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1 Roots
Call φ−(γ) := −φ+(γ).

Theorem 1. Let γ ∈ E regular. The set ∆γ of all indecomponible roots of φ+(γ) is a basis of φ, and every
basis is obtainable through this method

Proof. Step 1 - Every root in φ+(γ) is a nonnegative linear combination of elements of ∆(γ).

Step 2 - If α, β ∈ ∆(γ) then (α, β) < 0 except for α = β.

Step 3 - ∆(γ) is linearly independent.

Step 4 - From Step 1, every element of φ+(γ) is a nonnegative linear combination of elements of ∆(γ). But
φ = φ+ ∪ φ−, φ generates E, and ∆(γ) are linearly independent, so ∆(γ) is a basis for E.

Step 5 - Given a basis ∆ = {α1, . . . , αn }, let γ ∈ E such that (γ, α) > 0. γ exists since, if we take the
projection di of αi on the orthogonal to the space generated by the other αj , then di 6= 0 and

γ =
∑
i

ridi, ri > 0 =⇒ (γ, αj) = rj(dj , αj) > 0.

In particular, γ is also regular. Note that φ+ (that are the positive roots with respect to ∆) is a subset of φ+(γ).
As a consequence φ− ⊆ φ−(γ), and by cardinality we can conclude that φ± = φ±(γ). Moreover ∆(γ) ⊆ ∆ since
an element outside δ is not indecomponible. By cardinality, ∆(γ) = ∆.

Definition 1. The connected components of

E − ∪α∈φSpan(α)⊥

are called Weyl Rooms.

Exercise 1. Every regular γ belong exactly to one Weyl chamber said C(γ). Moreover, C(γ) = C(γ′) implies
∆(γ) = ∆(γ′).

The exercise shows that there’s a bijective correspondence between chambers and basis. The Weyl group
maps chambers on chambers and basis on basis

σ(C(γ)) = C(σγ), σ(∆(γ)) = ∆(σγ).

A way to see that σ(∆(γ)) is a basis, check that

α =
∑
i

riαi =⇒ σ(α) =
∑
i

riσ(αi).

The most famous Weyl group is Sn. Other Weyl groups acts like Sn but change the sign to an even number of
variables. There are even more that we will discuss later.

Lemma 1. Let ∆ be a basis of a roots system φ. If α ∈ φ+ \∆, then there exists β ∈ ∆ such that α− β ∈ φ+.
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Proof. If (α, β) ≤ 0 for every β ∈ ∆ (called simple root), using Step 3 of Theorem (1), ∆ ∪ {α } would be
linearly independent, that is a contradiction. There is thus a β ∈ ∆ such that (α, β) > 0, so (for a precedent
Lemma ) α− β ∈ φ. Write

α =
∑
γ∈∆

kγγ

with kγ ≥ 0 and kγ > 0 for some γ 6= β (why α = kβ is an error?) so α− β ∈ φ+. (?)

Corollary 1. Every β ∈ φ+ can be written as

β = α1 + · · ·+ αk

with αi ∈ ∆ even not distinct, such that

α1 + · · ·+ αi ∈ φ+ ∀i ≤ k.

Lemma 2. If α ∈ ∆ basis, then σα permutes φ+ − {α }.

Proof. β =
∑
γ∈∆ kγγ with kγ ≥ 0 and kγ > 0 for some γ 6= α. As a consequence

σα(β) = β − 〈β, α〉α

so kγ is still the coefficient of γ and σα(β) ∈ φ+0. Moreover σα(β) 6= α since σα(−α) = α.

Corollary 2. Let

d =
1

2

∑
β∈φ+

β.

The following relation holds
σα(d) = d− α ∀α ∈ ∆.

Lemma 3. Let α1, . . . , αt ∈ ∆ not necessarily distinct, with t ≥ 2. If

σ1σ2 . . . σt−1(αt) ∈ φ−

then there exists s such that 1 ≤ s < t and

σ1σ2 . . . σt = σ1 . . . σs−1σs+1 . . . σt−1

where σi = σαi .

Proof. Let
βi = σi+1 . . . σt−1(αt).

By hypothesis, β0 ∈ φ−, and by definition βt−1 = αt ∈ φ+. Let s be the least index such that βs ∈ φ+.

σs(βs) = βs−1 ∈ φ−.

By Lemma we have βs = αs, that is
σs+1 . . . σt−1(αt) = αs.

Remember that
στ(α) = τσατ

−1 ∀ α ∈ φ, ∀ τ ∈W.

