Generalized Locally Toeplitz Sequences: a Link between Measurable Functions and Spectral Symbols

Barbarino Giovanni

Scuola Normale Superiore

Spectral Symbols

Our Aim

$$
\left\{\begin{array}{l}
\mathscr{L} u=f \\
B C
\end{array}\right.
$$

Our Aim

$$
\left\{\begin{array}{l}
\mathscr{L} u=f \\
B C
\end{array}\right.
$$

$\xrightarrow{\lg A, \text { Multigrid }}$ FE, FD

$$
A_{n} u_{n}=f_{n}
$$

Our Aim

$$
\left\{\begin{array}{l}
\mathscr{L} u=f \\
B C
\end{array} \quad \xrightarrow[\text { FE, FD }]{\text { lgA, Multigrid }} \quad A_{n} u_{n}=f_{n}\right.
$$

Our Aim

$$
\left\{\begin{array}{l}
\mathscr{L} u=f \\
B C
\end{array}\right.
$$

IgA, Multigrid
FE, FD

$$
A_{n} u_{n}=f_{n}
$$

$$
A_{n} u_{n}=f_{n}
$$

$$
\xrightarrow[\text { Quasi-Newton, CG }]{\text { Preconditioned Krylov }}
$$

$$
u_{n}
$$

Our Aim

$$
\begin{array}{ccc}
\begin{array}{l}
\mathscr{L} u=f \\
B C
\end{array} & \xrightarrow[\text { FE, FD }]{ }
\end{array} \quad A_{n} u_{n}=f_{n}
$$

Our Aim

$$
\begin{array}{cc}
\mathscr{L} u=f & \xrightarrow[\text { FE, FD }]{ } \\
B C & \\
A_{n} u_{n}=f_{n} & \begin{array}{l}
\text { Preconditioned Krylov } \\
\text { Quasi-Newton, CG } \\
\uparrow
\end{array} \\
\Lambda\left(A_{n}\right) & A_{n} u_{n}=f_{n}
\end{array}
$$

Prior informations on the eigenvalues let us choose the best couple of discretization/solver for the PDE

Simple Example

$$
\begin{cases}u^{\prime \prime}(x)=f(x) \quad x \in[0,1] \quad \\ u(0)=u(1)=0 & \xrightarrow{F D} \quad A_{n} u_{n}=f_{n}\end{cases}
$$

Simple Example

$$
\begin{aligned}
& \left\{\begin{array}{l}
u^{\prime \prime}(x)=f(x) \\
u(0)=u(1)=0
\end{array} \quad x \in[0,1] \quad \xrightarrow{F D} \quad A_{n} u_{n}=f_{n}\right. \\
& A_{n}=\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right] \\
& \lambda_{h}\left(A_{n}\right)=2-2 \cos \left(\frac{h \pi}{n+1}\right)
\end{aligned}
$$

Simple Example

$$
\begin{aligned}
& \left\{\begin{array}{lll}
u^{\prime \prime}(x)=f(x) & x \in[0,1] \\
u(0)=u(1)=0
\end{array}\right. \\
& A_{n}=\left[\begin{array}{cccc}
2 & -1 & & \xrightarrow{F D} \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
\end{aligned}
$$

Simple Example

$$
\begin{aligned}
& \left\{\begin{array}{lll}
u^{\prime \prime}(x)=f(x) \\
u(0)=u(1)=0
\end{array} \quad x \in[0,1] \quad \xrightarrow{F D} \quad A_{n} u_{n}=f_{n}\right. \\
& A_{n}=\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right] \\
& \lambda_{h}\left(A_{n}\right)=2-2 \cos \left(\frac{h \pi}{n+1}\right) \\
& k(t)=2-2 \cos (t)
\end{aligned}
$$

Simple Example

$$
\begin{array}{ll}
\begin{cases}u^{\prime \prime}(x)=f(x) & x \in[0,1] \\
u(0)=u(1)=0\end{cases} \\
A_{n}=\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
\ddots & \ddots & -1 \\
& -1 & 2
\end{array}\right]
\end{array}
$$

