Equivalence between GLT sequences and measurable functions

Barbarino Giovanni

Scuola Normale Superiore

Preliminaries

Spectral Symbol

$$\{A_n\}_n \sim_{\sigma} k$$
 $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n F(\sigma_i(A_n)) = \frac{1}{\mu(D)} \int_D F(|k(t)|) dt$

$$A_n = \begin{pmatrix} 0 & 1 & & \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & 0 \end{pmatrix}$$

Approximating Class of Sequence (acs)

$$\{B_{n,m}\}_{n,m} \xrightarrow{a.c.s.} \{A_n\}_n$$
 is

$$A_n = B_{n,m} + R_{n,m} + N_{n,n}$$

2

Preliminaries

Spectral Symbol

$$\{A_n\}_n \sim_{\sigma} k$$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n F(\sigma_i(A_n)) = \frac{1}{\mu(D)} \int_D F(|k(t)|) dt$$

Approximating Class of Sequence (acs)

$$\{B_{n,m}\}_{n,m} \xrightarrow{a.c.s.} \{A_n\}_n$$
 if

$$A_n = B_{n,m} + R_{n,m} + N_{n,m}$$

for which exist c(m), $\omega(m)$, n_m such that

$$\operatorname{rk} R_{n,m} \leq c(m)n \qquad \|N_m\| \leq \omega(m) \qquad \forall n > n_m$$

$$\lim_{n \to \infty} c(m) = \lim_{n \to \infty} \omega(m) = 0$$

$$\widehat{\mathscr{E}} := \{ \{A_n\}_n : A_n \in \mathbb{C}^{n \times n} \} \qquad \mathscr{M}_D = \{ k : D \to \mathbb{C}, k \text{ measurable } \}$$

$$\widehat{\mathscr{G}} \subseteq \widehat{\mathscr{E}} \times \mathscr{M}_{\mathcal{D}}$$
 GLT algebra

- 2
- 3.
- 4

$$\widehat{\mathscr{E}}:=\left\{\{A_n\}_n:A_n\in\mathbb{C}^{n\times n}\right\}\qquad \mathscr{M}_D=\left\{k:D\to\mathbb{C},k\text{ measurable }\right\}$$

 $\widehat{\mathscr{G}} \subset \widehat{\mathscr{E}} \times \mathscr{M}_D$ GLT algebra

$$\widehat{\mathscr{E}}:=\{\{A_n\}_n:A_n\in\mathbb{C}^{n\times n}\}\qquad \mathscr{M}_D=\{k:D\to\mathbb{C},k\text{ measurable }\}$$

$$\widehat{\mathscr{G}}\subseteq\widehat{\mathscr{E}}\times\mathscr{M}_{D}$$
 GLT algebra

- 1. $\widehat{\mathscr{G}}$ is an algebra
- 2. $\widehat{\mathscr{G}}$ is closed as a pseudometric space into $\widehat{\mathscr{E}} \times \mathscr{M}_D$
- 3. The GLT symbols are dense into \mathcal{M}_D
- 4. GLT symbols are spectral symbols $(\widehat{\mathscr{G}} \text{ contains } \mathscr{Z} \text{ the set of zero-distributed sequences})$

$$\widehat{\mathscr{E}} := \{ \{A_n\}_n : A_n \in \mathbb{C}^{n \times n} \} \qquad \mathscr{M}_D = \{ k : D \to \mathbb{C}, k \text{ measurable } \}$$

$$\widehat{\mathscr{E}} \qquad \qquad \mathscr{M}_D$$

$$\bigcup |$$

$$P_1(\widehat{\mathscr{G}}) \qquad \qquad P_2(\widehat{\mathscr{G}})$$

- 1. $\widehat{\mathscr{G}}$ is an algebra
- 2. $\widehat{\mathscr{G}}$ is closed as a pseudometric space into $\widehat{\mathscr{E}} \times \mathscr{M}_D$
- 3. The GLT symbols are dense into \mathcal{M}_D
- 4. GLT symbols are spectral symbols $(\widehat{\mathscr{G}} \text{ contains } \mathscr{Z} \text{ the set of zero-distributed sequences})$

$$\widehat{\mathscr{E}} := \{ \{A_n\}_n : A_n \in \mathbb{C}^{n \times n} \} \qquad \mathscr{M}_D = \{ k : D \to \mathbb{C}, k \text{ measurable } \}$$

$$\widehat{\mathscr{E}} \qquad \qquad \mathscr{M}_D$$

$$\bigcup \bigcup$$

$$\widehat{S} : P_1(\widehat{\mathscr{G}}) \longrightarrow P_2(\widehat{\mathscr{G}})$$

- 1. $\widehat{\mathscr{G}}$ is an algebra
- 2. $\widehat{\mathscr{G}}$ is closed as a pseudometric space into $\widehat{\mathscr{E}} \times \mathscr{M}_D$
- 3. The GLT symbols are dense into \mathcal{M}_D
- 4. GLT symbols are spectral symbols $(\widehat{\mathscr{G}} \text{ contains } \mathscr{Z} \text{ the set of zero-distributed sequences})$

$$\widehat{\mathscr{E}} := \{ \{A_n\}_n : A_n \in \mathbb{C}^{n \times n} \} \qquad \mathscr{M}_D = \{ k : D \to \mathbb{C}, k \text{ measurable } \}$$

$$\widehat{\mathscr{E}} \qquad \qquad \mathscr{M}_D$$

$$\bigcup \bigcup$$

$$\widehat{S} : P_1(\widehat{\mathscr{G}}) \longrightarrow P_2(\widehat{\mathscr{G}})$$

