Appunti Algebre e Gruppi di Lie
 Giovanni Barbarino

Contents

1 Roots 2
2 Weyl Group 4

3 Irreducible System	5

4 Coxeter Graphs and Dynkin Diagrams	7

1 Roots

Call $\phi^{-}(\gamma):=-\phi^{+}(\gamma)$.
Theorem 1. Let $\gamma \in E$ regular. The set $\Delta \gamma$ of all indecomponible roots of $\phi^{+}(\gamma)$ is a basis of ϕ, and every basis is obtainable through this method

Proof. Step 1 - Every root in $\phi^{+}(\gamma)$ is a nonnegative linear combination of elements of $\Delta(\gamma)$.
Step 2 - If $\alpha, \beta \in \Delta(\gamma)$ then $(\alpha, \beta)<0$ except for $\alpha=\beta$.
Step 3- $\Delta(\gamma)$ is linearly independent.
Step 4 - From Step 1, every element of $\phi^{+}(\gamma)$ is a nonnegative linear combination of elements of $\Delta(\gamma)$. But $\phi=\phi^{+} \cup \phi^{-}, \phi$ generates E, and $\Delta(\gamma)$ are linearly independent, so $\Delta(\gamma)$ is a basis for E.

Step 5 - Given a basis $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, let $\gamma \in E$ such that $(\gamma, \alpha)>0 . \gamma$ exists since, if we take the projection d_{i} of α_{i} on the orthogonal to the space generated by the other α_{j}, then $d_{i} \neq 0$ and

$$
\gamma=\sum_{i} r_{i} d_{i}, \quad r_{i}>0 \quad \Longrightarrow \quad\left(\gamma, \alpha_{j}\right)=r_{j}\left(d_{j}, \alpha_{j}\right)>0
$$

In particular, γ is also regular. Note that ϕ^{+}(that are the positive roots with respect to Δ) is a subset of $\phi^{+}(\gamma)$. As a consequence $\phi^{-} \subseteq \phi^{-}(\gamma)$, and by cardinality we can conclude that $\phi^{ \pm}=\phi^{ \pm}(\gamma)$. Moreover $\Delta(\gamma) \subseteq \Delta$ since an element outside δ is not indecomponible. By cardinality, $\Delta(\gamma)=\Delta$.

Definition 1. The connected components of

$$
E-\cup_{\alpha \in \phi} \operatorname{Span}(\alpha)^{\perp}
$$

are called Weyl Rooms.

Exercise 1. Every regular γ belong exactly to one Weyl chamber said $C(\gamma)$. Moreover, $C(\gamma)=C\left(\gamma^{\prime}\right)$ implies $\Delta(\gamma)=\Delta\left(\gamma^{\prime}\right)$.

The exercise shows that there's a bijective correspondence between chambers and basis. The Weyl group maps chambers on chambers and basis on basis

$$
\sigma(C(\gamma))=C(\sigma \gamma), \quad \sigma(\Delta(\gamma))=\Delta(\sigma \gamma)
$$

A way to see that $\sigma(\Delta(\gamma))$ is a basis, check that

$$
\alpha=\sum_{i} r_{i} \alpha_{i} \Longrightarrow \sigma(\alpha)=\sum_{i} r_{i} \sigma\left(\alpha_{i}\right) .
$$

The most famous Weyl group is S_{n}. Other Weyl groups acts like S_{n} but change the sign to an even number of variables. There are even more that we will discuss later.

Lemma 1. Let Δ be a basis of a roots system ϕ. If $\alpha \in \phi^{+} \backslash \Delta$, then there exists $\beta \in \Delta$ such that $\alpha-\beta \in \phi^{+}$.