We infer that
σs = τσtτ

−1, τ = σs+1 . . . σt−1

=⇒ σ1 . . . σs−1σsσs+1 . . . σt−1 = σ1 . . . σs−1σs+1 . . . σt−1σt

=⇒ σ1σ2 . . . σt = σ1 . . . σs−1σs+1 . . . σt−1

since σt is an involution.
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Consider A2 the roots system with three positive roots α1, α2, α1 + α2 .

α1

α1 + α2α2

Figure 1: System of roots A2.

Notice that s1s2s1(α2) = −α1. β0 = −α1, β1 = α1, β2 = α1 + α2, β3 = α2, so s = 1. By precedent Lemma,
we conclude s1s2s1s2 = s2s1.

Corollary 3. If σ = σ1σ2 . . . σt ∈ W is a way to express σ in terms of simple reflections σi wrt a basis ∆ of
least length, then σ(αt) ∈ φ−.

Proof.
σ(αt) = σ1 . . . σt−1(−αt) = −σ1 . . . σt−1(αt)

but if σ(αt) ∈ φ+, by Lemma (3), we could write σ as a combination of t − 1 simple reflections, that is a
contradiction.

2 Weyl Group
Theorem 2. Let ∆ be a basis of φ.

1. If γ ∈ E is regular, then there exists σ ∈ W such that (σ(γ), α) > 0 for every α ∈ ∆ (also said, σ(γ)
belong to the Fundamental Chamber). As a consequence W action is transitive on the chambers.

2. If ∆′ is another basis of φ, then there exists σ ∈W such that σ(∆′) = ∆.

3. If β ∈ φ, then there exists σ ∈W such that σ(β) ∈ ∆.

4. If σ(∆) = ∆, then σ = Id. As a consequence W action is simply transitive on the chambers.

Proof. Let W ′ = (σα)α∈∆. We will prove 1., 2., 3. for W ′ and then we will prove W = W ′.

1. Given d = 1
2

∑
β∈φ+ β and let σ ∈W ′ such that (σ(γ), d) is maximum. If α ∈ ∆, then σασ ∈W ′, so

(σ(γ), d) ≥ (σασ(γ), d) = (σ(γ), σα(d)) = (σ(γ), d)− (σ(γ), α)

=⇒ (σ(γ), α) ≥ 0 ∀α ∈ ∆.

Remember that γ is regular, so
(σ(γ), α) = 0 =⇒ (γ, σ−1(α)) = 0

that is a contradiction. We conclude that (σ(γ), α) > 0 and thus σ(γ) belong to the fundamental chamber.

13/03/19 (Gaiffi)

2. W ′ acts transitively on basis, since it acts transitively on the chambers, and we know that there’s a
bijective correspondence between basis and chambers.

3. It is enough to prove that every root belongs to at least one basis. The conclusion then comes from point
2.. Let β ∈ φ but not in ∆. Note that the hyperplanes Span(α)⊥ are distinct from Span(β)⊥ for every α 6= ±β.
We can choose γ ∈ Span(β)⊥ that is not contained in any Span(α)⊥ for α 6= ±β. Take

m = min
α∈φ\{±β}

|(γ, α)| > 0

and consider γ′ "near" γ (even not in φ) such that

(γ′, β) = ε < m, |(γ′, α)| > ε ∀α 6= ±β.
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It means that β is indecomponible in φ+(γ′), so β ∈ ∆(γ′).

We now prove that W ′ = W . Consider β ∈ φ and take τ ∈W ′ such that τ(β) = α ∈ ∆ from 3..

σα = στ(β) = τ ◦ σβ ◦ τ ∈W ′.

4. Let σ(∆) = ∆. Let us consider the shortest way to write σ as a composition of simple reflections

σ = σ1 ◦ · · · ◦ σt.

From Corollary 3, σ(αt) ∈ φ−, that is a contradiction since ∆ ⊆ φ+.

Definition 2. A shortest way to write σ ∈W as a composition of simple reflections

σ = σ1 ◦ · · · ◦ σt

is called Reduced Expression of σ and l(σ) = t is its Length. In particular l(Id) = 0.

Notice that the length of a σ depends on the chosen basis ∆.

Theorem 3. For every σ ∈W , the length of σ is the number n(σ) of positive roots β ∈ φ+ such that σ(β) ∈ φ−

Proof. If l(σ) = 0, then σ = Id and n(σ) = 0.

Suppose by induction that it holds for every τ such that l(τ) < l(σ). Let

σ = σ1 ◦ · · · ◦ σt

be a reduced expression for σ. Take α according to Corollary 3 such that σ(α) ∈ φ−. Note that σα maps
φ+ \ {α } in itself and α → −α. Moreover σ(−α) ∈ φ+ and maps n(σ) − 1 roots of φ+ \ {α } inside φ−. It
means that

n(σσ1α) = n(σ)− 1, l(σσα) = l(σ)− 1 =⇒ n(σ) = l(σ).

