Approximation of the Laplace-Beltrami operator by its symbol

Giovanni Barbarino ${ }^{1} \quad$ Davide Bianchi ${ }^{2} \quad$ Carlo Garoni ${ }^{3}$

ALAMA 2022 - ALN2gg

${ }^{1}$ Department of Mathematics and Systems Analysis, Aalto University ${ }^{2}$ School of Science, Harbin Institute of Technology, Shenzhen, China
${ }^{3}$ Department of Mathematics, University of Rome Tor Vergata, Rome, Italy

1d wave equation

Let us consider the following constant-coefficient $1 d$ wave equation

$$
\begin{cases}\partial_{t t} u-\Delta u=0, & (t, x) \in(0, T) \times(0,1), \\ u(t, 0)=u(t, 1)=0, & t \in(0, T), \\ u(0, x)=u^{0}(x), \partial_{t} u(0, x)=u^{1}(x), & x \in(0,1) .\end{cases}
$$

As a consequence of the Fourier explicit representation formulas, the solutions of this model satisfy the observability inequality

$$
\begin{equation*}
\left\|\left(u^{0}, u^{1}\right)\right\|_{H_{0}^{1}(0,1) \times L^{2}(0,1)}^{2} \leq C_{o b s} \int_{0}^{T}\left|\partial_{x} u(t, 1)\right|^{2} d t \tag{1}
\end{equation*}
$$

for a suitable constant $C_{o b s}=C_{o b s}(T)>0$ provided $T \geq 2$. Inequality (1) ensures that all waves propagating in space-time to reach the extreme $x=1$ in time $T=2$.

The spectral gap

Consider the associated 1d (spacial) operator

$$
\begin{aligned}
& -\Delta: W_{0}^{1,2}((0,1)) \rightarrow \mathrm{L}^{2}((0,1)), \\
& -\Delta[u](x):=-\partial_{x x} u(x) .
\end{aligned}
$$

The spectrum $\lambda_{k}=k^{2} \pi^{2}$ satisfies the following gap condition:

$$
\begin{equation*}
\sqrt{\lambda_{k+1}}-\sqrt{\lambda_{k}}=\pi=\gamma>0, \quad \text { for every } k \geq 1, \tag{2}
\end{equation*}
$$

The gap condition (2) ensures the boundary observability of the solutions of the associated wave equation in time $T>2 \pi / \gamma$.

Approximation

The classical $2 \eta+1$ points FD approximation $\Delta_{\text {dir }, n}^{(\eta)}$ with eigenvalues $\lambda_{k}^{(n)}$ is such that

$$
\min _{k=1, \ldots, n-1} \sqrt{\lambda_{k+1}^{(n)}}-\sqrt{\lambda_{k}^{(n)}} \rightarrow 0
$$

Approximation

The classical $2 \eta+1$ points FD approximation $\Delta_{\text {dir }, n}^{(\eta)}$ with eigenvalues $\lambda_{k}^{(n)}$ is such that
$\min _{k=1, \ldots, n-1} \sqrt{\lambda_{k+1}^{(n)}}-\sqrt{\lambda_{k}^{(n)}} \rightarrow 0$

This is fixed equivalently by

- $\Delta_{\text {dir }, n}^{(\infty)}=\lim _{\eta \rightarrow \infty} \Delta_{\text {dir }, n}^{(\eta)}$
- Sinc Collocation
- $T_{n}\left(\theta^{2}\right)=\left[\widehat{\theta}^{2}{ }_{i-j}\right]_{i, j=1, \ldots, n}$

Variable Coefficient

If $\mathcal{L}=-\left(a(x) u^{\prime}(x)\right)^{\prime}$ on $[0,1]$ with Dirichlet BC, we have

- No analytic expression of eigenvalues or eigenvectors
- If $a(x)>0$, then $\lambda_{n} / n^{2} \rightarrow \pi^{2} / B^{2}, B=\int_{0}^{1} a(x)^{-1 / 2}$

Variable Coefficient

If $\mathcal{L}=-\left(a(x) u^{\prime}(x)\right)^{\prime}$ on $[0,1]$ with Dirichlet BC, we have

- No analytic expression of eigenvalues or eigenvectors
- If $a(x)>0$, then $\lambda_{n} / n^{2} \rightarrow \pi^{2} / B^{2}, B=\int_{0}^{1} a(x)^{-1 / 2}$

Neither $\Delta_{\text {dir }, n}^{(\eta)}$ or its limit has the correct spectral distribution. The same applies also for Iga approximations of any degree. Why?

