Approximation of the Laplace-Beltrami operator by its symbol

Giovanni Barbarino ¹ Davide Bianchi ² Carlo Garoni ³

ALAMA 2022 - ALN2gg

¹Department of Mathematics and Systems Analysis, Aalto University ²School of Science, Harbin Institute of Technology, Shenzhen, China ³Department of Mathematics, University of Rome Tor Vergata, Rome, Italy Let us consider the following constant-coefficient 1d wave equation

$$\begin{cases} \partial_{tt} u - \Delta u = 0, & (t, x) \in (0, T) \times (0, 1), \\ u(t, 0) = u(t, 1) = 0, & t \in (0, T), \\ u(0, x) = u^{0}(x), \ \partial_{t} u(0, x) = u^{1}(x), & x \in (0, 1). \end{cases}$$

As a consequence of the Fourier explicit representation formulas, the solutions of this model satisfy the *observability inequality*

$$||(u^0, u^1)||^2_{H^1_0(0,1) \times L^2(0,1)} \le C_{obs} \int_0^T |\partial_x u(t,1)|^2 dt, \qquad (1)$$

for a suitable constant $C_{obs} = C_{obs}(T) > 0$ provided $T \ge 2$. Inequality (1) ensures that all waves propagating in space-time to reach the extreme x = 1 in time T = 2. Consider the associated 1d (spacial) operator

$$\begin{aligned} &-\Delta: \mathsf{W}^{1,2}_0((0,1)) \to \mathsf{L}^2((0,1)) \,, \\ &-\Delta[u](x) := -\partial_{xx} u(x). \end{aligned}$$

The spectrum $\lambda_k = k^2 \pi^2$ satisfies the following gap condition:

$$\sqrt{\lambda_{k+1}} - \sqrt{\lambda_k} = \pi = \gamma > 0,$$
 for every $k \ge 1,$ (2)

The gap condition (2) ensures the boundary observability of the solutions of the associated wave equation in time $T > 2\pi/\gamma$.

The classical $2\eta + 1$ points FD approximation $\Delta_{\text{dir},n}^{(\eta)}$ with eigenvalues $\lambda_k^{(n)}$ is such that

$$\min_{k=1,\dots,n-1}\sqrt{\lambda_{k+1}^{(n)}} - \sqrt{\lambda_k^{(n)}} \to 0$$

The classical $2\eta + 1$ points FD approximation $\Delta_{\mathrm{dir},n}^{(\eta)}$ with eigenvalues $\lambda_k^{(n)}$ is such that

$$\min_{k=1,\dots,n-1}\sqrt{\lambda_{k+1}^{(n)}}-\sqrt{\lambda_k^{(n)}}\to 0$$

This is fixed equivalently by

- $\Delta_{\mathrm{dir},n}^{(\infty)} = \lim_{\eta \to \infty} \Delta_{\mathrm{dir},n}^{(\eta)}$
- Sinc Collocation

•
$$T_n(\theta^2) = \left[\widehat{\theta^2}_{i-j}\right]_{i,j=1,\dots,n}$$

Variable Coefficient

If $\mathcal{L} = -(a(x)u'(x))'$ on [0,1] with Dirichlet BC, we have

• No analytic expression of eigenvalues or eigenvectors

• If
$$a(x)>0$$
, then $\lambda_n/n^2 o \pi^2/B^2$, $B=\int_0^1 a(x)^{-1/2}$

Variable Coefficient

If $\mathcal{L} = -(a(x)u'(x))'$ on [0,1] with Dirichlet BC, we have

• No analytic expression of eigenvalues or eigenvectors

• If
$$a(x)>$$
 0, then $\lambda_n/n^2
ightarrow \pi^2/B^2$, $B=\int_0^1 a(x)^{-1/2}$

Neither $\Delta_{dir,n}^{(\eta)}$ or its limit has the correct spectral distribution. The same applies also for Iga approximations of any degree. Why?

Variable Coefficient

If $\mathcal{L} = -(a(x)u'(x))'$ on [0,1] with Dirichlet BC, we have

• No analytic expression of eigenvalues or eigenvectors

• If
$$a(x)>$$
 0, then $\lambda_n/n^2
ightarrow \pi^2/B^2$, $B=\int_0^1 a(x)^{-1/2}$

Neither $\Delta_{dir,n}^{(\eta)}$ or its limit has the correct spectral distribution. The same applies also for Iga approximations of any degree. Why?