Exercise 2. Prove that all the roots τ ∈ φ+ such that σ(τ) ∈ φ− are exactly

αt, σt(αt−1), . . . , σt ◦ · · · ◦ σσ2(α1).

Note that −∆ is a basis for φ. Therefore, there exists an unique w0 ∈W such that w0(∆) = −∆ and

l(w0) = n(w0) = |φ+|

and this is the maximum length possible in W .
For example, taking S3 referred to the system A2 (see Figure ??), we have 3 positive roots and s1s2s1 = s2s1s2

are the only element of length 3.

Exercise 3. Prove that if w0(∆) = −∆, then w0 is the only element of maximum length and therefore w0 = w−1
0 .

Notice that w0 may not be −Id.

3 Irreducible System

Definition 3. A root system is said to be Irreducible if it cannot be partitioned into two proper
subsets A,B such that

(α, β) = 0 ∀α ∈ A, β ∈ B
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For example A1 ×A1 is reducible (not irreducible).

α1

α2

Figure 2: System of roots A1 ×A1.

Exercise 4. A root system φ is Irreducible if and only if any basis ∆ cannot be partitioned into two proper
subsets A,B such that

(α, β) = 0 ∀α ∈ A, β ∈ B

Lemma 4. A root system φ ⊆ E is reducible in an unique way into φ1 ∪ φ2 ∪ . . . φs where φi are irreducible
and disjoint. If Ei = Span(φi), then

E = E1 ⊕ E2 ⊕ · · · ⊕ Es
where the sum is an orthogonal direct sum.

Lemma 5. Let φ be irreducible. The group W action is irreducible on E and the orbit of every root generates
E.

Proof. Suppose E′ ⊆ E is a vector subspace such that W (E′) ⊆ E′. Given α ∈ φ,

σα(v) = v − 〈v, α〉α

so for every v ∈ E′,
α ∈ E′ =⇒ σα(v) ∈ E′, α 6∈ E′ =⇒ 〈v, α〉 = 0

and therefore
φ = (φ ∩ E′) ∪ (φ ∩ (E′)⊥).

We assumed φ is irreducible, so φ ∩ E′ = φ and E′ = E.

Definition 4. Given a basis ∆ = {α1, . . . , αl } of φ, let us call

(〈αi, αj〉)i,j

the Cartan Matrix of φ.

The matrix does not depend on ∆, up to the order of the elements, since all basis are W−conjugated. A
question that arises here is: given φ ⊆ E and φ′ ⊆ E′ with the same Cartan matrix, are they isomorphic?

Lemma 6. Yes, and if ∆ and ∆′ are basis of φ, φ′, with

∆ = {α1, . . . , αl } , ∆′ = {α′1, . . . , α′l }

and the same associated Cartan matrices, then the bijection θ(αi) = α′i extends to an isomorphism between φ
and φ′.

Proof. If α, β ∈ ∆, we have

σθ(α)(θ(β)) = σα′(β′) = β′ − 〈β′, α′〉α′ = θ(β)− 〈β, α〉θ(α) = θ(β − 〈β, α〉α) = θ(σα(β)).

6



W,W ′ are generated by simple reflections, so ϕ : W → W ′ defined as Γ(σ) = θ ◦ σ ◦ θ−1 sends ∆ in ∆′ by
Γ(σαi

) = σα′
i
and it is surjective and invertible, thus an isomorphism. Remember that any β ∈ φ is conjugated

to a simple root that is β = τ(α1) so

θ(β) = (θ ◦ τ ◦ θ−1)(θ(α)) ∈ φ′.

As a conclusion, θ : φ→ φ′ and it is a bijection. The relation

〈γ, δ〉 = 〈θ(γ), θ(δ)〉

follows easily.

4 Coxeter Graphs and Dynkin Diagrams
Given φ a root system, a basis ∆ and α, β ∈ φ+ we know that

〈α, β〉〈β, α〉 = 0, 1, 2, 3.

Definition 5. Let G be a graph with nodes αi ∈ ∆ and multi-link where between αi, αj there are

〈α, β〉〈β, α〉

links. It is called Coxeter Graph.

Definition 6. Given a Coxeter graph, if two roots have different lengths, we add an arrow towards
the shortest. This is called Dynkin Diagram

Given a Dynkin Diagram, we can reproduce the Cartan matrix associated, using the rank 2 table.
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