone on nonnegative matrices,
so the rest follows. (?)

Corollary 4.2. Jacobi, Gauss-Seidel and their block variants are convergent when A is a nonsingular M-matrix.

What about SOR method? We have that the SOR splitting of an M-matrix is regular only if ω ∈ (0, 1].

Theorem 4.2 (Kahan). Let A be a nonsingular M-matrix. Then SOR is convergent for every ω ∈ (0, ω) where

ω =
2

1 + ρ(J)
, J = −D−1(L+ U).

19



4.2 Convergence of Alternating Methods
Let A = M −N = P −Q be two splittings, and consider the scheme{

xk+ 1
2 = M−1Nxk +M−1b,

xk+1 = P−1Qxk+ 1
2 + P−1b.

Observe that ρ(M−1N) < 1 and ρ(P−1Q) < 1 are not sufficient to guarantee the convergence.

Theorem 4.3. If A is monotone and A = M − N = P − Q are weak regular, then the alternating scheme is
convergent and the induced splitting is weak regular.

Proof. We can bring to to the form xk+1 = Txk + c where

T = (P−1Q)(M−1N) ≥ 0, c = P−1(QM−1 + I)b = [P−1 + (I − P−1A)M−1]b = P−1(M + P −A)M−1b.

We have
T = P−1QM−1N = (I − P−1A)(I −M−1A) = I − P−1A−M−1A+ P−1AM−1A

=⇒ (I − T )A−1 = P−1 + (I − P−1A)M−1 ≥ 0

so
0 ≤ (I + T + T 2 + · · ·+ Tm)(I − T )A−1 = (I − Tm+1)A−1 ≤ A−1

and we can conclude that the series converges and ρ(T ) < 1. In this case,

T = I −B−1A, B−1 = P−1(M + P −A)M−1 = P−1 + (I − P−1A)M−1 ≥ 0(?)

so A = B − C is weak regular.

One can prove that if A is an M-matrix and A = M −N = P −Q are both regular splitting, then

ρ(T ) ≤ min{ρ(P−1Q), ρ(M−1N)}.

For example, we can use the symmetric Gauss-Seidel method on a symmetric matrix A = AT = L + D + LT ,
where the diagonal D has full rank. A = (L + D) − (−LT ) = (LT + D) − (−L) are two splittings and in this
case

A = B − C, B = M(M + P −A)−1P = (L+D)D−1(LT +D)

that is SPD.
B = LD−1LT + L+ LT +D = LD−1LT +A =⇒ C = LD−1LT .

A similar situation arise for the symmetric version of SOR.

Definition 4.2. If A = B − C is a splitting, it is P-regular if B∗ + C is positive definite.

Notice that if B is hermitian, then A = B − C is P-regular if 2B −A is positive definite.

28/11/18

Lemma 4.1. Suppose A is Hermitian. A = B − C is P-regular if and only if A− T ∗AT is HPD.

Proof. T = B−1C = I −B−1A.

G = A− T ∗AT = A− (I −B−1A)∗A(I −B−1A) = A−A+A∗(B−1)∗A−A∗(B−1)∗AB−1A+AB−1A

= (B−1A)∗(B +B∗ −A)(B−1A).

The matrix B + B∗ − A is Hermitian, so G is positive definite if and only if B + B∗ − A = B∗ + C is positive
definite, that means the splitting id P-regular. (? we don’t need A invertible?)
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Definition 4.3. Given a positive definite Hermitian matrix A,

‖x‖2A := x∗Ax.

Theorem 4.4. If A is HPD, then A = B − C is a P-regular splitting if and only if ‖T‖A < 1.

Proof. We need to show that ‖T‖A < 1 iff A− T ∗AT is HPD.
Assume first that A− T ∗AT is HPD.

‖Tx‖2A = x∗T ∗ATx = x∗Ax− x∗(A− T ∗AT )x < x∗Ax− ε = ‖x‖A − ε =⇒ ‖T‖A < 1.

For the converse, assume ‖T‖A < 1. In this case,

‖x‖A > ‖Tx‖A ∀x =⇒ x∗Ax > x∗T ∗ATx ∀x =⇒ A− T ∗AT HPD.

Corollary 4.3. If A is HPD, and A = B − C is P-regular, then the splitting is convergent.

Theorem 4.5 (Ostrowski, Reich). If A is HPD and ω ∈ (0, 2), then the SOR iteration for solving Ax = b is
convergent.

Proof. The SOR splitting is

B =
1

ω
(D + ωL), C =

1

ω
[(1− ω)D − ωL∗], B∗ + C =

2− ω
2

D

that is HPD if and only if ω ∈ (0, 2).

In particular, Gauss-Seidel and the block versions converge too.

Notice that id A is Hermitian but indefinite, any splitting A = B −C where B is HPD is divergent. In fact,
in B−1C = I −B−1A, the matrix B−1A has negative and positive eigenvalues, since

B−1A ∼ B−1/2AB−1/2

that is indefinite, so ρ(B−1C) > 1.
Returning to the alternating method,

Theorem 4.6. If A is HPD and A = M −N = P −Q are P-regular splittings, then the alternating iteration
is convergent and the induced splitting A = B − C is P-regular.

Proof. We already proved that the method converges, but here it is easier to prove.

T = (P−1Q)(M−1N) =⇒ ‖T‖A < 1.

It proves that
‖T‖A ≤ ‖P−1Q‖A‖M−1N‖A < max{‖P−1Q‖A, ‖M−1N‖A}

so the alternating method is faster than both original method, but it has a greater computational cost. Moreover,
the resulting B is HPD, even in the block case for SSOR and symmetric Gauss-Seidel.

Exercise 4.1. Suppose A is HPD, and A = A1 +A2 with A1 = A∗2. Let M = A1 +αI and P = A2 +αI. Then
the splittings A = M −N = (A1 +αI)− (αI −A2) and A = P −Q = (A2 +αI)− (αI −A1) are both P-regular
for every α > 0.

In this case the method is convergent for every α > 0, so it is called unconditional convergence. Notice that
if α goes to zero or goes to infinite, then ‖T‖A goes to one, so there’s an optimal α that can be computed.
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4.3 ADI Method
The ADI method stands for Alternating Direction Implicit method. Let A be HPD matrix with A = H + V
with H hermitian and V HPD. The alternating iteration is{

(H + αI)xk+ 1
2 = (αI − V )xk + b,

(V + αI)xk+1 = (αI −H)xk+ 1
2 + b.

Theorem 4.7. The ADI iteration converges ∀α > 0.

Proof. The iteration matrix is

T = (V + αI)−1(−H + αI)(H + αI)−1(−V + αI)

(V + αI)T (V + αI)−1 = (−H + αI)(H + αI)−1(−V + αI)(V + αI)−1 = S1S2

where the eigenvalues of S1 are (α − λ)/(α + λ) < 1 and the same holds for S2, so ‖S1‖2 < 1, ‖S2‖2 < 1 and
thus ‖(V + αI)T (V + αI)−1‖2 < 1, so ρ(T ) < 1.