Proof. If $(\alpha, \beta) \leq 0$ for every $\beta \in \Delta$ (called simple root), using Step 3 of Theorem (1), $\Delta \cup\{\alpha\}$ would be linearly independent, that is a contradiction. There is thus a $\beta \in \Delta$ such that $(\alpha, \beta)>0$, so (for a precedent Lemma) $\alpha-\beta \in \phi$. Write

$$
\alpha=\sum_{\gamma \in \Delta} k_{\gamma} \gamma
$$

with $k_{\gamma} \geq 0$ and $k_{\gamma}>0$ for some $\gamma \neq \beta$ (why $\alpha=k \beta$ is an error?) so $\alpha-\beta \in \phi^{+}$. (?)
Corollary 1. Every $\beta \in \phi^{+}$can be written as

$$
\beta=\alpha_{1}+\cdots+\alpha_{k}
$$

with $\alpha_{i} \in \Delta$ even not distinct, such that

$$
\alpha_{1}+\cdots+\alpha_{i} \in \phi^{+} \quad \forall i \leq k .
$$

Lemma 2. If $\alpha \in \Delta$ basis, then σ_{α} permutes $\phi^{+}-\{\alpha\}$.
Proof. $\beta=\sum_{\gamma \in \Delta} k_{\gamma} \gamma$ with $k_{\gamma} \geq 0$ and $k_{\gamma}>0$ for some $\gamma \neq \alpha$. As a consequence

$$
\sigma_{\alpha}(\beta)=\beta-\langle\beta, \alpha\rangle \alpha
$$

so k_{γ} is still the coefficient of γ and $\sigma_{\alpha}(\beta) \in \phi^{+} 0$. Moreover $\sigma_{\alpha}(\beta) \neq \alpha$ since $\sigma_{\alpha}(-\alpha)=\alpha$.
Corollary 2. Let

$$
d=\frac{1}{2} \sum_{\beta \in \phi^{+}} \beta .
$$

The following relation holds

$$
\sigma_{\alpha}(d)=d-\alpha \quad \forall \alpha \in \Delta
$$

Lemma 3. Let $\alpha_{1}, \ldots, \alpha_{t} \in \Delta$ not necessarily distinct, with $t \geq 2$. If

$$
\sigma_{1} \sigma_{2} \ldots \sigma_{t-1}\left(\alpha_{t}\right) \in \phi^{-}
$$

then there exists s such that $1 \leq s<t$ and

$$
\sigma_{1} \sigma_{2} \ldots \sigma_{t}=\sigma_{1} \ldots \sigma_{s-1} \sigma_{s+1} \ldots \sigma_{t-1}
$$

where $\sigma_{i}=\sigma_{\alpha_{i}}$.
Proof. Let

$$
\beta_{i}=\sigma_{i+1} \ldots \sigma_{t-1}\left(\alpha_{t}\right)
$$

By hypothesis, $\beta_{0} \in \phi^{-}$, and by definition $\beta_{t-1}=\alpha_{t} \in \phi^{+}$. Let s be the least index such that $\beta_{s} \in \phi^{+}$.

$$
\sigma_{s}\left(\beta_{s}\right)=\beta_{s-1} \in \phi^{-}
$$

By Lemma we have $\beta_{s}=\alpha_{s}$, that is

$$
\sigma_{s+1} \ldots \sigma_{t-1}\left(\alpha_{t}\right)=\alpha_{s}
$$

Remember that

$$
\sigma_{\tau(\alpha)}=\tau \sigma_{\alpha} \tau^{-1} \quad \forall \alpha \in \phi, \quad \forall \tau \in W
$$

We infer that

$$
\begin{gathered}
\sigma_{s}=\tau \sigma_{t} \tau^{-1}, \quad \tau=\sigma_{s+1} \ldots \sigma_{t-1} \\
\Longrightarrow \sigma_{1} \ldots \sigma_{s-1} \sigma_{s} \sigma_{s+1} \ldots \sigma_{t-1}=\sigma_{1} \ldots \sigma_{s-1} \sigma_{s+1} \ldots \sigma_{t-1} \sigma_{t} \\
\Longrightarrow \sigma_{1} \sigma_{2} \ldots \sigma_{t}=\sigma_{1} \ldots \sigma_{s-1} \sigma_{s+1} \ldots \sigma_{t-1}
\end{gathered}
$$

since σ_{t} is an involution.

Consider A_{2} the roots system with three positive roots $\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}$.

Figure 1: System of roots A_{2}.
Notice that $s_{1} s_{2} s_{1}\left(\alpha_{2}\right)=-\alpha_{1} . \beta_{0}=-\alpha_{1}, \beta_{1}=\alpha_{1}, \beta_{2}=\alpha_{1}+\alpha_{2}, \beta_{3}=\alpha_{2}$, so $s=1$. By precedent Lemma, we conclude $s_{1} s_{2} s_{1} s_{2}=s_{2} s_{1}$.