- 1. \hat{S} is a homomorphism of algebras
- 2. $\widehat{\mathscr{G}}$ is closed as a pseudometric space into $\widehat{\mathscr{E}} \times \mathscr{M}_D$
- 3. The GLT symbols are dense into \mathcal{M}_D
- 4. GLT symbols are spectral symbols $(\widehat{\mathscr{G}} \text{ contains } \mathscr{Z} \text{ the set of zero-distributed sequences})$

$$\widehat{\mathscr{E}} := \{ \{A_n\}_n : A_n \in \mathbb{C}^{n \times n} \} \qquad \mathscr{M}_D = \{ k : D \to \mathbb{C}, k \text{ measurable } \}$$

$$\widehat{\mathscr{E}} \qquad \qquad \mathscr{M}_D \qquad \qquad \bigcup \bigcup$$

$$\widehat{S} : P_1(\widehat{\mathscr{G}}) \longrightarrow P_2(\widehat{\mathscr{G}})$$

- 1. \hat{S} is a homomorphism of algebras
- 2. The graph of \widehat{S} into $\widehat{\mathscr{E}} \times \mathscr{M}_D$ is closed
- 3. The GLT symbols are dense into \mathcal{M}_D
- 4. GLT symbols are spectral symbols $(\widehat{\mathscr{G}} \text{ contains } \mathscr{Z} \text{ the set of zero-distributed sequences})$

$$\widehat{\mathscr{E}} := \{ \{A_n\}_n : A_n \in \mathbb{C}^{n \times n} \} \qquad \mathscr{M}_D = \{ k : D \to \mathbb{C}, k \text{ measurable } \}$$

$$\widehat{\mathscr{E}} \qquad \qquad \mathscr{M}_D \qquad \qquad \bigcup \bigcup$$

$$\widehat{S} : P_1(\widehat{\mathscr{G}}) \longrightarrow P_2(\widehat{\mathscr{G}})$$

- 1. \widehat{S} is a homomorphism of algebras
- 2. The graph of \widehat{S} into $\widehat{\mathscr{E}} \times \mathscr{M}_D$ is closed
- 3. $Im(\widehat{S}) = \mathcal{M}_D$
- 4. GLT symbols are spectral symbols $(\widehat{\mathscr{G}} \text{ contains } \mathscr{Z} \text{ the set of zero-distributed sequences})$

$$\widehat{\mathscr{E}} := \{ \{A_n\}_n : A_n \in \mathbb{C}^{n \times n} \} \qquad \mathscr{M}_D = \{ k : D \to \mathbb{C}, k \text{ measurable } \}$$

$$\widehat{\mathscr{E}} \qquad \qquad \mathscr{M}_D \qquad \qquad \bigcup$$

$$\widehat{S} : P_1(\widehat{\mathscr{G}}) \longrightarrow P_2(\widehat{\mathscr{G}})$$

- 1. \widehat{S} is a homomorphism of algebras
- 2. The graph of \widehat{S} into $\widehat{\mathscr{E}} \times \mathscr{M}_D$ is closed
- 3. $Im(\widehat{S}) = \mathcal{M}_D$
- 4. $\{A_n\}_n \sim_{\sigma} \widehat{S}(\{A_n\}_n)$ ($\widehat{\mathscr{G}}$ contains \mathscr{Z} the set of zero-distributed sequences)

$$\widehat{\mathscr{E}} := \{ \{A_n\}_n : A_n \in \mathbb{C}^{n \times n} \} \qquad \mathscr{M}_D = \{ k : D \to \mathbb{C}, k \text{ measurable } \}$$

$$\widehat{\mathscr{E}} \qquad \qquad \mathscr{M}_D$$

$$\bigcup \bigcup$$

$$\widehat{S} : P_1(\widehat{\mathscr{G}}) \longrightarrow P_2(\widehat{\mathscr{G}})$$

- 1. \widehat{S} is a homomorphism of algebras
- 2. The graph of \widehat{S} into $\widehat{\mathscr{E}} \times \mathscr{M}_D$ is closed
- 3. $Im(\widehat{S}) = \mathcal{M}_D$
- 4. $\{A_n\}_n \sim_{\sigma} \widehat{S}(\{A_n\}_n)$ $(\ker(\widehat{S}) = P_1(\mathscr{Z}))$

$$\widehat{\mathscr{E}} := \{ \{A_n\}_n : A_n \in \mathbb{C}^{n \times n} \} \qquad \mathscr{M}_D = \{ k : D \to \mathbb{C}, k \text{ measurable } \}$$

$$\stackrel{\mathscr{E}}{\underset{\bigcup |}{\bigcup}} \qquad \qquad \underset{\bigcup |}{\underset{\bigcup |}{\bigcup}} \qquad \qquad \mathscr{E} = \widehat{\mathscr{E}}/\mathscr{Z}$$

$$S : P_1(\mathscr{G}) \longrightarrow P_2(\mathscr{G}) \qquad \mathscr{G} = \widehat{\mathscr{G}}/\mathscr{Z}$$

- 1. S is a homomorphism of algebras
- 2. The graph of S into $\mathscr{E} \times \mathscr{M}_D$ is closed
- 3. $\overline{Im(S)} = \mathcal{M}_D$
- 4. $\{A_n\}_n \sim_{\sigma} S(\{A_n\}_n)$ (S is injective)

$$\widehat{\mathscr{E}} := \{ \{A_n\}_n : A_n \in \mathbb{C}^{n \times n} \} \qquad \mathscr{M}_D = \{ k : D \to \mathbb{C}, k \text{ measurable } \}$$

$$\stackrel{\mathscr{E}}{\underset{\bigcup |}{\underset{\bigcup |}{\underset{\underset{\bigcup |}{\underset{\bigcup |}{\underset{$$

Main Properties

- 1. S is a homomorphism of algebras
- 2. The graph of S into $\mathscr{E} \times \mathscr{M}_D$ is closed
- 3. $Im(S) = M_D$
- 4. $\{A_n\}_n \sim_{\sigma} S(\{A_n\}_n)$ (S is injective)

More?