Notice that in this case, the unique splitting A = B − C such that T = B−1C has

B =
1

2α
(HV + αH + αV + α2I) =

1

2
A+

α

2
I +

1

2α
HV

that is positive definite for α large enough, even though it is not Hermitian.

As an example, take A the discrete 2D Laplacian A = T ⊗I+I⊗T , T = trid(−1, 2,−1). We take H = T ⊗I
and V = I ⊗ T . In this case H is block diagonal, and also V is block diagonal after a permutation, so the
computation is highly parallelizable. The two matrices V and H have the same spectrum, and the optimal
choice of α is

α∗ =
√
λ1λn

4.4 Alternating Hermitian/skew-Hermitian method
The HSS method [1] is applied to A = H + S where H and S are the Hermitian and skew-Hermitian parts of
A. The splittings in this case are

A = (H + αI)− (αI − S) = (S + αI)− (αI −H).

Theorem 4.8. If A is positive definite (so that H is HPD), then HSS converges for every α > 0.

Proof.
T = (S + αI)−1(−H + αI)(H + αI)−1(−S + αI)

(S + αI)T (S + αI)−1 = (−H + αI)(H + αI)−1(−S + αI)(S + αI)−1 = S1S2

As before, ‖S1‖2 < 1 and it is Hermitian. S2 is a unitary matrix, since it is the Cayley transform of a skew-
Hermitian matrix, so ‖S2‖2 = 1. We thus have ρ(T ) < 1.

In this case, the α that minimizes ‖S1‖2 is again
√
λ1λn where the eigenvalues are the ones of H.

If we consider the Stokes problem
−∆u+∇p = f Ω ⊆ Rd, open, bounded
∇ · u = 0 u : Ω→ Rd

u|δΩ = g p : Ω→ Rd

where d = 2, then upon discretization, we obtain a matrix of the form(
A BT

B 0

)(
u
p

)
=

(
b
c

)
, A =

(
L 0
0 L

)
, B =

(
B1 B2

)
.

where L is the discrete Laplacian, and B is a discrete divergence. This is represented by a symmetric indefinite
matrix, and if we assume A HPD and B of full rank, then the discretization matrix is non singular.

22



Uzawa’s method A popular method called Uzawa’s method uses the splitting(
A BT

B 0

)
=

(
A 0
B − 1

ω I

)
−
(

0 BT

0 − 1
ω I

)
,

where ω > 0, leading to the iteration {
Auk+1 = b−BT pk,
pk+1 = pk + ω(Buk+1 − c).

In this case,
uk+1 = A−1b−A−1BT pk =⇒ pk+1 = pk + ω(BA−1b−BA−1BT pk − c)

=⇒ pk+1 = (I − ωBA−1BT )pk + ωBA−1b− ωc

so it is a Richardson iteration applied to

BA−1BT p = BA−1b− c

where the first matrix S = BA−1BT is the Schur complement. Remember that B has full rank and S is SPD.
It converges for all ω ∈ (0, ω∗) where

ω∗ =
2

λmax(S)
(?)

and
ωopt =

2

λmin(S) + λmax(S)

with spectral radius

ρ =
λmax(S)− λmin(S)

λmax(S) + λmin(S)
=
k − 1

k + 1
(?).

3/12/18

For example, in the case of Stokes problem, discretized by stable finite element methods, there exist constants
c1, c2 independent of the discretization parameter h such that

0 < c1h
2 ≤ λmin(S) < λmax(S) ≤ c2h2

hence
k =

λmax(S)

λmin(S)
= O(1)

so the rate of convergence is independent from h.

Augmented Lagrangian Method (Hestenes, Powell, 1969)(
A BT

B 0

)(
u
p

)
=

(
b
c

)
is non singular if A is symmetric and positive semidefinite, and ker(A) ∩ ker(B) = 0. But if A is not invertible,
then we cannot apply Uzawa’s method.

Suppose W be a SPD matrix (often diagonal) and γ > 0. Consider the augmented system(
A+ γBTW−1B BT

B 0

)(
u
p

)
=

(
b̃ = b+ γBTW−1Bu

c

)
Notice that Bu = c, so{

Au+BT p = b

Bu = c
=⇒

{
Au+ γBTW−1Bu+BT p = b+ γBTW−1c

Bu = c
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hence the solution (u, p) is the same. Notice that A+ γBTW−1B is SPD, since

xT (A+ γBTW−1B)x = xTAx+ γ(Bx)TW−1(Bx) ≥ 0

and it is zero only when x ∈ ker(A) ∩ ker(B) =⇒ x = 0. So we apply Uzawa’s method to the augmented
system. This is also called method of multipliers. It corresponds to the splitting(

A+ γBTW−1B BT

B 0

)
=

(
A+ γBTW−1B 0

B − 1
ω I

)
−
(

0 −BT
0 − 1

ω I

)
so

0 < ω <
2

λmax(Sγ)
, Sγ = B(A+ γBTW−1B)−1BT .

Notice that is A is invertible, then

S−1
γ = S−1

0 + γW−1 =⇒ [B(A+ γBTW−1B)−1BT ]−1 = (BA−1BT )−1 + γW−1

If γ diverges to +∞, then the eigenvalues of Sγ go to zero, so

0 < ω <
2

λmax(Sγ)
→∞.

For the optimal ω, we have

ωopt =
2

λmin(Sλ) + λmax(Sλ)
→∞

and the spectral radius goes to zero, so the rate of convergence explodes. Notice moreover that if ω = γ, then

ρ =
1

1 + γλmin(S)

that is 1/2 when γ = 1/λmin(S). The catch is in the condition number, since

k(A+ γBTW−1B)→∞

so we want to achieve a large γ to improve the speed of the convergence, but not too large, otherwise the linear
systems become too difficult to compute exactly, due to the big condition number.

Arrow-Hurwicz method When Ax = b is too expensive to solve, then one can follow the modified iteration{
uk+1 = uk + α(b−Auk −BT pk)

pk+1 = pk + ω(Buk+1 − c)

where 0 < α < α∗ and 0 < ω < ω∗, and has the advantage to be parallelizable and there’s no linear system to
solve, but it is generally slow. It is induced by the splitting(

A BT

B 0

)
=

(
1
αI 0
B − 1

αI

)
−
(

1
αI −A −BT

0 − 1
ω I

)
= P −Q

One can determine the intervals for α, ω such that the method converges and estimate the convergences for
optimal values, but they’re generally slow.

If we consider QA ∼ Q and QB ∼ S = BA−1BT approximations that are easy to invert and SPD, we can
use them as preconditioners and speed up the iteration.{

uk+1 = uk + αQ−1
A (b−Auk −BT pk)

pk+1 = pk + ωQ−1
B (Buk+1 − c)

We remark that if QA = A and QB = I, then we recover Uzawa’s method. If QA = I, then it returns to be the
original Arrow-Hurwicz method. If QA ∼ A and QB = I, then it is called Inexact Arrow-Hurwicz method.
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HSS iteration for Saddle point problems LetM = H+S be the Hermitian-Skewhermitian decomposition.{
(H + αI)xk+ 1

2 = (αI − S)xk + b,

(S + αI)xk+1 = (αI −H)xk+ 1
2 + b.