Spectral Symbol

Spectral Symbol

The function $\omega : D \subset \mathbb{R}^M \to \mathbb{C}$ is a spectral symbol for $\{A_n\}_n$ if $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n F(\lambda_k(A_n)) = \frac{1}{m(D)} \int_D F(\omega(\mathbf{y})) d\mathbf{y}, \quad \forall F \in C_c(\mathbb{C}).$

Spectral Symbol

Spectral Symbol

The function $\omega : D \subset \mathbb{R}^M \to \mathbb{C}$ is a spectral symbol for $\{A_n\}_n$ if $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n F(\lambda_k(A_n)) = \frac{1}{m(D)} \int_D F(\omega(\mathbf{y})) d\mathbf{y}, \quad \forall F \in C_c(\mathbb{C}).$

If
$$\{A_n\}_n \sim_{\lambda} a(x)\theta^2$$
 on $[0,1] \times [0,\pi]$, then

$$\Lambda(A_n) \cong \{a(ih)(jh\pi)^2 : i, j = 1, \dots, \sqrt{n}\}$$

$$\frac{|\{\lambda \in \Lambda(A_n) \cap (-\infty, t)\}|}{n} \rightarrow \frac{m\{a(x)\theta^2 < t\}}{\pi}$$

Spectral Symbol

Spectral Symbol

The function $\omega : D \subset \mathbb{R}^M \to \mathbb{C}$ is a spectral symbol for $\{A_n\}_n$ if $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n F(\lambda_k(A_n)) = \frac{1}{m(D)} \int_D F(\omega(\mathbf{y})) d\mathbf{y}, \quad \forall F \in C_c(\mathbb{C}).$

If
$$\{A_n\}_n \sim_{\lambda} a(x)\theta^2$$
 on $[0,1] \times [0,\pi]$, then

$$\Lambda(A_n) \cong \{a(ih)(jh\pi)^2 : i, j = 1, \dots, \sqrt{n}\}$$

$$\frac{|\{\lambda \in \Lambda(A_n) \cap (-\infty, t)\}|}{n} \to \frac{m\{a(x)\theta^2 < t\}}{\pi}$$

Theorem - See GLT Theory

 $\Delta^{(\infty)}_{{
m dir},n}$ and the $\infty-$ degree Iga approximations have symbol $a(x) heta^2$.

In a sense, $\Lambda(\mathcal{L})$ agrees with $a(x)\theta^2$ on $[0,1] \times [0,\infty)$

Solution 1: Non-Uniform Grids

Theorem - See GLT Theory

Given a diffeomorphism $\phi : [0, 1] \rightarrow [0, 1]$, then a method with symbol $a(x)f(\theta)$ applied to the grid $\{\phi(i/n)\}_{i=1,...,n}$ has symbol

$$\frac{a(\phi(x))}{\phi'(x)^{\alpha}}f(\theta)$$

Solution 1: Non-Uniform Grids

Theorem - See GLT Theory

Given a diffeomorphism $\phi : [0, 1] \rightarrow [0, 1]$, then a method with symbol $a(x)f(\theta)$ applied to the grid $\{\phi(i/n)\}_{i=1,...,n}$ has symbol

$$\frac{a(\phi(x))}{\phi'(x)^{\alpha}}f(\theta)$$

Pros:

- The spectral distribution can be controlled through ϕ
- $\mathcal{L}^{(n)}$ is an approximation of \mathcal{L} .

Cons:

Not always possible to find the right φ

 (It has been done for Euler-Cauchy PDEs)

Solution 2: Rearrangement

Find a monotone $\psi:\mathbb{R}^+\to\mathbb{R}^+$ such that

- $\kappa(x,\theta) = \psi(a(x)\theta^2)$ has the right spectral distribution
- $\psi(t) = t$ for any $t \leq \pi^2 \min_x a(x)$