Variable Coefficient

If $\mathcal{L}=-\left(a(x) u^{\prime}(x)\right)^{\prime}$ on $[0,1]$ with Dirichlet BC, we have

- No analytic expression of eigenvalues or eigenvectors
- If $a(x)>0$, then $\lambda_{n} / n^{2} \rightarrow \pi^{2} / B^{2}, B=\int_{0}^{1} a(x)^{-1 / 2}$

Neither $\Delta_{\text {dir }, n}^{(\eta)}$ or its limit has the correct spectral distribution. The same applies also for Iga approximations of any degree. Why?

Spectral Symbol

Spectral Symbol

The function $\omega: D \subset \mathbb{R}^{M} \rightarrow \mathbb{C}$ is a spectral symbol for $\left\{A_{n}\right\}_{n}$ if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} F\left(\lambda_{k}\left(A_{n}\right)\right)=\frac{1}{m(D)} \int_{D} F(\omega(\boldsymbol{y})) d \boldsymbol{y}, \quad \forall F \in C_{c}(\mathbb{C}) .
$$

Spectral Symbol

Spectral Symbol

The function $\omega: D \subset \mathbb{R}^{M} \rightarrow \mathbb{C}$ is a spectral symbol for $\left\{A_{n}\right\}_{n}$ if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} F\left(\lambda_{k}\left(A_{n}\right)\right)=\frac{1}{m(D)} \int_{D} F(\omega(\boldsymbol{y})) d \boldsymbol{y}, \quad \forall F \in C_{c}(\mathbb{C})
$$

$$
\begin{aligned}
& \text { If }\left\{A_{n}\right\}_{n} \sim_{\lambda} a(x) \theta^{2} \text { on }[0,1] \times[0, \pi] \text {, then } \\
& \qquad \wedge\left(A_{n}\right) \cong\left\{a(i h)(j h \pi)^{2}: i, j=1, \ldots, \sqrt{n}\right\} \\
& \frac{\left|\left\{\lambda \in \Lambda\left(A_{n}\right) \cap(-\infty, t)\right\}\right|}{n} \rightarrow \frac{m\left\{a(x) \theta^{2}<t\right\}}{\pi}
\end{aligned}
$$

Spectral Symbol

Spectral Symbol

The function $\omega: D \subset \mathbb{R}^{M} \rightarrow \mathbb{C}$ is a spectral symbol for $\left\{A_{n}\right\}_{n}$ if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} F\left(\lambda_{k}\left(A_{n}\right)\right)=\frac{1}{m(D)} \int_{D} F(\omega(\boldsymbol{y})) d \boldsymbol{y}, \quad \forall F \in C_{c}(\mathbb{C})
$$

$$
\begin{aligned}
& \text { If }\left\{A_{n}\right\}_{n} \sim_{\lambda} a(x) \theta^{2} \text { on }[0,1] \times[0, \pi] \text {, then } \\
& \qquad\left(A_{n}\right) \cong\left\{a(i h)(j h \pi)^{2}: i, j=1, \ldots, \sqrt{n}\right\} \\
& \frac{\left|\left\{\lambda \in \Lambda\left(A_{n}\right) \cap(-\infty, t)\right\}\right|}{n} \rightarrow \frac{m\left\{a(x) \theta^{2}<t\right\}}{\pi}
\end{aligned}
$$

Theorem - See GLT Theory
$\Delta_{\text {dir }, n}^{(\infty)}$ and the ∞-degree Iga approximations have symbol $a(x) \theta^{2}$.

In a sense, $\Lambda(\mathcal{L})$ agrees with $a(x) \theta^{2}$ on $[0,1] \times[0, \infty)$

Solution 1: Non-Uniform Grids

Theorem - See GLT Theory

Given a diffeomorphism $\phi:[0,1] \rightarrow[0,1]$, then a method with symbol $a(x) f(\theta)$ applied to the grid $\{\phi(i / n)\}_{i=1, \ldots, n}$ has symbol

$$
\frac{a(\phi(x))}{\phi^{\prime}(x)^{\alpha}} f(\theta)
$$

Solution 1: Non-Uniform Grids

Theorem - See GLT Theory

Given a diffeomorphism $\phi:[0,1] \rightarrow[0,1]$, then a method with symbol $a(x) f(\theta)$ applied to the grid $\{\phi(i / n)\}_{i=1, \ldots, n}$ has symbol

$$
\frac{a(\phi(x))}{\phi^{\prime}(x)^{\alpha}} f(\theta)
$$

Pros:

- The spectral distribution can be controlled through ϕ
- $\mathcal{L}^{(n)}$ is an approximation of \mathcal{L}.