Remember that If M is positive definite (so that H is HPD), then HSS converges for every α > 0 to the
unique solution of Mx = b.

Notice that the system (
A BT

B 0

)(
u
p

)
=

(
b
c

)
can be rewritten as (

A BT

−B 0

)(
u
p

)
=

(
b
−c

)
and it can be split into (

A BT

−B 0

)
=

(
A 0
0 0

)
+

(
0 BT

−B 0

)
= H + S

where H+αI is SPD whenever A is positive semidefinite, and S+αI is positive definite with Schur complement

αI +B(αI)−1BT = αI +
1

α
BBT .

Solving system with H + αI boils down to solve SPD system with A+ αI, that is diagonally dominant if α is
large. On the other end, S + αI reduces to its Schur complement αI + 1

αBB
T that is also a SPD matrix.

5 Krylov Subspace Methods

Definition 5.1. Given a matrix A ∈ Cn×n and a vector v ∈ Cn, the m-th Krylov Subspace is

Km := span { v,Av,A2v, . . . , Am−1v } .

Note that for every A and v,
dim(Km) ≤ m ≤ n.

Definition 5.2. The minimal polynomial of v wrt A is the monic polynomial of least degree qv(x)
such that qv(A)v = 0. The degree is called the grade of v wrt A.

Note that the grade of v is always less or equal than the degree of the minimal polynomial of A.

Lemma 5.1. If µ is the grade of v wrt A, then the subspace Kµ(A, v) is A-invariant. Moreover,

Km(A, v) = Kµ(A, v) ∀m ≥ µ.

Lemma 5.2.
dim(Km(A, v)) = m ⇐⇒ deg qv(A) ≥ m

Proof. It is equivalent to say that
{ v,Av, . . . , Am−1v }

is a basis for Km(A, v) if and only if

m−1∑
i=0

αiA
iv = 0 ⇐⇒ αi = 0 ∀ i,

since in this case the grade of v is at least m.
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In other words,
dim(Km(A, v)) = min{m, grade of v}.

Suppose now that v0 ∈ Cn is an initial guess for the solution of Ax = b. The Krylov methods are approximation
methods where at the m-th iterative we find

xm ∈ x0 + Km(A, r0) = {u ∈ Cn | u = x0 + pm−1(A)r0 }

where r0 = Ax0 − b and pm−1 are polynomials of degree at most m− 1. In this case, we can rewrite

xm = (I −Apm−1(A))x0 + pm−1(A)b

and in the special case x0 = 0,
xm = pm−1(A)b.

Notice that we want a polynomial such that pm−1(A) ∼ A−1, and its existence is assured by the Cayley-Hamilton
theorem. This is also a special case of the matrix function f(X) = X−1.

10/12/18

12/12/18

Theorem 5.1. Let [α, β] ⊂ R with −∞ < α < β <∞ and γ ∈ R \ [α, β]. Then the problem

min
p∈Pk,p(γ)=1

max
t∈[α,β]

|p(t)| = min
p∈Pk,p(γ)=1

‖p‖∞,[α,β]

is solved by taking

p(t) = Ĉk(t) =
Ck

(
1 + 2 t−ββ−α

)
Ck

(
1 + 2 γ−ββ−α

) .
Notice that ‖Ck‖∞,[−1,1] = 1 for every k ≥ 0, hence

min
p∈Pk,p(γ)=1

max
t∈[α,β]

|p(t)| = 1∣∣∣Ck (1 + 2 γ−ββ−α

)∣∣∣ =
1∣∣∣Ck (2 γ−µβ−α

)∣∣∣ , µ =
α+ β

2
.

Moreover, Ck
(

2 γ−µβ−α

)
< 0 only if γ < α. In this case the best approximation polynomial is

p(t) = Ĉk(t) =
Ck

(
1 + 2 α−tβ−α

)
Ck

(
1 + 2α−γβ−α

) .
If |t| > 1, then the definition of Chebyshev polynomial becomes

Ck(t) := cosh[k cosh−1(t)] =
1

2

[
(t+

√
t2 − 1)k + (t+

√
t2 − 1)−k

]
.

When k >> 1 and t > 1, the first term dominates

Ck(t) ∼ 1

2
(t+

√
t2 − 1)k.

Let η = λmin(A)/(λmin(A) + λmax(A)). It is positive since A is a HPD. For m ≥ 1, we have

Cm(t) =
1

2

[
(t+

√
t2 − 1)m + (t+

√
t2 − 1)−m

]
≥ 1

2
(t+

√
t2 − 1)m

Cm(1 + 2η) ≥ 1

2
(1 + 2η + 2

√
η(η + 1))m,

1 + 2η + 2
√
η(η + 1) = (

√
η +

√
η + 1)2 =

(
√
λmin(A) +

√
λmax(A))2

λmax(A)− λmin(A)
= (?)

=⇒ 1

Cm(1 + 2η)
≤ 2

(√
k2(A)− 1√
k2(A) + 1

)m
, ∀m ≥ 1
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Theorem 5.2. Let A be HPD, b, x0 ∈ Cn and e0 = A−1b − x0. Denote with xm ∈ x0 + Km(A, b) the unique
minimizer of ‖x−A−1b‖A. Then

‖em‖A = ‖A−1b− xm‖A ≤ 2

(√
k2(A)− 1√
k2(A) + 1

)m
‖e0‖A.

Proof. We already know that
‖em‖A = min

p∈Πm

‖p(A)e0‖A.

Let λi be the eigenvalues of A and let u1, u2, . . . , un the corresponding eigenvectors. Expand e0 wrt the
orthonormal basis of ui

e0 =

n∑
i=1

ξiui

so that

p(A)e0 =

n∑
i=1

ξip(λi)ui =⇒ ‖p(A)e0‖2A =

n∑
i=1

|ξi|2λip(λi) ≤ max
1≤i≤n

(p(λi))
2‖e0‖2A ≤ max

x∈[λmin,λmax]
(p(x))2‖e0‖2A.

Therefore,

‖em‖A ≤ min
p∈Πm

max
x∈[λmin,λmax]

|p(x)|‖e0‖A ≤
1

Cm(1 + 2η)
‖e0‖A ≤ 2

(√
k2(A)− 1√
k2(A) + 1

)m
‖e0‖A

Notice that we have a fast convergence if k2(A) ∼ 1, so the common technique is to look for a good pre-
conditioner. On the other hand, if it is large, the predicted convergence may be a lot slower than the actual
convergence (since it always finishes at step n), so the estimation is not very sharp.

Corollary 5.1.