Metrics

Completeness of $\mathscr E$

The metric d_{acs} on the space $\mathscr E$ is defined as

$$d_{acs}(\{A_n\}_n, \{B_n\}_n) = \limsup_{n \to \infty} p_{acs}(A_n - B_n)$$

$$p_{acs}(A_n - B_n) := \min_{i} \left\{ \frac{i-1}{n} + \sigma_i(A_n - B_n) \right\}$$

corresponding to "small rank" R_n and "small norm" N_n

$$A_n - B_n = R_n + N_n$$

Theorem 1

 $(\mathscr{E},d_{\mathsf{acs}})$ is a complete metric space.

Idea.

Given a Cauchy sequence $\{B_{n,m}\}_{n,m}$, there exists a map m(n) s.t.

$$\{B_{n,m}\}_{n,m} \xrightarrow{a.c.s.} \{B_{n,m(n)}\}_n$$

Completeness of $\mathscr E$

The metric d_{acs} on the space \mathscr{E} is defined as

$$d_{acs}(\{A_n\}_n, \{B_n\}_n) = \limsup_{n \to \infty} p_{acs}(A_n - B_n)$$

$$p_{acs}(A_n - B_n) := \min_{i} \left\{ \frac{i-1}{n} + \sigma_i(A_n - B_n) \right\}$$

corresponding to "small rank" R_n and "small norm" N_n

$$A_n - B_n = R_n + N_n$$

Theorem 1

 (\mathscr{E}, d_{acs}) is a complete metric space.

Idea.

Given a Cauchy sequence $\{B_{n,m}\}_{n,m}$, there exists a map m(n) s.t.

$$\{B_{n,m}\}_{n,m} \xrightarrow{a.c.s.} \{B_{n,m(n)}\}_n$$

Completeness of $\mathscr E$

The metric d_{acs} on the space \mathscr{E} is defined as

$$d_{acs}(\{A_n\}_n, \{B_n\}_n) = \limsup_{n \to \infty} p_{acs}(A_n - B_n)$$
$$p_{acs}(A_n - B_n) := \min_{i} \left\{ \frac{i-1}{n} + \sigma_i(A_n - B_n) \right\}$$

corresponding to "small rank" R_n and "small norm" N_n

$$A_n - B_n = R_n + N_n$$

Theorem 1

 (\mathscr{E}, d_{acs}) is a complete metric space.

Idea.

Given a Cauchy sequence $\{B_{n,m}\}_{n,m}$, there exists a map m(n) s.t.

$$\{B_{n,m}\}_{n,m} \xrightarrow{a.c.s.} \{B_{n,m(n)}\}_n$$

• By **Th1**, the space \mathscr{E} is complete with d_{acs} , where

$$d_{acs}(\{A_n\}_n, \{B_n\}_n) = \limsup_{n \to \infty} p_{acs}(A_n - B_n)$$
$$p_{acs}(A) := \min_{i=1,\dots,n+1} \left\{ \frac{i-1}{n} + \sigma_i(A) \right\}$$

The space M_D is complete with the metric

$$d_m(f,g) = p_m(f-g)$$

$$p_m(f) := \inf_{E \subseteq D} \left\{ \frac{|E^C|}{|D|} + \operatorname{ess\,sup}|f| \right\}$$

Theorem 2

If
$$\{A_n\}_n \sim_{\sigma} f$$
, then

$$d_{acs}(\{A_n\}_n, \{0_n\}_n) = \limsup_{n \to \infty} p_{acs}(A_n) = p_m(f) = d_m(f, 0)$$

• By **Th1**, the space \mathscr{E} is complete with d_{acs} , where

$$d_{acs}(\{A_n\}_n, \{B_n\}_n) = \limsup_{n \to \infty} p_{acs}(A_n - B_n)$$
$$p_{acs}(A) := \min_{i=1,\dots,n+1} \left\{ \frac{i-1}{n} + \sigma_i(A) \right\}$$

• The space \mathcal{M}_D is complete with the metric

$$d_m(f,g) = p_m(f-g)$$

$$p_m(f) := \inf_{E \subseteq D} \left\{ \frac{|E^C|}{|D|} + \operatorname{ess\,sup}_E |f| \right\}$$

Theorem 2

If
$$\{A_n\}_n \sim_{\sigma} f$$
, then

$$d_{acs}(\{A_n\}_n, \{0_n\}_n) = \limsup_{n \to \infty} p_{acs}(A_n) = p_m(f) = d_m(f, 0)$$

• By **Th1**, the space \mathscr{E} is complete with d_{acs} , where

$$d_{acs}(\{A_n\}_n, \{B_n\}_n) = \limsup_{n \to \infty} p_{acs}(A_n - B_n)$$
$$p_{acs}(A) := \min_{i=1,\dots,n+1} \left\{ \frac{i-1}{n} + \sigma_i(A) \right\}$$