Simple Example

$$
\begin{aligned}
& \begin{cases}u^{\prime \prime}(x)=f(x) & x \in[0,1] \\
u(0)=u(1)=0\end{cases} \\
& A_{n}=\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
\ddots & \ddots & -1 \\
& -1 & 2
\end{array}\right] \\
& \begin{array}{c}
\lambda_{h}\left(A_{n}\right)= \\
2-2 \cos \left(\frac{2 h \pi}{n+1}-\left\lfloor\left.\frac{2 h}{n+1} \right\rvert\, \frac{\pi}{n+1}\right)\right.
\end{array} \\
& 2-2 \cos (2 t)
\end{aligned}
$$

Simple Example

$$
\begin{aligned}
& \begin{cases}u^{\prime \prime}(x)=f(x) & x \in[0,1] \\
u(0)=u(1)=0\end{cases} \\
& A_{n}=\left[\begin{array}{cccc}
2 & -1 & \\
-1 & \ddots & \ddots & \\
\ddots & \ddots & -1 \\
& -1 & 2
\end{array}\right] \\
& \begin{array}{l}
\lambda_{h}\left(A_{n}\right)=
\end{array} \\
& 2-2 \cos \left(\frac{2 h \pi}{n+1}-\left\lfloor\frac{2 h}{n+1}\right\rfloor \frac{\pi}{n+1}\right)
\end{aligned}
$$

\rightarrow The sequence $\left\{A_{n}\right\}_{n}$ has Spectral Symbol $k(t)$

Asymptotic Distribution

Spectral Symbol

Let $\left\{A_{n}\right\}_{n}$ a matrix sequence, and $k: D \subseteq \mathbb{R}^{m} \rightarrow \mathbb{C}$ measurable.

$$
\begin{aligned}
& \left\{A_{n}\right\}_{n} \sim_{\lambda} k \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} F\left(\lambda_{i}\left(A_{n}\right)\right)=\frac{1}{\mu(D)} \int_{D} F(k(t)) \mathrm{dt} \\
& \left\{A_{n}\right\}_{n} \sim_{\sigma} k \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} F\left(\sigma_{i}\left(A_{n}\right)\right)=\frac{1}{\mu(D)} \int_{D} F(|k(t)|) \mathrm{dt}
\end{aligned}
$$

for all $F \in C_{c}(\mathbb{C})$.

Asymptotic Distribution

$$
\left\{A_{n}\right\}_{n} \sim_{\lambda} k \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} F\left(\lambda_{i}\left(A_{n}\right)\right)=\frac{1}{\mu(D)} \int_{D} F(k(t)) \mathrm{dt}
$$

Asymptotic Distribution

$$
\left\{A_{n}\right\}_{n} \sim_{\lambda} k \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} F\left(\lambda_{i}\left(A_{n}\right)\right)=\frac{1}{\mu(D)} \int_{D} F(k(t)) \mathrm{dt}
$$

$$
\frac{\#\left\{i: a<\lambda_{i}\left(A_{n}\right)<b\right\}}{n} \quad \xrightarrow{n \rightarrow \infty} \quad \frac{\mu\{t: a<k(t)<b\}}{\mu(D)}
$$

Asymptotic Distribution

$$
\left\{A_{n}\right\}_{n} \sim_{\lambda} k \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} F\left(\lambda_{i}\left(A_{n}\right)\right)=\frac{1}{\mu(D)} \int_{D} F(k(t)) \mathrm{dt}
$$

$$
\frac{\#\left\{i: a<\lambda_{i}\left(A_{n}\right)<b\right\}}{n} \quad \xrightarrow{n \rightarrow \infty} \quad \frac{\mu\{t: a<k(t)<b\}}{\mu(D)}
$$

Asymptotic Distribution

$$
\left\{A_{n}\right\}_{n} \sim_{\lambda} k \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} F\left(\lambda_{i}\left(A_{n}\right)\right)=\frac{1}{\mu(D)} \int_{D} F(k(t)) \mathrm{dt}
$$

$$
\frac{\#\left\{i: a<\lambda_{i}\left(A_{n}\right)<b\right\}}{n} \quad \xrightarrow{n \rightarrow \infty} \quad \frac{\mu\{t: a<k(t)<b\}}{\mu(D)}
$$