‖em‖2 ≤ 2
√
k2(A)

(√
k2(A)− 1√
k2(A) + 1

)m
‖e0‖2.

Proof.
λ

1/2
min(A)I ≤ A1/2 ≤ λ1/2

max(A)I

and
‖x‖A = ‖A1/2x‖2

lead to the wanted relation.

The error ‖em‖A decays monotonously, but the same cannot be said for ‖em‖2 that usually oscillates.
Let now A be diagonalizable A = XDX−1 where D = diag(λi) and λi ∈ C. In this case

‖rm‖2 = ‖b−Ax‖2 = min
p∈Πm

‖p(A)r0‖2 = min
p∈Πm

‖Xp(D)X−1r0‖2

≤ k2(X)‖r0‖2 min
p∈Πm

‖p(D)‖2 = k2(X)‖r0‖2 min
p∈Πm

max
1≤i≤n

|p(λi)| ≤ k2(X)‖r0‖2 min
p∈Πm

max
x∈S
|p(x)|

where S is a set in C that contains all the eigenvalues λi. For a unitary matrix, k2(X) = 1 and we find again a
familiar relation. The residual is now monotonic in 2-norm, but the bound is

‖rm‖2
‖r0‖2

≤ k2(X) min
p∈Πm

max
x∈S
|p(x)|.

Notice that the RHS may be ≥ 1 and in this case, the bound is useless. Therefore, if k2(X) is big, (for example
when A is almost singular) then the bound is often not informative, and k2(X) is not easy to compute. On
the other hand, if A is almost normal, meaning that k2(X) ∼ 1, then the eigenvalues of A alone are almost
sufficient to predict the convergence behaviour, so it boils down again to find good preconditioners. In fact if
the eigenvalues are clustered away from zero, then the convergence will be fast.

A result of Greenbaum, Strakos and Ptak [5] states that "Any non-increasing convergence curve is possible
for GMRES", where GMRES stands for "generalized minimum residual method". In fact, given any set of
complex numbers λ1, . . . , λn and any non-increasing convergence profile (m, ‖rm‖2) there exists A ∈ Cn×n with
eigenvalues λi and residual rm at step m. It means that the eigenvalues don’t tell us everything we need about
convergence, even in the case they are clustered.

27



5.1 Hermitian Indefinite Case
Suppose A is an indefinite Hermitian matrix, with positive and negative eigenvalues, so that the convex hull of
its eigenvalues always comprehends the point 0. For example, the Saddle point problems fall in this category

A =

(
M BT

B −C

)
where M,C are symmetric real (semi)positive definite M > 0, C ≥ 0. Also the eigenvalue problem A−µB with
A,B > 0 for certain µ the matrix A − µB is indefinite. Also in linear differential problem, there may happen
to have an indefinite discretization system, for example associated to

−∆u− ku = f Ω, u|∂Ω = γ.

In these cases, the problem
min
p∈Πm

max
1≤i≤n

|p(λi)|

cannot be replaced by
min
p∈Πm

max
x∈[λmin,λmax]

|p(x)|

because p(0) = 1, so the minimum never goes below 1, so we have to work on two separated intervals I− = [λ1, λs]
and I+ = [λs+1, λn], where λs < 0 < λs+1, so that

min
p∈Πm

max
1≤i≤n

|p(λi)| ≤ min
p∈Πm

max
x∈I−∪I+

|p(x)|.

There’s no known close form solution, except in special cases. For example, we have a solution (De Boor, Rice,
1982) when I− = −I+ that leads to the bound

min
p∈Πm

max
1≤i≤n

|p(λi)| ≤ min
p∈Πm

max
x∈I−∪I+

|p(x)| = 2

(√
|λ1λn| −

√
|λsλs+1|√

|λ1λn|+
√
|λsλs+1|

)[m/2]

and gives an analogous bound on ‖rm‖2. Notice that it can be adapted to all cases by enlarging I− and I+ in
order to make them specular sets. If λn = 1 = −λ1 and λs = −λs+1, then

‖rm‖2
‖r0‖2

≤ 2

(√
|λ1λn| −

√
|λsλs+1|√

|λ1λn|+
√
|λsλs+1|

)[m/2]

= 2

(
k2(A)− 1

k2(A) + 1

)[m/2]

.
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5.2 Steepest Descent
For Ax = b with A SPD,

• Compute r0 = b−Ax0, p0 = Ar, and set k = 0.

• Until convergence, do

– αk = (rk,rk)
(pk,rk)

– xk+1 = xk + αkrk

– rk+1 = rk − αkpk(= b−Axk+1)

– pk+1 = Ark

– k = k + 1

In case of A SPD, we know that the Steepest DEscent (SD) method minimizes at each step the function

f(x) = ‖x− x∗‖2A = (x− x∗)TA(x− x∗)

over all vectors of the form xk + αrk, rk = −∆f(xk). Here Ax∗ = b. the coefficient αk is chosen by putting
φ′(α) = 0 where φ(α) = f(xk + αrk).

It can be shown that

Theorem 5.3.

‖em‖A ≤
(
k − 1

k + 1

)m
‖e0‖A, k2(A) =

λmax(A)

λmin(A)
.

The method is quite slow.
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MINRES Remember that for MINRES in the Hermitian Indefinite case we have

min
p∈Πm

max
1≤i≤n

|p(λi)| ≤ 2

(
k − 1

k + 1

)[m/2]

.

which is about as bad as SD.

CG on Normal Equation Given A full column rank, then minimize the quantity ‖Ax− b‖2 is equivalent to
solve

A∗Ax = A∗b.

Here A∗A is HPD, and the error bound for CG is

‖em‖A∗A ≤

(√
k(A∗A)− 1√
k(A∗A) + 1

)m
‖e0‖A∗A =

(
k(A)− 1

k(A) + 1

)m
‖e0‖A∗A

5.3 Asymptotic Converge Factor
Suppose our eigenvalues are clustered on two intervals I−, I+. In this case we do not have explicit bounds, so
it is useful to introduce the asymptotic converge factor

ρ(I− ∪ I+) := lim
m→∞

(
min
p∈Πm

max
λ∈I−∪I+

|p(λ)|
)1/m

which can be estimated in some cases.
Consider a family of problems {An}n where A ∈ Cn×n that naturally arises from discretization of linear PDE

through FE, FD, Isogeometric Analysis, etc. etc. We would like to estimate the rate of convergence of Krylov
methods for n → ∞. The condition number of An goes as O(n2), so the CG deteriorates and the number of
iterations grows. For this reason, we usually use a preconditioner P such that k(P−1

n An) is bounded uniformly,
and the convergence of CG becomes independent from n.

Stationary Stokes Problem 
−∇u+ ∆p = f Ω ⊆ Rd

div(u) = 0 Ω

B.C.

where Ω is bounded with Lipschitz border, and u : Ω→ Rd is a velocity field and p : Ω→ R is a pressure field.
The discretization is an other example of saddle point problem

A

(
u
p

)
=

(
A BT

B −βC

)(
u
p

)
=

(
f
0

)
Usually A is a block diagonal matrix with Laplacian blocks on the diagonal, and BT is a discrete gradient.