• The space \mathcal{M}_D is complete with the metric

$$d_m(f,g) = p_m(f-g)$$

$$p_m(f) := \inf_{E \subseteq D} \left\{ \frac{|E^C|}{|D|} + \operatorname{ess\,sup}_E |f| \right\}$$

Theorem 2

If $\{A_n\}_n \sim_{\sigma} f$, then

$$d_{acs}(\{A_n\}_n, \{0_n\}_n) = \limsup_{n \to \infty} p_{acs}(A_n) = p_m(f) = d_m(f, 0)$$

$$i \leq j \implies \sigma_i \geq \sigma_j$$

 $\{\sigma_1, \sigma_2, \dots, \sigma_k, \sigma_{k+1}, \dots, \sigma_{n-1}, \sigma_n\}$

$$p_{acs}(A_n) := \min_{i} \left\{ \frac{i-1}{n} + \sigma_i(A_n) \right\} \quad p_m(f) := \inf_{E} \left\{ \frac{\mu(E^C)}{\mu(D)} + \operatorname{ess\,sup}_{E} |f| \right\}$$

$$A_n\}_n \sim_{\sigma} f \implies \limsup_{n \to \infty} p_{acs}(\{A_n\}_n) = p_m(f)$$

$$\{A_n\}_n$$

$$i \leq j \implies \sigma_i \geq \sigma_j$$

 $\{\sigma_1, \sigma_2, \dots, \sigma_k, \sigma_{k+1}, \dots, \sigma_{n-1}, \sigma_n\}$

$$p_{acs}(A_n) := \min_{i} \left\{ \frac{i-1}{n} + \sigma_i(A_n) \right\} \quad p_m(f) := \inf_{E} \left\{ \frac{\mu(E^C)}{\mu(D)} + \operatorname{ess\,sup} |f| \right\}$$
$$= \inf_{z \in \mathbb{R}^+} \left\{ \frac{\mu(|f| > z)}{\mu(D)} + z \right\}$$

6

$$\{A_n\}_n$$

$$i \leq j \implies \sigma_i \geq \sigma_j$$

 $\{\sigma_1, \sigma_2, \dots, \sigma_k, \sigma_{k+1}, \dots, \sigma_{n-1}, \sigma_n\}$

$$p_{acs}(A_n) := \min_{i} \left\{ \frac{i-1}{n} + \sigma_i(A_n) \right\} \quad p_m(f) := \inf_{E} \left\{ \frac{\mu(E^C)}{\mu(D)} + \operatorname{ess\,sup} |f| \right\}$$
$$= \inf_{z \in \mathbb{R}^+} \left\{ \frac{\mu(|f| > z)}{\mu(D)} + z \right\}$$

$$\{A_n\}_n \sim_{\sigma} f \implies \limsup_{n \to \infty} p_{acs}(\{A_n\}_n) = p_m(f)$$

$$i \leq j \implies \sigma_i \geq \sigma_j$$

 $\{\sigma_1, \sigma_2, \dots, \sigma_k, \sigma_{k+1}, \dots, \sigma_{n-1}, \sigma_n\}$

$$p_{acs}(A_n) := \min_{i} \left\{ \frac{i-1}{n} + \sigma_i(A_n) \right\} \quad p_m(f) := \inf_{E} \left\{ \frac{\mu(E^C)}{\mu(D)} + \operatorname{ess\,sup} |f| \right\}$$
$$= \inf_{z \in \mathbb{R}^+} \left\{ \frac{\mu(|f| > z)}{\mu(D)} + z \right\}$$

$$\{A_n\}_n \sim_{\sigma} f \implies \limsup_{n \to \infty} p_{acs}(\{A_n\}_n) = p_m(f)$$

$$i \leq j \implies \sigma_i \geq \sigma_j$$
 $\{\sigma_1, \sigma_2, \dots, \sigma_k, \sigma_{k+1}, \dots, \sigma_{n-1}, \sigma_n\}$

$$p_{acs}(A_n) := \min_{i} \left\{ \frac{i-1}{n} + \sigma_i(A_n) \right\} \quad p_m(f) := \inf_{E} \left\{ \frac{\mu(E^C)}{\mu(D)} + \operatorname{ess\,sup}_{E} |f| \right\}$$
$$= \inf_{z \in \mathbb{R}^+} \left\{ \frac{\mu(|f| > z)}{\mu(D)} + z \right\}$$

$$\{A_n\}_n \sim_{\sigma} f \implies \limsup_{n \to \infty} p_{acs}(\{A_n\}_n) = p_m(f)$$

$$i \leq j \implies \sigma_i \geq \sigma_j$$
 $\{\sigma_1, \sigma_2, \dots, \sigma_k, \sigma_{k+1}, \dots, \sigma_{n-1}, \sigma_n\}$

$$p_{acs}(A_n) := \min_{i} \left\{ \frac{i-1}{n} + \sigma_i(A_n) \right\} \quad p_m(f) := \inf_{E} \left\{ \frac{\mu(E^C)}{\mu(D)} + \operatorname{ess\,sup} |f| \right\}$$

$$= \inf_{z \in \mathbb{R}^+} \left\{ \frac{\mu(|f| > z)}{\mu(D)} + z \right\}$$

$$\{A_n\}_n \sim_{\sigma} f \implies \limsup_{n \to \infty} p_{acs}(\{A_n\}_n) = p_m(f)$$