Every sequence may have infinite Spectral Symbols

Three Classes of Matrices

Examples of Symbol

Three Classes of Matrices

Examples of Symbol

- $Z_{n} \sim_{\sigma} 0$

Three Classes of Matrices

Examples of Symbol

- $Z_{n} \sim_{\sigma} 0$
- $\left\{D_{n}(a)\right\}_{n} \sim_{\lambda, \sigma} a(x)$ where $x \in[0,1]$

$$
\begin{gathered}
a \in C[0,1] \\
D_{n}(a):=\left(\begin{array}{llll}
a(1 / n) & & & \\
& a(2 / n) & & \\
& & a(3 / n) & \\
\\
& & & \ddots
\end{array}\right. \\
\\
\end{gathered}
$$

Three Classes of Matrices

Examples of Symbol

- $Z_{n} \sim_{\sigma} 0$
- $\left\{D_{n}(a)\right\}_{n} \sim_{\lambda, \sigma} a(x)$ where $x \in[0,1]$
- $\left\{T_{n}(f)\right\}_{n} \sim_{\sigma} f(\theta)$ where $\theta \in[-\pi, \pi]$

$$
\begin{gathered}
f \in L^{1}[-\pi, \pi] \rightarrow \widehat{f}_{n}=\int_{-\pi}^{\pi} f(\theta) e^{-\mathrm{in} \theta} d \theta \\
T_{n}(f):=\left(\begin{array}{ccccc}
\widehat{f}_{0} & \widehat{f}_{1} & \widehat{f}_{2} & \ldots & \widehat{f}_{n-1} \\
\widehat{f}_{-1} & \widehat{f}_{0} & \ddots & \ddots & \vdots \\
\widehat{f}_{-2} & \ddots & \ddots & \ddots & \widehat{f}_{2} \\
\vdots & \ddots & \ddots & \widehat{f}_{0} & \widehat{f}_{1} \\
\widehat{f}_{-n+1} & \ldots & \widehat{f}_{-2} & \widehat{f}_{-1} & \widehat{f}_{0}
\end{array}\right)
\end{gathered}
$$

Three Classes of Matrices

Examples of Symbol

- $Z_{n} \sim_{\sigma} 0$
- $\left\{D_{n}(a)\right\}_{n} \sim_{\lambda, \sigma} a(x)$ where $x \in[0,1]$
- $\left\{T_{n}(f)\right\}_{n} \sim_{\sigma} f(\theta)$ where $\theta \in[-\pi, \pi]$

They appear frequently in PDEs

Three Classes of Matrices

Examples of Symbol

- $Z_{n} \sim_{\sigma} 0$
- $\left\{D_{n}(a)\right\}_{n} \sim_{\lambda, \sigma} a(x)$ where $x \in[0,1]$
- $\left\{T_{n}(f)\right\}_{n} \sim_{\sigma} f(\theta)$ where $\theta \in[-\pi, \pi]$

They appear frequently in PDEs

$$
\begin{aligned}
&\left\{\begin{array}{ll}
\left(a(x) u^{\prime}(x)\right)^{\prime} & =f(x) \quad x \in[0,1] \\
u(0)=u(1)= & 0
\end{array} \quad \xrightarrow{F D} \quad A_{n} u_{n}=f_{n}\right. \\
& A_{n}=D_{n}(a) T_{n}(2-2 \cos (\theta))+Z_{n}
\end{aligned}
$$

Three Classes of Matrices

Examples of Symbol

- $Z_{n} \sim_{\sigma} 0$
- $\left\{D_{n}(a)\right\}_{n} \sim_{\lambda, \sigma} a(x)$ where $x \in[0,1]$
- $\left\{T_{n}(f)\right\}_{n} \sim_{\sigma} f(\theta)$ where $\theta \in[-\pi, \pi]$

They appear frequently in PDEs

$$
\begin{aligned}
&\left\{\begin{array}{ll}
\left(a(x) u^{\prime}(x)\right)^{\prime} & =f(x) \quad x \in[0,1] \\
u(0)=u(1)= & 0
\end{array} \quad \xrightarrow{F D} \quad A_{n} u_{n}=f_{n}\right. \\
& A_{n}=D_{n}(a) T_{n}(2-2 \cos (\theta))+Z_{n}
\end{aligned}
$$

- The sequence $\left\{A_{n}\right\}_{n}$ has a spectral symbol?
- How do we compute it?