If the boundary conditions are u|∂Ω = 0, then u is a function in (H1
0 (Ω))d and p ∈ L2

0(Ω) that is L2(Ω)
quotiented by the constant functions. Using piecewise linear finite elements for both spaces, it leads to an
instability on the pressure term (since β = 0), called "Checkerboard instability". To solve the question, we
need to consider higher degree elements for the velocity, or to introduce a small stabilization term β > 0 with
C positive semidefinite.

Consider the preconditioner P = DA ⊗ DC where DA = diag(A) is SPD and DC = βhdI if C = 0 or
DC = β diag(C) otherwise. In this case

Λ(P−1A ) ⊆ (−a,−bh) ∪ (ch2, d)

where a, b, c, d are positive constants. the condition number is still O(h−2), so it is not as much of preconditioner.
If we call I− = (−a,−bh) and I+ = (ch2, d), then they have different lengths, and if we symmetrize them as
Ĩ− = (−d,−ch2), we obtain an estimate that goes as O(h−2). For the asymptotic convergence factor, it has
been shown that [Wathen, Fischer, Silvester (1995)]

ρ(I− ∪ I+) = O(1−
√
bc

ad
h3/2).
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In the symmetrized version, we get
ρ(Ĩ− ∪ I+) = O(1− c

d
h2).

An independent rate of convergence is obtained by using as preconditioner the matrix

P̃ =

(
A 0
0 Mp

)
, (Mp)i,j =

∫
Ω

ϕi(x)ϕj(x)dx

where Mp is the pressure mass matrix and ϕi are the basis functions for the piecewise polynomial functions (of
some degree) in L2

0. Actually, we can replace Mp with its diagonal, and A with any good SPD preconditioner
for A (such that k(Ã−1A) is uniformly bounded, and in this case, Ã and A are said to be spectral equivalent).

5.4 Minimum Residual Methods for non-Normal systems
Recall the definition of Field of Values

F (A) := {x∗Ax | x ∈ Cn, ‖x‖2 = 1 } .

It is always compact and convex (Haussdorf-Toeplitz Theorem) and contains the spectrum of A. If A is normal,
then F (A) is the convex hull of Λ(A). Otherwise, they are quite different. If P is an invertible matrix, notice
also that F (P−1A) and F (AP−1) can be arbitrarily different, even though they have the same eigenvalues (they
are similar).

Suppose we have a family of linear systems {An}n. If there exists a compact set K ⊆ C independent of n with
0 6∈ K and F (An) ⊆ K definitively in n, then the (generalized) Minimum Residual Method(MRM) converges
with rate independent of n. In fact, in this case, we can find a polynomial that approximates 1/z with error ε
independent from n.

Remember that, for the Bendixson theorem, we can bound the spectrum of A with the eigenvalues of H1, H2

that are Hermitian and Skew-Hermitian part of A. Actually, we can say more:

F (A) ⊆ [λmin(H1), λmax(H1)]× [λmin(H2), λmax(H2)].

If λmin(H1) > c > 0 and ‖A‖2 ≤ C for all n, then F (A) is contained in a compact K ⊆ R+ × R not containing
zero.

21/01/19

Lemma 5.3 (Elmon, ∼1983). If A is positive definite, (meaning that <(A) is HPD) then at each step m of a
minimal residual method, the residuals rm = b−Axm satisfy

‖rm+1‖2 ≤ (1− µ2

σ2
)1/2‖rm‖2

where µ = λmin(<(A)) and σ = ‖A‖2 = σmax(A).

Crouzeix’s Conjecture "For any A ∈ Cn×n and any analytic function g : Ω → C with F (A) ⊆ Ω, and Ω
being an open set, it holds that

‖g(A)‖2 ≤ 2‖g‖∞,F (A)

where ‖g‖∞,F (A) = maxz∈F (A) |g(z)|."
This holds for normal matrices with

‖g(A)‖2 ≤ ‖g‖∞,F (A)

and in 2005 Crouzeix proved that in full generality

‖g(A)‖2 ≤ 11.08‖g‖∞,F (A).

In ∼2017, Crouzeix and Palencia proved that the constant is at most 1 +
√

2. Given an approximation of A−1b,
we have

‖pm(A)b−A−1b‖2 ≤ ‖pm(A)−A−1‖2‖b‖2 ≤ (1 +
√

2)‖pm(z)− z−1‖∞,F (A)‖b‖2
and from approximation theory we know that

min
pm∈Πm

‖pm(z)− z−1‖∞,F (A) = O(exp(−αm))

if F (A) does not contain the origin, for some α > 0.
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6 Arnoldi Iterations
It is a projection method onto the Krylov subspaces. It builds a orthonormal basis.

• choose a vector v1 s.t. ‖v1‖ = 1

• for j = 1 : m do

– compute hi,j = (Avi, vi) for every i = 1 : j

– compute wj = Avj −
∑j
i=1 hi,jvi

– hj+1,j = ‖wj‖2
– if hj+1,j = 0 then stop

– vj+1 = wj/hj+1,j .

This is not very stable, since it loses orthogonality between vectors quickly.

Lemma 6.1. If the Arnoldi process does not stop before m steps, then the Arnoldi vectors v1, . . . , vj form an
orthonormal basis for the Krylov subspace Km(A, v1).

Proof. They are all orthonormal by construction, and it is clear by induction that vj ∈ Kj(A, v1), so we
conclude that they are a basis thanks to the dimensions. In fact, v1 ∈ K1(A, v1), and by induction wj ∈
AKj(A, v1) + Kj(A, v1) ⊆ Kj+1(A, v1), so the same holds for vj+1.

If we denote
Vm = [v1, v2, . . . , vm]

then

Lemma 6.2. Let Ĥm be the (m+1)×m Hessemberg matrix whose entries are the quantities hi,j of the Arnoldi
process. Also let Hm be the m ×m Hessemberg matrix obtained from Ĥm by deleting the last row. Then the
Arnoldi identities hold:

Vm+1Ĥm = VmHm + wme
T
m = AVm, V ∗mAVm = Hm.

Proof. Vm+1Ĥm = VmHm + wme
T
m = AVm descend naturally from the iterations.

V ∗mAVm = V ∗mVmHm + V ∗mwme
T
m = Hm.

The spectral properties of Hm reflect the ones of A in some sense. In fact the eigenvalues of Hm, called Ritz
values, are good approximations of the eigenvalues of A. If Arnodi process reaches the n-th step, we obtain that
Hn is similar to A through an orthogonal transformation, so it has the same eigenvalues and singular values of
A.

Lemma 6.3 (Breakdown). Arnoldi process breaks down at step j iff

gradeA(v1) = j

. Under these assumption, the space Kj(A, v1) is A-invariant.