Cons:

- Not always possible to find the right ϕ (It has been done for Euler-Cauchy PDEs)

Solution 2: Rearrangement

Find a monotone $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

- $\kappa(x, \theta)=\psi\left(a(x) \theta^{2}\right)$ has the right spectral distribution
- $\psi(t)=t$ for any $t \leq \pi^{2} \min _{x} a(x)$

Solution 2: Rearrangement

Find a monotone $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

- $\kappa(x, \theta)=\psi\left(a(x) \theta^{2}\right)$ has the right spectral distribution
- $\psi(t)=t$ for any $t \leq \pi^{2} \min _{x} a(x)$

$$
\begin{gathered}
b(w):=m\{x \in[0,1]: a(x) \leq w\} \quad d(w):=\int_{a(x) \leq w} \sqrt{\frac{1}{a(x)}} d x \\
\psi(t)=\frac{1}{B^{2}}\left[B \sqrt{t}-\sqrt{t} d\left(\frac{t}{\pi^{2}}\right)+\pi b\left(\frac{t}{\pi^{2}}\right)\right]^{2}
\end{gathered}
$$

Teorem - GLT

Given the Fourier series for the real continuous function $\kappa(x, \theta)$

$$
\kappa(x, \theta)=\sum_{p=0}^{\infty} c_{p}(x) \cos (p \theta)
$$

then $\kappa(x, \theta)$ is the symbol of the matrix sequence

$$
T_{n}(\kappa(x, \theta)):=\left[\frac{c_{|i-j|}(i h)+c_{|i-j|}(j h)}{2}\right]_{i, j=1, \ldots, n}
$$

Teorem - GLT

Given the Fourier series for the real continuous function $\kappa(x, \theta)$

$$
\kappa(x, \theta)=\sum_{p=0}^{\infty} c_{p}(x) \cos (p \theta)
$$

then $\kappa(x, \theta)$ is the symbol of the matrix sequence

$$
T_{n}(\kappa(x, \theta)):=\left[\frac{c_{|i-j|}(i h)+c_{|i-j|}(j h)}{2}\right]_{i, j=1, \ldots, n}
$$

Pros:

- $\kappa(x, \theta)$ is always computable

Cons:

- Empirically, T_{n} is an approximation of \mathcal{L} but it's not proved yet

Teorem - GLT

Given the Fourier series for the real continuous function $\kappa(x, \theta)$

$$
\kappa(x, \theta)=\sum_{p=0}^{\infty} c_{p}(x) \cos (p \theta)
$$

then $\kappa(x, \theta)$ is the symbol of the matrix sequence

$$
T_{n}(\kappa(x, \theta)):=\left[\frac{c_{|i-j|}(i h)+c_{|i-j|}(j h)}{2}\right]_{i, j=1, \ldots, n}
$$

Pros:

- $\kappa(x, \theta)$ is always computable

Cons:

- Empirically, T_{n} is an approximation of \mathcal{L} but it's not proved yet

Open Questions

- T_{n} is not the only sequence with symbol $\kappa(x, \theta)$.
- Most approximation methods produces $T_{n}(f(x, \theta))$. For what class of functions, $T_{n}(f)$ is an approximation of \mathcal{L} ?

The solutions are valid if the spectral distribution of \mathcal{L} is known

If there's time...

The solutions are valid if the spectral distribution of \mathcal{L} is known

$$
\mathcal{L}(u)=-\partial_{x x} u(x, y)-\partial_{y y} u(x, y) \quad \rightarrow \quad \lambda_{k_{1}, k_{2}}=\left(k_{1}^{2}+k_{2}^{2}\right) \pi^{2}
$$

Classical approximations give us the symbol $\theta_{1}^{2}+\theta_{2}^{2}$ on $[0, \pi]^{2}$, but again the spectral distributions do not coincide

We can find $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and $\kappa\left(\theta_{1}, \theta_{2}\right)=\psi\left(\theta_{1}^{2}+\theta_{2}^{2}\right)$ that matched the continuous distribution, and

$$
T_{n}\left(\kappa\left(\theta_{1}, \theta_{2}\right)\right):=\left[c_{i, j}\right]_{i, j=1, \ldots, n} \quad \kappa\left(\theta_{1}, \theta_{2}\right)=\sum_{i, j} c_{i, j} \cos \left(i \theta_{1}+j \theta_{2}\right)
$$

Thank You!

Davide Bianchi. Analysis of the spectral symbol associated to discretization schemes of linear self-adjoint differential operators. Calcolo, 58, 072021.
(Davide Bianchi and Stefano Serra-Capizzano. Spectral analysis of finite-dimensional approximations of 1d waves in non-uniform grids. Calcolo, 55, 102018.
(Ry Stefano Serra-Capizzano Carlo Garoni. Generalized Locally Toeplitz Sequences: Theory and Applications, vol I-II. Springer Cham, 2018.

R Thomas J.R. Hughes, John A. Evans, and Alessandro Reali. Finite element and nurbs approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering, 272:290-320, 2014.

R Anton Zettl. Sturm-Liouville Theory. American Mathematical Society, 2010.
© Enrique Zuazua. Propagation, observation, and control of waves approximated by finite difference methods. SIAM Review, 47(2):197-243, 2005.