Corollary 3. If $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{t} \in W$ is a way to express σ in terms of simple reflections σ_{i} wrt a basis Δ of least length, then $\sigma\left(\alpha_{t}\right) \in \phi^{-}$.

Proof.

$$
\sigma\left(\alpha_{t}\right)=\sigma_{1} \ldots \sigma_{t-1}\left(-\alpha_{t}\right)=-\sigma_{1} \ldots \sigma_{t-1}\left(\alpha_{t}\right)
$$

but if $\sigma\left(\alpha_{t}\right) \in \phi^{+}$, by Lemma (3), we could write σ as a combination of $t-1$ simple reflections, that is a contradiction.

2 Weyl Group

Theorem 2. Let Δ be a basis of ϕ.

1. If $\gamma \in E$ is regular, then there exists $\sigma \in W$ such that $(\sigma(\gamma), \alpha)>0$ for every $\alpha \in \Delta$ (also said, $\sigma(\gamma)$ belong to the Fundamental Chamber). As a consequence W action is transitive on the chambers.
2. If Δ^{\prime} is another basis of ϕ, then there exists $\sigma \in W$ such that $\sigma\left(\Delta^{\prime}\right)=\Delta$.
3. If $\beta \in \phi$, then there exists $\sigma \in W$ such that $\sigma(\beta) \in \Delta$.
4. If $\sigma(\Delta)=\Delta$, then $\sigma=I d$. As a consequence W action is simply transitive on the chambers.

Proof. Let $W^{\prime}=\left(\sigma_{\alpha}\right)_{\alpha \in \Delta}$. We will prove 1., 2., 3. for W^{\prime} and then we will prove $W=W^{\prime}$.

1. Given $d=\frac{1}{2} \sum_{\beta \in \phi^{+}} \beta$ and let $\sigma \in W^{\prime}$ such that $(\sigma(\gamma), d)$ is maximum. If $\alpha \in \Delta$, then $\sigma_{\alpha} \sigma \in W^{\prime}$, so

$$
\begin{gathered}
(\sigma(\gamma), d) \geq\left(\sigma_{\alpha} \sigma(\gamma), d\right)=\left(\sigma(\gamma), \sigma_{\alpha}(d)\right)=(\sigma(\gamma), d)-(\sigma(\gamma), \alpha) \\
\Longrightarrow(\sigma(\gamma), \alpha) \geq 0 \quad \forall \alpha \in \Delta
\end{gathered}
$$

Remember that γ is regular, so

$$
(\sigma(\gamma), \alpha)=0 \Longrightarrow\left(\gamma, \sigma^{-1}(\alpha)\right)=0
$$

that is a contradiction. We conclude that $(\sigma(\gamma), \alpha)>0$ and thus $\sigma(\gamma)$ belong to the fundamental chamber.
2. W^{\prime} acts transitively on basis, since it acts transitively on the chambers, and we know that there's a bijective correspondence between basis and chambers.
3. It is enough to prove that every root belongs to at least one basis. The conclusion then comes from point 2.. Let $\beta \in \phi$ but not in Δ. Note that the hyperplanes $\operatorname{Span}(\alpha)^{\perp}$ are distinct from $\operatorname{Span}(\beta)^{\perp}$ for every $\alpha \neq \pm \beta$. We can choose $\gamma \in \operatorname{Span}(\beta)^{\perp}$ that is not contained in any $\operatorname{Span}(\alpha)^{\perp}$ for $\alpha \neq \pm \beta$. Take

$$
m=\min _{\alpha \in \phi \backslash\{ \pm \beta\}}|(\gamma, \alpha)|>0
$$

and consider γ^{\prime} "near" $\gamma($ even not in ϕ) such that

$$
\left(\gamma^{\prime}, \beta\right)=\varepsilon<m, \quad\left|\left(\gamma^{\prime}, \alpha\right)\right|>\varepsilon \quad \forall \alpha \neq \pm \beta
$$

It means that β is indecomponible in $\phi^{+}\left(\gamma^{\prime}\right)$, so $\beta \in \Delta\left(\gamma^{\prime}\right)$.
We now prove that $W^{\prime}=W$. Consider $\beta \in \phi$ and take $\tau \in W^{\prime}$ such that $\tau(\beta)=\alpha \in \Delta$ from 3..