Proof. If the grade is j, then wj = 0, since Kj+1 = Kj , so Arnoldi breaks down. On the other side, if wj = 0,
then wj = Ap(A)v1 = 0 so the degree of v1 is less or equal than j. To show it is exactly j, just refer to the first
part of the proof and show that in that case the Arnoldi process would have stopped before.

The rest of the proof was already an exercise before.

Notice that if a breakdown occurs at step m, we have found an invariant subspace of A and the projection
on this subspace is exact.

A = VjHjV
∗
j .

In fact, if K ⊆ Cn is a subspace, consider the linear system Ax = b, and assume that dim(K) = m << n.
Let PK be the orthogonal projection onto K and let C ⊆ Cn be another subspace (possibly the same) and
let QCK the orthogonal projector onto K orthogonally to C. (?) these projectors can be defined by Pkx ∈ K,
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x− PKx ∈ K⊥ and QCKx ∈ K, x−QCKx ∈ C⊥. Let Am = QCKAPK , so that, if K = Km the Krylov subspace,
if x0 = 0, consider the projected system

QCK(b−Ax) = 0

for x ∈ K, is equivalent to Amx = b̂ where b̂ = QCKb. Thus we are looking for an approximate solution x̂ in K,
the projected problem has effectively dimension m. If K is A-invariant, then x̂ is actually the exact solution of
Ax = b.

Theorem 6.1. For a linear system Ax = b assume x0 = 0 and b ∈ K, where K has dimension m. (incomplete
statement)

Proof. (missing due to low battery computer)

23/01/19

6.1 Arnoldi based methods for Ax = b

Consider the case C = K = Km = Km(A, r0). We seek an approximation xm ∼ A−1b with xm ∈ x0 +Km. By
Galerkin condition,

b−Axm ⊥ Km.

Let v1 = r0/‖r0‖2 in Arnoldi’s method; set β0 = ‖r0‖2. Then

V TmAVm = Hm

is an upper Hessemberg matrix where
V T0 r0 = β0e1

by orthogonality. Hence, the resulting approximation xm is of the form

xm = x0 + Vmym, ym = β0H
−1
m e1

since
Hmym = V TmAVmym = V TmA(xm − x0) = V Tm (r0 − b+Axm) = V Tm r0 = β0e1.

The inverse of Hm is a dense matrix, but for example the entries of the first column become smaller with
exponential decay in m, that proves the convergence of the method.

The resulting Full Orthogonalization Method(FOM) is as follows

• choose x0 ∈ Rm

• compute r0 = b−Ax0, β = ‖r0‖2, v1 = r0/β

• For j = 1 : m, do

– compute wj = Avj (bottleneck)

– For i = 1 : j do

∗ compute hi,j = (wi, wj)

∗ compute wj = wj − hi,jvi
– compute hj+1,j = ‖wj‖2
– If hj+1,j = 0, set m = j and break

– set vj+1 = wj/hj+1,j

• solve Hmym = β0e1

• set xm = x0 + Vmy

It is a modified GS. We can monitor ‖rm‖2 without computing it at every step, since

Lemma 6.4. The FOM residual at step m satisfies

rm = −hm+1,mvm+1e
T
mym, ‖rm‖2 = |hm+1,m(ym)m|.
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Proof.
rm = r0 −AVmym = βv1 − VmHmym − hm+1,mvm+1e

T
mym

= βv1 − βVme1 − hm+1,mvm+1e
T
mym = −hm+1,mvm+1e

T
mym.

Actually, the true residual may differ from |hm+1,m(ym)m| so we may recompute it every five to ten step.
Each step of FOM costs approximately

2nz(A) + 2mn

where nz(A) is the number of nonzero entries in A, so that sparse matrices lead to faster methods. The storage
cost grows as (m+ 3)n+ m2

2 .
A remedy to the lose of orthogonality and the growing costs is Restarting: fix an index m to stop the

iterations and restart the algorithm with x0 = xm.

6.2 GMRES
Implemented by Saad and Schultz in 1986. We take K = Km again, but C = AKm. If we let v1 be the first
residual normalized, imposing rm ⊥ C results in a method minimizes the norm of the residual over x0+Km.Recall
that

xm = x0 + Vmym

so to derive the algorithm we define a "cost function"

J(ym) = ‖rm‖2 = ‖b−A(x0 + Vmym)‖2 = ‖βe1 − Ĥmym‖2.

Minimize J is a least square problem over x0+Km. This is inexpensive since the matrix Ĥm is upper Hessemberg,
so a QR factorization can be very cheap. Moreover as m increases we can upgrade the factorization instead of
recomputing it.

The GMRES algorithm can be described as

• compute r0 = b−Ax0, β = ‖r0‖, v1 = r0/β

• For j = 1 : m

– compute wj = Avj

– For i = 1 : j

∗ compute hi,j = (wi, wj)

∗ compute wj = wj − hi,jvi
– compute hj+1,j = ‖wj‖2
– If hj+1,j = 0, set m = j and break
– set vj+1 = wj/hj+1,j

• Ĥm = (hi,j)
j=1:m
i=1:m+1

• solve ym = miny ‖βe1 − Ĥmy‖2

• set xm = x0 + Vmym

Notice that different variants exist corresponding to different ways to orthogonalize the vectors. Moreover,
the cost is similar to FOM: linear increasing in operations and quadratic increase in storage. It means that also
restarted GMRES is widely used.

The LS problem inside GMRES is typically solved by QR factorization via Givens rotations. Starting from
the Hessemberg matrix, the factorization cost is linear at each step, and it is a very stable algorithm. If
Ĥm = QmR̂m, where Qm is a product of m plane rotations, then we can call g̃m = βQe1, and prune the last
row of R̂m and ĝm to obtain a square upper triangular matrix Rm and a vector gm so that the solution of the
LS problem is given by

ym = R−1
m gm.

One can do it gradually at each step, so that the cost remains sub-quadratic. The residual will be

‖rm‖2 = ‖Vm+1(βe1 − Ĥmym)‖2 = |(ĝm)m+1|.
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Theorem 6.2. Let A be a nonsingular matrix. Then GMRES breaks down at step j iff xj = A−1b.

This is called a ’happy breakdown’ and one can stop whenever hj+1,j is smaller than a fixed tolerance. In
practice, GMRES is preferred to FOM due to "faster" convergence on real problem (optimality in 2-norm).
Notice that the method with restarting at m may not converge for every m, but we have the following theorem

Theorem 6.3. If A is positive definite, then GMRES with restarting at m converges to the solution of Ax = b
for every m ≥ 1.

Proof. Let us prove this for m = 1. The case m > 1 follows from the fact that we minimize the residual norm
on a larger subspace, so the convergence cannot be ruined. The proof for m = 1 descends from the next section
analysis.