Identification

$$\widehat{\mathscr{E}}:=\{\{A_n\}_n:A_n\in\mathbb{C}^{n\times n}\}\qquad \mathscr{M}_D=\{k:D\to\mathbb{C},k\text{ measurable }\}$$

$$\begin{array}{ccc} \mathscr{E} & \mathscr{M}_D & \mathscr{E} = \widehat{\mathscr{E}}/\mathscr{Z} \\ S: P_1(\mathscr{G}) & \longrightarrow & P_2(\mathscr{G}) & \mathscr{G} = \widehat{\mathscr{G}}/\mathscr{Z} \end{array}$$

Main Properties

- 1. S is a homomorphism of algebras
- 2. The graph of S into $\mathscr{E} \times \mathscr{M}_D$ is closed
- 3. $\overline{Im(S)} = \mathcal{M}_D$
- 4. $\{A_n\}_n \sim_{\sigma} S(\{A_n\}_n)$

More?

Let $\{A_n\}_n, \{C_n\}_n \in P_1(\mathscr{G}).$

1. S homomorphism of algebras

$$\implies S(\{A_n\}_n - \{C_n\}_n) = S(\{A_n\}_n) - S(\{C_n\}_n) = k_A - k_C$$

4.
$$\{A_n\}_n \sim_{\sigma} S(\{A_n\}_n)$$

$$\implies \{A_n\}_n - \{C_n\}_n \sim_{\sigma} k_A - k_C$$

Th2.
$$\{A_n\}_n \sim_{\sigma} f \implies d_{acs}(\{A_n\}_n, \{0_n\}_n) = d_m(f, 0)$$

 $\implies d_{acs}(\{A_n\}_n, \{C_n\}_n) = d_{acs}(\{A_n\}_n - \{C_n\}_n, \{0_n\}_n)$
 $= d_m(k_A - k_C, 0) = d_m(k_A, k_C)$

Let
$$\{A_n\}_n, \{C_n\}_n \in P_1(\mathscr{G}).$$

$$\implies S(\{A_n\}_n - \{C_n\}_n) = S(\{A_n\}_n) - S(\{C_n\}_n) = k_A - k_C$$

4.
$$\{A_n\}_n \sim_{\sigma} S(\{A_n\}_n)$$

$$\implies \{A_n\}_n - \{C_n\}_n \sim_{\sigma} k_A - k_C$$

Th2.
$$\{A_n\}_n \sim_{\sigma} f \implies d_{acs}(\{A_n\}_n, \{0_n\}_n) = d_m(f, 0)$$

 $\implies d_{acs}(\{A_n\}_n, \{C_n\}_n) = d_{acs}(\{A_n\}_n - \{C_n\}_n, \{0_n\}_n)$
 $= d_m(k_A - k_C, 0) = d_m(k_A, k_C)$

Let
$$\{A_n\}_n, \{C_n\}_n \in P_1(\mathscr{G}).$$

$$\implies S(\{A_n\}_n - \{C_n\}_n) = S(\{A_n\}_n) - S(\{C_n\}_n) = k_A - k_C$$

4.
$$\{A_n\}_n \sim_{\sigma} S(\{A_n\}_n)$$

$$\implies \{A_n\}_n - \{C_n\}_n \sim_{\sigma} k_A - k_C$$

Th2.
$$\{A_n\}_n \sim_{\sigma} f \implies d_{acs}(\{A_n\}_n, \{0_n\}_n) = d_m(f, 0)$$

 $\implies d_{acs}(\{A_n\}_n, \{C_n\}_n) = d_{acs}(\{A_n\}_n - \{C_n\}_n, \{0_n\}_n)$
 $= d_m(k_A - k_C, 0) = d_m(k_A, k_C)$

Let
$$\{A_n\}_n, \{C_n\}_n \in P_1(\mathscr{G}).$$

$$\implies S(\{A_n\}_n - \{C_n\}_n) = S(\{A_n\}_n) - S(\{C_n\}_n) = k_A - k_C$$

4.
$$\{A_n\}_n \sim_{\sigma} S(\{A_n\}_n)$$

$$\implies \{A_n\}_n - \{C_n\}_n \sim_{\sigma} k_A - k_C$$

Th2.
$$\{A_n\}_n \sim_{\sigma} f \implies d_{acs}(\{A_n\}_n, \{0_n\}_n) = d_m(f, 0)$$

 $\implies d_{acs}(\{A_n\}_n, \{C_n\}_n) = d_{acs}(\{A_n\}_n - \{C_n\}_n, \{0_n\}_n)$
 $= d_m(k_A - k_C, 0) = d_m(k_A, k_C)$

Let
$$\{A_n\}_n, \{C_n\}_n \in P_1(\mathscr{G}).$$

$$\implies S(\{A_n\}_n - \{C_n\}_n) = S(\{A_n\}_n) - S(\{C_n\}_n) = k_A - k_C$$

4.
$$\{A_n\}_n \sim_{\sigma} S(\{A_n\}_n)$$

$$\implies \{A_n\}_n - \{C_n\}_n \sim_{\sigma} k_A - k_C$$

Th2.
$$\{A_n\}_n \sim_{\sigma} f \implies d_{acs}(\{A_n\}_n, \{0_n\}_n) = d_m(f, 0)$$