Solution 2: Rearrangement

Find a monotone $\psi:\mathbb{R}^+\to\mathbb{R}^+$ such that

• $\kappa(x,\theta) = \psi(a(x)\theta^2)$ has the right spectral distribution

•
$$\psi(t) = t$$
 for any $t \le \pi^2 \min_x a(x)$

$$b(w) := m\{x \in [0,1] : a(x) \le w\} \qquad d(w) := \int_{a(x) \le w} \sqrt{\frac{1}{a(x)}} dx$$
$$\psi(t) = \frac{1}{B^2} \left[B\sqrt{t} - \sqrt{t}d\left(\frac{t}{\pi^2}\right) + \pi b\left(\frac{t}{\pi^2}\right) \right]^2$$

Teorem - GLT

Given the Fourier series for the real continuous function $\kappa(x,\theta)$ $\kappa(x,\theta) = \sum_{p=0}^{\infty} c_p(x) \cos(p\theta)$ then $\kappa(x,\theta)$ is the symbol of the matrix sequence $T_n(\kappa(x,\theta)) := \left[\frac{c_{|i-j|}(ih) + c_{|i-j|}(jh)}{2}\right]_{i,j=1,\dots,n}$

Teorem - GLT

Given the Fourier series for the real continuous function $\kappa(x,\theta)$ $\kappa(x,\theta) = \sum_{p=0}^{\infty} c_p(x) \cos(p\theta)$ then $\kappa(x,\theta)$ is the symbol of the matrix sequence $T_n(\kappa(x,\theta)) := \left[\frac{c_{|i-j|}(ih) + c_{|i-j|}(jh)}{2}\right]_{i,j=1,...,n}$

Pros:

• $\kappa(x,\theta)$ is always computable

Cons:

• Empirically, \mathcal{T}_n is an approximation of \mathcal{L} but it's not proved yet

Teorem - GLT

Given the Fourier series for the real continuous function $\kappa(x,\theta)$ $\kappa(x,\theta) = \sum_{p=0}^{\infty} c_p(x) \cos(p\theta)$ then $\kappa(x,\theta)$ is the symbol of the matrix sequence $T_n(\kappa(x,\theta)) := \left[\frac{c_{|i-j|}(ih) + c_{|i-j|}(jh)}{2}\right]_{i,j=1,...,n}$

Pros:

• $\kappa(x, \theta)$ is always computable

Cons:

• Empirically, T_n is an approximation of $\mathcal L$ but it's not proved yet

Open Questions

- T_n is not the only sequence with symbol $\kappa(x, \theta)$.
- Most approximation methods produces T_n(f(x, θ)). For what class of functions, T_n(f) is an approximation of L?

If there's time...

The solutions are valid if the spectral distribution of $\ensuremath{\mathcal{L}}$ is known

If there's time...

The solutions are valid if the spectral distribution of ${\cal L}$ is known

$$\mathcal{L}(u) = -\partial_{xx}u(x,y) - \partial_{yy}u(x,y) \quad \rightarrow \quad \lambda_{k_1,k_2} = (k_1^2 + k_2^2)\pi^2$$

Classical approximations give us the symbol $\theta_1^2 + \theta_2^2$ on $[0, \pi]^2$, but again the spectral distributions do not coincide

We can find $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ and $\kappa(\theta_1, \theta_2) = \psi(\theta_1^2 + \theta_2^2)$ that matched the continuous distribution, and $T_n(\kappa(\theta_1, \theta_2)) := [c_{i,j}]_{i,j=1,...,n} \qquad \kappa(\theta_1, \theta_2) = \sum_{i,j} c_{i,j} \cos(i\theta_1 + j\theta_2)$

Thank You!

- Davide Bianchi. Analysis of the spectral symbol associated to discretization schemes of linear self-adjoint differential operators. Calcolo, 58, 07 2021.
- Davide Bianchi and Stefano Serra-Capizzano. Spectral analysis of finite-dimensional approximations of 1d waves in non-uniform grids. *Calcolo*, 55, 10 2018.
- Stefano Serra-Capizzano Carlo Garoni. Generalized Locally Toeplitz Sequences: Theory and Applications, vol I-II. Springer Cham, 2018.
- Thomas J.R. Hughes, John A. Evans, and Alessandro Reali. Finite element and nurbs approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering, 272:290–320, 2014.
- Anton Zettl. Sturm-Liouville Theory. American Mathematical Society, 2010.
- Enrique Zuazua. Propagation, observation, and control of waves approximated by finite difference methods. SIAM Review, 47(2):197–243, 2005.