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1d wave equation

Let us consider the following constant-coefficient 1d wave equation
∂ttu −∆u = 0, (t, x) ∈ (0,T )× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0,T ),

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ (0, 1).

As a consequence of the Fourier explicit representation formulas,
the solutions of this model satisfy the observability inequality

||(u0, u1)||2H1
0 (0,1)×L2(0,1) ≤ Cobs

∫ T

0
|∂xu(t, 1)|2dt, (1)

for a suitable constant Cobs = Cobs(T ) > 0 provided T ≥ 2.
Inequality (1) ensures that all waves propagating in space-time to
reach the extreme x = 1 in time T = 2.



The spectral gap

Consider the associated 1d (spacial) operator

−∆ : W1,2
0 ((0, 1))→ L2 ((0, 1)) ,

−∆[u](x) := −∂xxu(x).

The spectrum λk = k2π2 satisfies the following gap condition:√
λk+1 −

√
λk = π = γ > 0, for every k ≥ 1, (2)

The gap condition (2) ensures the boundary observability of the
solutions of the associated wave equation in time T > 2π/γ.



Approximation

The classical 2η + 1 points
FD approximation ∆

(η)
dir,n with

eigenvalues λ(n)k is such that

min
k=1,...,n−1

√
λ
(n)
k+1−

√
λ
(n)
k → 0

This is fixed equivalently by

• ∆
(∞)
dir,n = limη→∞∆

(η)
dir,n

• Sinc Collocation

• Tn(θ2) =
[
θ̂2

i−j

]
i ,j=1,...,n
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Variable Coefficient

If L = −(a(x)u′(x))′ on [0, 1] with Dirichlet BC, we have

• No analytic expression of eigenvalues or eigenvectors

• If a(x) > 0, then λn/n2 → π2/B2, B =
∫ 1
0 a(x)−1/2

Neither ∆
(η)
dir,n or its limit has the correct spectral distribution. The

same applies also for Iga approximations of any degree. Why?

⇒ L(n) approximation of L with the right spectral distribution?
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Spectral Symbol

Spectral Symbol

The function ω : D ⊂ RM → C is a spectral symbol for {An}n if

lim
n→∞

1
n

n∑
k=1

F (λk (An)) =
1

m(D)

∫
D
F (ω(y)) dy , ∀F ∈ Cc(C).

If {An}n∼λ a(x)θ2 on [0, 1]× [0, π], then

Λ(An) =̃
{
a(ih)(jhπ)2 : i , j = 1, . . . ,

√
n
}

|{λ ∈ Λ(An) ∩ (−∞, t)}|
n

→ m{a(x)θ2 < t}
π

Theorem - See GLT Theory

∆
(∞)
dir,n and the ∞−degree Iga approximations have symbol a(x)θ2.
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In a sense, Λ(L) agrees with a(x)θ2 on [0, 1]× [0,∞)
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Solution 1: Non-Uniform Grids

Theorem - See GLT Theory

Given a diffeomorphism φ : [0, 1]→ [0, 1], then a method with
symbol a(x)f (θ) applied to the grid {φ(i/n)}i=1,...,n has symbol

a(φ(x))

φ′(x)α
f (θ)

Pros:

• The spectral distribution can be controlled through φ
• L(n) is an approximation of L.

Cons:

• Not always possible to find the right φ
(It has been done for Euler-Cauchy PDEs)
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Solution 2: Rearrangement

Find a monotone ψ : R+ → R+ such that
• κ(x , θ) = ψ(a(x)θ2) has the right spectral distribution
• ψ(t) = t for any t ≤ π2 minx a(x)

b(w) := m{x ∈ [0, 1] : a(x) ≤ w} d(w) :=

∫
a(x)≤w

√
1

a(x)
dx

ψ(t) =
1
B2

[
B
√
t −
√
td
( t

π2

)
+ πb

( t

π2

)]2
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Teorem - GLT

Given the Fourier series for the real continuous function κ(x , θ)

κ(x , θ) =
∞∑
p=0

cp(x) cos(pθ)

then κ(x , θ) is the symbol of the matrix sequence

Tn(κ(x , θ)) :=

[
c|i−j |(ih) + c|i−j |(jh)

2

]
i ,j=1,...,n

Pros:
• κ(x , θ) is always computable

Cons:
• Empirically, Tn is an approximation of L but it’s not proved yet

Open Questions

• Tn is not the only sequence with symbol κ(x , θ).

• Most approximation methods produces Tn(f (x , θ)). For what
class of functions, Tn(f ) is an approximation of L?
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If there’s time...

The solutions are valid if the spectral distribution of L is known

L(u) = −∂xxu(x , y)− ∂yyu(x , y) → λk1,k2 = (k2
1 + k2

2 )π2

Classical approximations give us the symbol θ2
1 + θ2

2 on [0, π]2,
but again the spectral distributions do not coincide

We can find ψ : R+ → R+ and κ(θ1, θ2) = ψ(θ2
1 + θ2

2) that
matched the continuous distribution, and
Tn(κ(θ1, θ2)) := [ci ,j ]i ,j=1,...,n κ(θ1, θ2) =

∑
i ,j

ci ,j cos(iθ1 + jθ2)
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Thank You!
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