 $\implies d_{acs}(\{A_n\}_n, \{C_n\}_n) = d_{acs}(\{A_n\}_n - \{C_n\}_n, \{0_n\}_n)$
 $= d_m(k_A - k_C, 0) = d_m(k_A, k_C)$

Let $k \in \mathcal{M}_D$

3.
$$\overline{Im(S)} = \mathcal{M}_D \implies \exists S(\{B_{n,m}\}) = k_m : k_m \xrightarrow{\mu} k_m$$

lso. S is an isometry

$$\implies d_{acs}(\{B_{n,s}\},\{B_{n,r}\}) = d_m(k_s,k_r) \implies \{B_{n,m}\}$$
 Cauchy

Th1.
$$\mathscr E$$
 is complete $\implies \exists \{A_n\}_n : \{B_{n,m}\}_{n,m} \xrightarrow{a.c.s.} \{A_n\}_n$

2. The graph of S into $\mathscr{E} \times \mathscr{M}_D$ is closed $\Longrightarrow S(\{A_n\}_n) = k$

k

$$Im(S) = \mathscr{M}_D$$

3.
$$\overline{Im(S)} = \mathscr{M}_D \implies \exists S(\{B_{n,m}\}) = k_m : k_m \xrightarrow{\mu} k$$

lso. S is an isometry

$$\implies d_{acs}(\{B_{n,s}\},\{B_{n,r}\}) = d_m(k_s,k_r) \implies \{B_{n,m}\}$$
 Cauchy

*Th*1.
$$\mathscr{E}$$
 is complete $\Longrightarrow \exists \{A_n\}_n : \{B_{n,m}\}_{n,m} \xrightarrow{a.c.s.} \{A_n\}_n$

$$\begin{cases}
B_{n,m} \\
\downarrow S \\
k_m \xrightarrow{\mu} k
\end{cases}$$

$$Im(S) = \mathcal{M}_D$$

3.
$$\overline{Im(S)} = \mathcal{M}_D \implies \exists S(\{B_{n,m}\}) = k_m : k_m \xrightarrow{\mu} k$$

Iso. S is an isometry

$$\implies d_{acs}(\{B_{n,s}\},\{B_{n,r}\}) = d_m(k_s,k_r) \implies \{B_{n,m}\}$$
 Cauchy

Th1.
$$\mathscr E$$
 is complete $\implies \exists \{A_n\}_n : \{B_{n,m}\}_{n,m} \xrightarrow{a.c.s.} \{A_n\}_n$

$$\begin{cases}
B_{n,m} \\
\downarrow S \\
k_m \xrightarrow{\mu} k
\end{cases}$$

$$Im(S) = \mathcal{M}_D$$

3.
$$\overline{Im(S)} = \mathcal{M}_D \implies \exists S(\{B_{n,m}\}) = k_m : k_m \xrightarrow{\mu} k$$

Iso. S is an isometry

$$\implies d_{acs}(\{B_{n,s}\},\{B_{n,r}\}) = d_m(k_s,k_r) \implies \{B_{n,m}\}$$
 Cauchy

*Th*1.
$$\mathscr{E}$$
 is complete $\Longrightarrow \exists \{A_n\}_n : \{B_{n,m}\}_{n,m} \xrightarrow{a.c.s.} \{A_n\}_n$

$$\begin{cases}
B_{n,m} \} & \xrightarrow{\text{acs}} \begin{cases}
A_n \end{cases} \\
\downarrow S \\
k_m & \xrightarrow{\mu} k
\end{cases}$$

$$Im(S) = \mathcal{M}_D$$

3.
$$\overline{Im(S)} = \mathcal{M}_D \implies \exists S(\{B_{n,m}\}) = k_m : k_m \xrightarrow{\mu} k$$

Iso. S is an isometry

$$\implies d_{acs}(\{B_{n,s}\},\{B_{n,r}\}) = d_m(k_s,k_r) \implies \{B_{n,m}\}$$
 Cauchy

*Th*1.
$$\mathscr{E}$$
 is complete $\Longrightarrow \exists \{A_n\}_n : \{B_{n,m}\}_{n,m} \xrightarrow{a.c.s.} \{A_n\}_n$

$$\{B_{n,m}\} \xrightarrow{\operatorname{acs}} \{A_n\}$$

$$\downarrow S \qquad \qquad \downarrow S$$

$$\downarrow S \qquad \qquad \downarrow S$$

$$\downarrow k_m \xrightarrow{\mu} \qquad \downarrow k$$

$$Im(S) = \mathcal{M}_D$$

3.
$$\overline{Im(S)} = \mathcal{M}_D \implies \exists S(\{B_{n,m}\}) = k_m : k_m \xrightarrow{\mu} k$$

Iso. S is an isometry

$$\implies d_{acs}(\{B_{n,s}\},\{B_{n,r}\}) = d_m(k_s,k_r) \implies \{B_{n,m}\}$$
 Cauchy

*Th*1.
$$\mathscr{E}$$
 is complete $\Longrightarrow \exists \{A_n\}_n : \{B_{n,m}\}_{n,m} \xrightarrow{a.c.s.} \{A_n\}_n$

$$\{B_{n,m}\} \xrightarrow{\operatorname{acs}} \{A_n\}$$

$$\downarrow S \qquad \qquad \downarrow S$$

$$\downarrow k_m \xrightarrow{\mu} k$$

$$Im(S) = \mathscr{M}_D$$

$$\widehat{\mathscr{E}}:=\{\{A_n\}_n:A_n\in\mathbb{C}^{n\times n}\}\qquad \mathscr{M}_D=\{k:D\to\mathbb{C},k\text{ measurable }\}$$

$$\begin{array}{ccc} \mathscr{E} & \mathscr{M}_D & \mathscr{E} = \widehat{\mathscr{E}}/\mathscr{Z} \\ S: P_1(\mathscr{G}) & \longrightarrow P_2(\mathscr{G}) & \mathscr{G} = \widehat{\mathscr{G}}/\mathscr{Z} \end{array}$$