Minimum Residual Method If we generalize the steepest descent method to A not Hermitian, we get

• r0 = b−Ax0, p0 = Ar0, k = 0

• until convergence do

– αk = (rk,rk)
(pk,pk)

– xk+1 = xk + αkrk

– rk+1 = rk − αkpk
– pk+1 = Ark+1

This convergence for A positive definite thanks to Lemma 5.3. Notice that the method at each step minimizes
‖b−Axk+1‖2 over x0 + Span(rk).

Lemma 6.5 (Elmon, ∼1983). If A is positive definite, (meaning that <(A) is HPD) then at each step m of a
minimal residual method, the residuals rm = b−Axm satisfy

‖rm+1‖2 ≤ (1− µ2

σ2
)1/2‖rm‖2

where µ = λmin(<(A)) and σ = ‖A‖2 = σmax(A).

Proof.

‖rk+1‖22 = (rk − αkArk, rk − αkArk) = (rk − αkArk, rk)− αk(rk − αkArk, Ark) = (rk − αkArk, rk)

= ‖rk‖2 − αk(Ark, rk) = ‖rk‖2
(

1− αk
(Ark, rk)

(rk, rk)

)
= ‖rk‖2

(
1− (rk, rk)

(Ark, Ark)

(Ark, rk)

(rk, rk)

)
Now we use

(Ark, rk)

(rk, rk)
≥ λmin,

(rk, rk)

(Ark, Ark)
≤ ‖A‖2

to finish the proof.

27/02/19

7 Reordering {
−∇u+ 100(ux + uy) = f (0, 1)2

u|∂Ω = 0

When we use central finite differences with order 2 of precision, we get an oscillation behaviour, especially if the
diffusion coefficient is large. With upwind approximation we lose the oscillations but we only get a first order
precision.
If we use an uniform 400× 400 grid and a 5 points FDM, with an ILUT(10−3, 10) preconditioner and a Krylov
method (BiCGStab), we notice that the ordering of the grid points modify the density of the matrices and the
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number of iterations needed to achieve convergence.

For example, the Nested Dissection sorting makes a binary subdivision of the domain. When we divide Ω
into 4 squares, we can put first the points inside the squares in lexicographic order and then the border points.
The resulting matrix will be block diagonal with arrow-type blocks, except for the final rows/columns.

In order to estimate an incomplete factorization we have two measures

N1 = ‖A− LU‖ N2 = ‖I −A(LU)−1‖

where the second estimates the stability. With ND we have good N1 but bad N2. Incomplete factorizations
usually are strongly sequential so hardly parallelizable.

8 Sparse Approximate Inverse
The idea is to explicitly build a sparse matrix M such that M ∼ A−1, that can be used as a preconditioner.
Usually we find a product M = M1M2 without actually computing explicitly the product. Notice that the
preconditioning operation reduces to a matrix-vector product that is easily parallelizable.

Generally, A−1 is dense, so a lot of research has gone to prove that most elements are actually small. In
general we consider A an irreducible matrix (so that it cannot be reduced to smaller problems).

Remember that the Structural Inverse of a matrix A is the union of all sparsity patterns of A−1 as the
nonzero entries if A spans all possible values. It turns out that the structural inverse of an irreducible matrix
is full. In fact, if ‖A‖ < 1 then

(I −A)−1 =

∞∑
k=0

Ak

but A is irreducible, so the associated graph is strongly connected and thus every entry i, j will be non-zero
in some power Ak, since there exists a path from i to j. Therefore, the sparsity pattern of the inverse is full,
since it is the transitive closure of the graph. Indeed, if A comes from the discretization of an Elliptic PDE on
a connected domain Ω, the resulting matrix will have a full inverse.

Notice that ‖A‖k → 0 so we may think to truncate the series, but it is not a very good way to approximate the
inverse. It hints nonetheless that if A is banded, the biggest elements are concentrated around the main diagonal.

For example, take A = trid(−1, 3,−1) and consider A−1. It will be a dense matrix with very fast decay
off-diagonal, so it is usually approximated by band matrices.

Definition 8.1. Given an even number m ∈ N, we say that A is m-banded if ai,j = 0 if |i− j| > m/2.

For instance, we say that a tridiagonal matrix is 2-banded. We can assume that the matrices are structurally
symmetric, meaning that ai,j 6= 0 ⇐⇒ aj,i 6= 0. Moreover, given a compact subset K of C, we will use ‖f‖
for the sup of |f | over k. Moreover, let EN (f,K) be the best polynomial approximation of f on K of degree at
most N with ‖ · ‖ norm.

Theorem 8.1 (Chebyshev). Let f(x) = x−1 on [a, b] with 0 < a < b <∞. if k = b/a and q =
√
k−1√
k+1

, then

EN (f, [a, b]) =
(1 +

√
k)2

2b
qN+1.

Theorem 8.2 (Demko, Moss, Smith, ’83). Let A = AT an SPD and m-banded matrix with a = λ1(A),
b = λn(A). Let C0 = (1+

√
k)2

2b and let λ = q2/m. Then

|(A−1)i,j | ≤ max{C0, 1/a}λ|i−j|

Proof. Note that Ak is km-banded and so is p(A) if the degree of p is less or equal to k. If A = QDQT with Q
orthogonal and D diagonal, then p(A) = Qp(D)QT and A−1 = QD−1QT so

‖A−1 − pN (A)‖2 =

∥∥∥∥ 1

x
− pN (x)

∥∥∥∥
Λ(A)
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and if pN is the best approximant, then∥∥∥∥ 1

x
− pN (x)

∥∥∥∥
Λ(A)

= EN (
1

x
, [a, b]) = C0q

N+1.

Now write |i− j| = N m
2 + k with positive k so that |i− j| 2

m ≤ N + 1, therefore

|(A−1)i,j | = |(A−1)i,j − pN (A)i,j | ≤ ‖A−1 − pN (A)‖2 ≤ C0λ
|i−j|.

Eventually, if i = j then |A−1
i,j | ≤ ‖A−1‖2 = 1

a .

With infinite matrices, the bound is sharp.

Corollary 8.1. If C and λ are independent of n, then fo every ε > 0 we can find an index p independent from
n and a p banded matrix B such that

‖A−1 −B‖ ≤ ε.

Moreover B can be computed in O(n) time.

If A is not symmetric, but bounded and invertible, we can use A−1 = (ATA)−1AT where ATA is SPD and
banded, so we can truncate its inverse and obtain a product of banded matrices.
If A is not banded but sparse and SPD, then there exists C > 0 and ρ ∈ (0, 1) s.t. |(A−1)i,j | ≤ Cρd(i,j) where
d(i, j) is the distance between i, j in the associated graph. If the diameter of the graph is small, we in fact
cannot expect decay.

Using Schur complement,(
A B
C D

)
=

(
A 0
C D − CA−1B

)(
I A−1B
0 I

)
∼
(
A 0

C S̃

)
is a good preconditioner where S̃ = D − CFB where F is a good approximation of A−1.

