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Approximating Class of Sequence (acs)
{Bn,m}nm === {An}n if
An = Bnm + Rnm + Npm
for which exist ¢(m),w(m), ny, such that
rk Rp,m < c(m)n |INml| <w(m)  ¥n> np

n||—>n<lo C(m) - n||—>moow(m) = 2
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Main Properties

1. S is a homomorphism of algebras
2. The graph of S into & x .#p is closed
3. Im(S) = #p
4 {Antn ~o S({An}n)
(S is injective)
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The metric d,es on the space & is defined as

dacs({An}n; {Bn}n) = lim sup pacs(An - Bn)
n—o0

i —1
Pacs(An — Bp) := min {In + oi(An — Bn)}

corresponding to "small rank" R, and "small norm" N,

Ar—Bp,=R,+ N,

Theorem 1

(&, dacs) is a complete metric space.
Idea.

Given a Cauchy sequence {Bp m}n m, there exists a map m(n) s.t.

{Bn,m}n,m . {Bn,m(n)}n 4



Correspondence of Metrics

e By Thil, the space & is complete with d,cs, where
dacs({An}m {Bn}n) = Iimsup Pacs(An - Bn)
n—o0

pacs(A) :=  min {i_1+a,~(A)}

i=1,...,n+1 n



Correspondence of Metrics

e By Thil, the space & is complete with d,cs, where
dacs({An}m {Bn}n) = Iimsup Pacs(An - Bn)
n—o0

pacs(A) :=  min {i_1+a,~(A)}

i=1,...,n+1 n
e The space .#p is complete with the metric

dm(fag) = pm(f - g)



Correspondence of Metrics

e By Thil, the space & is complete with d,cs, where
dacs({An}m {Bn}n) = Iimsup Pacs(An - Bn)
n—o0

i—1
n

U P {

i=1,...,n+1

o))
e The space .#p is complete with the metric

dm(fag) = pm(f - g)

Theorem 2
If {An}n ~o f, then

dacs({An}m {On}n) = lim sup Pacs(An) = pm(f) = dm(f; O)

n—o0
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given {Ap}n

find {Bp m}nm GLT sequences with symbols k,
if ky, converges, then also {By, m}nm converges
if {Bn.m}n,m converges to {Ap}n,

Then {A,}, has spectral symbol k

— proving the acs convergence is difficult
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Metrics on .#p

Let ¢ : RT™ — R be an increasing bounded concave and continuous
function with ¢(0) =0

We can define corresponding metrics on & and .#p

p?(f) : D|/ (If]) “({Antn) —||msup Z‘M’

din(f.g) = ph(f —g) d?({An}n, {Bn}n) :== p*({An — Bn}n)

Theorem 3
d¥ is a complete metric on & inducing the acs convergence.

{An}nNJf — p ({A})_pm()
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e ¢1(x) = min{x, 1}

° vo(x) = A7

I ({Ankns (Ba}) =limsup % Z min{oi(Ay — By), 1}

B,,)
n) +

dy({An}n, {Bn}n )—"mSUP ZJI A, —B

— New ways to test the acs convergence
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