$$
\sigma_{\alpha}=\sigma_{\tau(\beta)}=\tau \circ \sigma_{\beta} \circ \tau \in W^{\prime}
$$

4. Let $\sigma(\Delta)=\Delta$. Let us consider the shortest way to write σ as a composition of simple reflections

$$
\sigma=\sigma_{1} \circ \cdots \circ \sigma_{t}
$$

From Corollary 3, $\sigma\left(\alpha_{t}\right) \in \phi^{-}$, that is a contradiction since $\Delta \subseteq \phi^{+}$.

Definition 2. A shortest way to write $\sigma \in W$ as a composition of simple reflections

$$
\sigma=\sigma_{1} \circ \cdots \circ \sigma_{t}
$$

is called Reduced Expression of σ and $l(\sigma)=t$ is its Length. In particular $l(I d)=0$.

Notice that the length of a σ depends on the chosen basis Δ.
Theorem 3. For every $\sigma \in W$, the length of σ is the number $n(\sigma)$ of positive roots $\beta \in \phi^{+}$such that $\sigma(\beta) \in \phi^{-}$
Proof. If $l(\sigma)=0$, then $\sigma=I d$ and $n(\sigma)=0$.
Suppose by induction that it holds for every τ such that $l(\tau)<l(\sigma)$. Let

$$
\sigma=\sigma_{1} \circ \cdots \circ \sigma_{t}
$$

be a reduced expression for σ. Take α according to Corollary 3 such that $\sigma(\alpha) \in \phi^{-}$. Note that σ_{α} maps $\phi^{+} \backslash\{\alpha\}$ in itself and $\alpha \rightarrow-\alpha$. Moreover $\sigma(-\alpha) \in \phi^{+}$and maps $n(\sigma)-1$ roots of $\phi^{+} \backslash\{\alpha\}$ inside ϕ^{-}. It means that

$$
n\left(\sigma \sigma_{1} \alpha\right)=n(\sigma)-1, \quad l\left(\sigma \sigma_{\alpha}\right)=l(\sigma)-1 \Longrightarrow n(\sigma)=l(\sigma)
$$

Exercise 2. Prove that all the roots $\tau \in \phi^{+}$such that $\sigma(\tau) \in \phi^{-}$are exactly

$$
\alpha_{t}, \sigma_{t}\left(\alpha_{t-1}\right), \ldots, \sigma_{t} \circ \cdots \circ \sigma \sigma_{2}\left(\alpha_{1}\right)
$$

Note that $-\Delta$ is a basis for ϕ. Therefore, there exists an unique $w_{0} \in W$ such that $w_{0}(\Delta)=-\Delta$ and

$$
l\left(w_{0}\right)=n\left(w_{0}\right)=\left|\phi^{+}\right|
$$

and this is the maximum length possible in W.
For example, taking S_{3} referred to the system A_{2} (see Figure??), we have 3 positive roots and $s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$ are the only element of length 3 .

Exercise 3. Prove that if $w_{0}(\Delta)=-\Delta$, then w_{0} is the only element of maximum length and therefore $w_{0}=w_{0}^{-1}$. Notice that w_{0} may not be $-I d$.

3 Irreducible System

Definition 3. A root system is said to be Irreducible if it cannot be partitioned into two proper subsets A, B such that

$$
(\alpha, \beta)=0 \quad \forall \alpha \in A, \quad \beta \in B
$$

For example $A_{1} \times A_{1}$ is reducible (not irreducible).

Figure 2: System of roots $A_{1} \times A_{1}$.

Exercise 4. A root system ϕ is Irreducible if and only if any basis Δ cannot be partitioned into two proper subsets A, B such that

$$
(\alpha, \beta)=0 \quad \forall \alpha \in A, \quad \beta \in B
$$

Lemma 4. A root system $\phi \subseteq E$ is reducible in an unique way into $\phi_{1} \cup \phi_{2} \cup \ldots \phi_{s}$ where ϕ_{i} are irreducible and disjoint. If $E_{i}=\operatorname{Span}\left(\phi_{i}\right)$, then

$$
E=E_{1} \oplus E_{2} \oplus \cdots \oplus E_{s}
$$

where the sum is an orthogonal direct sum.
Lemma 5. Let ϕ be irreducible. The group W action is irreducible on E and the orbit of every root generates E.