In eigenvalue problem, we usually get Ax = λSx where S is the mass matrix corresponding to the scalar
product of a basis {ϕi } of the space used to discretize a continuous space of functions. In this case, S has a
low condition number, so we can use a Cholesky factorization to obtain a standard eigenvalue problem

L−1AL−T y = λy, y = L−Tx.

13/03/19

If A is an M-matrix then the AINV algorithm (incomplete form of Gram-Schmidt algorithm in A-inner
product applied to the unit basis vectors ei, that produces an approximation of A−1) converge.

The comparison matrix Â referred to the matrix A is

Âi,j =

{
|ai,j | i = j

−|ai,j | i 6= j

Definition 8.2. A matrix A = (ai,j) such that the comparison matrix Â is an M-matrix, is called
H-matrix.

An M-matrix or a diagonally dominant matrix is always an H-matrix, and, as a rule of thumb, if a result
holds for an M-matrix, then it holds for an H-matrix too.
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9 *AINV
The Stabilized AINV algorithm trades speed for robustness. If A is an SPD matrix, breakdown are possible
within AINV.

P i = aTi z
(i−1)
i = eTi Az

(i−1)
i

and when it is zero or negative, a breakdown occurs. In absence of dropping, ZTAZ = D = diag(P1, . . . , Pn),
so

Pi = zTi Azi > 0

since A is SPD and zi = Zei 6= 0. Therefore we can use

P i = (z
(i−1)
i )TAz

(i−1)
i

in the algorithm instead of the previous relation. When Z,A are sparse, then it can be compared with the cost
of an inner product, but it requires careful programming.

When dealing with non-symmetric matrices we can use the Nonsymmetric AINV or also called incomplete
biconjugation algorithm. Running AINV without stopping, we obtain an unit upper triangular Z and a diagonal
D such that AZ = LD with L unit lower triangular matrix (incomplete LU factorization). By uniqueness,
Z = U−1 where A = LDU and it is guaranteed whenever the determinant of all the leading principle submatrices
are not zero (same for LU).

If we run AINV on AT , we obtain ATW = UTD where D,U are the same used before and W = L−T thank
to the uniqueness of LU factorization. as a consequence

A−1 = ZD−1WT

so wTi Azj = 0 whenever i 6= j and W,Z are called A-bi-conjugated. Notice that h(x, y) = xTAy is not an inner
product and in general it is not positive definite.

If we take an M-matrix or diagonally dominant the AINV algorithm does not drop. If A is positive definite
(A+AT SPD) then we can stabilize AINV in a similar way as in the symmetric case, by replacing

P i = aTi z
(i−1)
i → P i = (z

(i−1)
i )TAz

(i−1)
i > 0

since 2xTAx = xT (A+AT )x. Similarly we do for the process on AT .
When A is very indefinite, the process fails miserably.

10 FSAI
Given A ∈ Rn×n an SPD matrix, fix a lower triangular sparsity pattern SL (usually the diagonal positions are
included). WE can compute a lower triangular Ĝ with sparsity pattern SL such that (ĜA)i,j = δi,j for every
(i, j) ∈ SL. Set

D = (diag(Ĝ))−1, G = D1/2Ĝ.

As a consequence, we have that
diag(GAGT ) = In.

Clearly, G is an approximation for L in the Cholesky factorization of A. G can be also characterized of the
unique solution of the problem

min
G
‖I −GL‖F s.t. G has sparsity pattern SL, diag(GAGT ) = In.

The equations (ĜA)i,j = δi,j can be written as∑
k

ĝi,kak,j = δi,j .

If we fix i, then let xk := ĝi,k so that ∑
k

ak,jxk = δi,j

but Ĝ and A are sparse, so we can solve a large collection of sparse linear systems independently.
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10.1 Application
Consider a "one particle Hamiltonian" setting with H = − 1

2∆ + V in 3D. We want to find the eigenvalues

Hψn = εnψn.

Numerically, we introduce a set of basis functions {ϕn }Nn=1 and use the weak form of the problem. we ap-
proximate ψn as a combination of ϕk so that we obtain a mass or overlap matrix Si,j = (ϕi, ϕj) that is usually
sparse. The final form will be Hx = λSx.

A method (Lowdin) prescribes to transform it into

S−1/2HS−1/2y = λy, S1/2x = y

where we can keep S−1/2 sparse or approximately sparse by dropping small entries.

An other method (Inverse Cholesky) prescribe to take S = LLT and

L−1HL−T y = λy

where usually we take Z ∼ L−1 through the AINV process.

11 Preconditioned GMRES (on the right)
To solve Ax = b through a preconditioner M , the method prescribe to

• r0 = b−Ax, β = ‖r0‖2, v1 = r0/β

• For j = 1 : m do

– w = AM−1vj

– For i = 1 : j do

∗ hi,j = wtvi
∗ w = w − hi,jvj

– hj+1,j = ‖w‖2, vj+1 = w/hj+1,j

– Vm = [v1, . . . , vm], Ĥm = [hi,j ]1≤i≤m+1, 1≤j≤m

• ym = arg miny ‖βe1 − Ĥmy‖2, xm = x0 +M−1Vmym

• If satisfied, then stop. Otherwise, let x0 = xm and restart

We are minimizing
‖b−AM−1y‖2 over x0 +Km(AM−1, r0).

If the preconditioning would be applied on the left, we’d have

‖M−1(b−Ax)‖2 ≤ ‖M−1‖2‖b−Ax‖2

11.1 FGMRES
The Flexible GMRES (Saad, 1991) can accommodate a variable preconditioner. The algorithm is identical to
preconditioned GMRES except for the computation w = AM−1vj that is substituted with zj = M−1

j vj and
w = Azj , and the matrix Vm is substituted with

Zm = [z1, . . . , zm]

and finally
xm = x0 + Zmym.

We have auxiliary storage cost (almost double), and it is not a Krylov method any more, since it minimizes
‖rm‖2 over

x0 + Span{z1, . . . , zm}.

38



15/03/19

There are other Flexible methods like Flexible CG (Notay), Flexible QMR (Szyld, Vogel, 2000).

As an example, take the Oseen Problem
−ν∆u+ (u · ∇)u+∇p = f Ω ⊂ R3

∇ · u = 0 Ω ⊂ R3

Bu = g ∂Ω

where ∆ is the vector Laplacian and u is a constant vector. It comes out from an iteration method that
produces a contraction with factor 1 − O(ν). A discretization of this problem produces a matrix A = L + N
with L associated to the Laplacian operator (usually symmetric) and N usually skew-symmetric, and a matrix
B associated to the gradient and divergence operators.

L1 +N1 BT1
L2 +N2 BT2

L3 +N3 BT3
B1 B2 B3


It is an indefinite non-symmetric matrix, but we can decompose it into(

A BT

B 0

)
=

(
I

BA−1 I

)(
A BT

0 S

)
=

(
I

BA−1 I

)
P

where S = −BA−1BT . we can use P as preconditioner and obtain(
I

BA−1 I

)
as preconditioned matrix, that has only eigenvalues 1.
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