- 1. S is a homomorphism of algebras
- 2. The graph of S into $\mathscr{E} \times \mathscr{M}_D$ is closed
- 3. $\overline{Im(S)} = \mathcal{M}_D$
- 4. $\{A_n\}_n \sim_{\sigma} S(\{A_n\}_n)$

More?

$$\widehat{\mathscr{E}}:=\{\{A_n\}_n:A_n\in\mathbb{C}^{n\times n}\}\qquad \mathscr{M}_D=\{k:D\to\mathbb{C},k\text{ measurable }\}$$

$$\begin{array}{ccc}
\mathscr{E} & \mathscr{M}_{D} & \mathscr{E} = \widehat{\mathscr{E}}/\mathscr{Z} \\
S: P_{1}(\mathscr{G}) & \longrightarrow P_{2}(\mathscr{G}) & \mathscr{G} = \widehat{\mathscr{G}}/\mathscr{Z}
\end{array}$$

- 1. S is a homomorphism of algebras
- 2. The graph of S into $\mathscr{E} \times \mathscr{M}_D$ is closed
- 3. $\overline{Im(S)} = \mathcal{M}_D$
- 4. $\{A_n\}_n \sim_{\sigma} S(\{A_n\}_n)$

S is an isometry

$$\widehat{\mathscr{E}}:=\{\{A_n\}_n:A_n\in\mathbb{C}^{n\times n}\}\qquad \mathscr{M}_D=\{k:D\to\mathbb{C},k\text{ measurable }\}$$

$$\begin{array}{ccc} \mathscr{E} & \mathscr{M}_D & \mathscr{E} = \widehat{\mathscr{E}}/\mathscr{Z} \\ S: P_1(\mathscr{G}) & & & \\ \end{array}$$

- 1. S is a homomorphism of algebras
- 2. The graph of S into $\mathscr{E} \times \mathscr{M}_D$ is closed
- 3. $\overline{Im(S)} = \mathcal{M}_D$
- 4. $\{A_n\}_n \sim_{\sigma} S(\{A_n\}_n)$

S is an isometry

The domain of S is maximal in $\mathscr E$

$$\widehat{\mathscr{E}}:=\{\{A_n\}_n:A_n\in\mathbb{C}^{n\times n}\}\qquad \mathscr{M}_D=\{k:D\to\mathbb{C},k\text{ measurable }\}$$

$$\begin{array}{ccc} \mathscr{E} & \mathscr{M}_D & \mathscr{E} = \widehat{\mathscr{E}}/\mathscr{Z} \\ S: P_1(\mathscr{G}) & & & \\ \end{array}$$

- 1. S is a homomorphism of groups
- 2. The graph of S into $\mathscr{E} \times \mathscr{M}_D$ is closed
- 3. $\overline{Im(S)} = \mathcal{M}_D$
- 4. $\{A_n\}_n \sim_{\sigma} S(\{A_n\}_n)$

S is an isometry

The domain of S is maximal in \mathscr{E}

References

Barbarino, G. (2017).

Equivalence between GLT sequences and measurable functions.

Linear Algebra and its Applications, 529:397–412.

Barbarino, G. and Garoni, C. (2017).

From convergence in measure to convergence of matrix-sequences through concave functions and singular values.

(Manuscript submitted for publication).

Garoni, C. and Serra-Capizzano, S. (2017).

The theory of Generalized Locally Toeplitz sequences: theory and applications, volume I.

Springer.

 $\{A_n\}$

- given $\{A_n\}_n$
- find $\{B_{n,m}\}_{n,m}$ GLT sequences with symbols k_m
- ullet if k_m converges, then also $\{B_{n,m}\}_{n,m}$ converges
- if $\{B_{n,m}\}_{n,m}$ converges to $\{A_n\}_n$
- Then $\{A_n\}_n$ has spectral symbol A_n

 \longrightarrow proving the acs convergence is difficult

- given $\{A_n\}_n$
- find $\{B_{n,m}\}_{n,m}$ GLT sequences with symbols k_m
- if k_m converges, then also $\{B_{n,m}\}_{n,m}$ converges
- if $\{B_{n,m}\}_{n,m}$ converges to $\{A_n\}_n$
- Then $\{A_n\}_n$ has spectral symbol k

proving the acs convergence is difficult

- given $\{A_n\}_n$
- find $\{B_{n,m}\}_{n,m}$ GLT sequences with symbols k_m
- if k_m converges, then also $\{B_{n,m}\}_{n,m}$ converges
- if $\{B_{n,m}\}_{n,m}$ converges to $\{A_n\}_n$
- Then $\{A_n\}_n$ has spectral symbol k

→ proving the acs convergence is difficult

- given $\{A_n\}_n$
- find $\{B_{n,m}\}_{n,m}$ GLT sequences with symbols k_m
- if k_m converges, then also $\{B_{n,m}\}_{n,m}$ converges
- if $\{B_{n,m}\}_{n,m}$ converges to $\{A_n\}_n$
- Then $\{A_n\}_n$ has spectral symbol k