Proof. Suppose $E^{\prime} \subseteq E$ is a vector subspace such that $W\left(E^{\prime}\right) \subseteq E^{\prime}$. Given $\alpha \in \phi$,

$$
\sigma_{\alpha}(v)=v-\langle v, \alpha\rangle \alpha
$$

so for every $v \in E^{\prime}$,

$$
\alpha \in E^{\prime} \Longrightarrow \sigma_{\alpha}(v) \in E^{\prime}, \quad \alpha \notin E^{\prime} \Longrightarrow\langle v, \alpha\rangle=0
$$

and therefore

$$
\phi=\left(\phi \cap E^{\prime}\right) \cup\left(\phi \cap\left(E^{\prime}\right)^{\perp}\right) .
$$

We assumed ϕ is irreducible, so $\phi \cap E^{\prime}=\phi$ and $E^{\prime}=E$.

Definition 4. Given a basis $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ of ϕ, let us call

$$
\left(\left\langle\alpha_{i}, \alpha_{j}\right\rangle\right)_{i, j}
$$

the Cartan Matrix of ϕ.

The matrix does not depend on Δ, up to the order of the elements, since all basis are W-conjugated. A question that arises here is: given $\phi \subseteq E$ and $\phi^{\prime} \subseteq E^{\prime}$ with the same Cartan matrix, are they isomorphic?

Lemma 6. Yes, and if Δ and Δ^{\prime} are basis of ϕ, ϕ^{\prime}, with

$$
\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}, \quad \Delta^{\prime}=\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{l}^{\prime}\right\}
$$

and the same associated Cartan matrices, then the bijection $\theta\left(\alpha_{i}\right)=\alpha_{i}^{\prime}$ extends to an isomorphism between ϕ and ϕ^{\prime}.

Proof. If $\alpha, \beta \in \Delta$, we have

$$
\sigma_{\theta(\alpha)}(\theta(\beta))=\sigma_{\alpha^{\prime}}\left(\beta^{\prime}\right)=\beta^{\prime}-\left\langle\beta^{\prime}, \alpha^{\prime}\right\rangle \alpha^{\prime}=\theta(\beta)-\langle\beta, \alpha\rangle \theta(\alpha)=\theta(\beta-\langle\beta, \alpha\rangle \alpha)=\theta\left(\sigma_{\alpha}(\beta)\right)
$$

W, W^{\prime} are generated by simple reflections, so $\varphi: W \rightarrow W^{\prime}$ defined as $\Gamma(\sigma)=\theta \circ \sigma \circ \theta^{-1}$ sends Δ in Δ^{\prime} by $\Gamma\left(\sigma_{\alpha_{i}}\right)=\sigma_{\alpha_{i}^{\prime}}$ and it is surjective and invertible, thus an isomorphism. Remember that any $\beta \in \phi$ is conjugated to a simple root that is $\beta=\tau\left(\alpha_{1}\right)$ so

$$
\theta(\beta)=\left(\theta \circ \tau \circ \theta^{-1}\right)(\theta(\alpha)) \in \phi^{\prime} .
$$

As a conclusion, $\theta: \phi \rightarrow \phi^{\prime}$ and it is a bijection. The relation

$$
\langle\gamma, \delta\rangle=\langle\theta(\gamma), \theta(\delta)\rangle
$$

follows easily.

4 Coxeter Graphs and Dynkin Diagrams

Given ϕ a root system, a basis Δ and $\alpha, \beta \in \phi^{+}$we know that

$$
\langle\alpha, \beta\rangle\langle\beta, \alpha\rangle=0,1,2,3 .
$$

Definition 5. Let G be a graph with nodes $\alpha_{i} \in \Delta$ and multi-link where between α_{i}, α_{j} there are

$$
\langle\alpha, \beta\rangle\langle\beta, \alpha\rangle
$$

links. It is called Coxeter Graph.

Definition 6. Given a Coxeter graph, if two roots have different lengths, we add an arrow towards the shortest. This is called Dynkin Diagram

Given a Dynkin Diagram, we can reproduce the Cartan matrix associated, using the rank 2 table.

References