- given $\{A_n\}_n$
- find $\{B_{n,m}\}_{n,m}$ GLT sequences with symbols k_m
- if k_m converges, then also $\{B_{n,m}\}_{n,m}$ converges
- if $\{B_{n,m}\}_{n,m}$ converges to $\{A_n\}_n$
- Then $\{A_n\}_n$ has spectral symbol k

→ proving the acs convergence is difficult

- given $\{A_n\}_n$
- find $\{B_{n,m}\}_{n,m}$ GLT sequences with symbols k_m
- if k_m converges, then also $\{B_{n,m}\}_{n,m}$ converges
- if $\{B_{n,m}\}_{n,m}$ converges to $\{A_n\}_n$
- Then $\{A_n\}_n$ has spectral symbol k

→ proving the acs convergence is difficult

Let $\varphi:\mathbb{R}^+\to\mathbb{R}$ be an increasing bounded concave and continuous function with $\varphi(0)=0$

We can define corresponding metrics on $\mathscr E$ and $\mathscr M_D$

$$p_m^{\varphi}(f) := \frac{1}{|D|} \int_D \varphi(|f|) \qquad p^{\varphi}(\{A_n\}_n) := \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \varphi(\sigma_i(A_n))$$

$$d^{\varphi}(f, \sigma) := p^{\varphi}(f - \sigma) \qquad d^{\varphi}(\{A_n\}_n) := p^{\varphi}(\{A_n\}_n) := p^{\varphi}(\{A_n\}_n)$$

Theorem 3

 d^{φ} is a complete metric on $\mathscr E$ inducing the acs convergence.

$$\{A_n\}_n \sim_{\sigma} f \implies p^{\varphi}(\{A_n\}_n) = p_m^{\varphi}(f)$$

Let $\varphi:\mathbb{R}^+\to\mathbb{R}$ be an increasing bounded concave and continuous function with $\varphi(0)=0$

We can define corresponding metrics on $\mathscr E$ and $\mathscr M_D$

$$p_m^{\varphi}(f) := \frac{1}{|D|} \int_D \varphi(|f|) \qquad p^{\varphi}(\{A_n\}_n) := \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \varphi(\sigma_i(A_n))$$

$$d_m^{\varphi}(f,g):=p_m^{\varphi}(f-g) \qquad d^{\varphi}\big(\{A_n\}_n,\{B_n\}_n\big):=p^{\varphi}\big(\{A_n-B_n\}_n\big)$$

Theorem 3

 d^{arphi} is a complete metric on $\mathscr E$ inducing the acs convergence

$$\{A_n\}_n \sim_{\sigma} f \implies p^{\varphi}(\{A_n\}_n) = p_m^{\varphi}(f)$$

Let $\varphi:\mathbb{R}^+\to\mathbb{R}$ be an increasing bounded concave and continuous function with $\varphi(0)=0$

We can define corresponding metrics on $\mathscr E$ and $\mathscr M_D$

$$p_m^{\varphi}(f) := \frac{1}{|D|} \int_D \varphi(|f|) \qquad p^{\varphi}(\{A_n\}_n) := \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \varphi(\sigma_i(A_n))$$

$$d_m^{\varphi}(f,g):=p_m^{\varphi}(f-g) \qquad d^{\varphi}\big(\{A_n\}_n,\{B_n\}_n\big):=p^{\varphi}\big(\{A_n-B_n\}_n\big)$$

Theorem 3

 d^φ is a complete metric on $\mathscr E$ inducing the acs convergence.

$$\{A_n\}_n \sim_{\sigma} f \implies p^{\varphi}(\{A_n\}_n) = p_m^{\varphi}(f)$$

Concave functions

- $\varphi_1(x) = \min\{x, 1\}$
- $\varphi_2(x) = \frac{x}{x+1}$

$$d_{1}^{\varphi}(\{A_{n}\}_{n}, \{B_{n}\}_{n}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \min\{\sigma_{i}(A_{n} - B_{n}), 1\}$$

$$d_{2}^{\varphi}(\{A_{n}\}_{n}, \{B_{n}\}_{n}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma_{i}(A_{n} - B_{n})}{\sigma_{i}(A_{n} - B_{n}) + 1}$$

→ New ways to test the acs convergence

Concave functions

- $\varphi_1(x) = \min\{x, 1\}$
- $\varphi_2(x) = \frac{x}{x+1}$

$$d_{1}^{\varphi}(\{A_{n}\}_{n},\{B_{n}\}_{n}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \min\{\sigma_{i}(A_{n} - B_{n}), 1\}$$

$$d_{2}^{\varphi}(\{A_{n}\}_{n},\{B_{n}\}_{n}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma_{i}(A_{n} - B_{n})}{\sigma_{i}(A_{n} - B_{n}) + 1}$$

→ New ways to test the acs convergence

Concave functions

- $\varphi_1(x) = \min\{x, 1\}$
- $\varphi_2(x) = \frac{x}{x+1}$

$$d_{1}^{\varphi}(\{A_{n}\}_{n}, \{B_{n}\}_{n}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \min\{\sigma_{i}(A_{n} - B_{n}), 1\}$$

$$d_{2}^{\varphi}(\{A_{n}\}_{n}, \{B_{n}\}_{n}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma_{i}(A_{n} - B_{n})}{\sigma_{i}(A_{n} - B_{n}) + 1}$$

→ New ways to test the acs convergence