Space of Matrix Sequences

a.c.s. Convergence

$$
\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n} \mid A_{n} \in \mathbb{C}^{n \times n}\right\}
$$

a.c.s. Convergence

$$
\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n} \mid A_{n} \in \mathbb{C}^{n \times n}\right\}
$$

Approximating Class of Sequence [Serra-Capizzano, LAA01]
$\left\{\left\{B_{n, m}\right\}_{n}\right\}_{m} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$ if

$$
A_{n}-B_{n, m}=R_{n, m}+N_{n, m}
$$

for which exist $c(m), \omega(m), n_{m}$ such that

$$
\begin{gathered}
\frac{\text { rk } R_{n, m}}{n} \leq c(m) \quad\left\|N_{n, m}\right\| \leq \omega(m) \quad \forall n>n_{m} \\
\lim _{m \rightarrow \infty} c(m)=\lim _{m \rightarrow \infty} \omega(m)=0
\end{gathered}
$$

a.c.s. Convergence

$$
\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n} \mid A_{n} \in \mathbb{C}^{n \times n}\right\}
$$

Approximating Class of Sequence [Serra-Capizzano, LAA01]
$\left\{\left\{B_{n, m}\right\}_{n}\right\}_{m} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$ if

$$
A_{n}-B_{n, m}=R_{n, m}+N_{n, m}
$$

for which exist $c(m), \omega(m), n_{m}$ such that

$$
\begin{gathered}
\frac{\mathrm{rk} R_{n, m}}{n} \leq c(m) \quad\left\|N_{n, m}\right\| \leq \omega(m) \quad \forall n>n_{m} \\
\lim _{m \rightarrow \infty} c(m)=\lim _{m \rightarrow \infty} \omega(m)=0
\end{gathered}
$$

\rightarrow The difference is a sum of small rank and small norm matrices.

$$
\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n} \in \widehat{\mathscr{E}}
$$

Metric Spaces

$$
\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n} \in \widehat{\mathscr{E}}
$$

The a.c.s. convergence is metrizable

$$
\begin{gathered}
d_{a c s}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)= \\
\lim \sup _{n \rightarrow \infty} \min _{i}\left\{\frac{i-1}{n}+\sigma_{i}\left(A_{n}-B_{n}\right)\right\}
\end{gathered}
$$

Metric Spaces

$$
\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n} \in \widehat{\mathscr{E}}
$$

The a.c.s. convergence is metrizable

$$
\begin{gathered}
d_{a c s}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)= \\
\lim \sup _{n \rightarrow \infty} \min _{i}\left\{\frac{i-1}{n}+\sigma_{i}\left(A_{n}-B_{n}\right)\right\}
\end{gathered}
$$

$$
\begin{gathered}
i \leq j \Longrightarrow \sigma_{i} \geq \sigma_{j} \\
\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}, \sigma_{k+1}, \ldots, \sigma_{n-1}, \sigma_{n}\right\}
\end{gathered}
$$

Metric Spaces

$$
\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n} \in \widehat{\mathscr{E}}
$$

The a.c.s. convergence is metrizable

$$
\begin{gathered}
d_{a c s}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)= \\
\lim \sup _{n \rightarrow \infty} \min _{i}\left\{\frac{i-1}{n}+\sigma_{i}\left(A_{n}-B_{n}\right)\right\}
\end{gathered}
$$

$$
\begin{gathered}
i \leq j \Longrightarrow \sigma_{i} \geq \sigma_{j} \\
\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}, \sigma_{k+1}, \ldots, \sigma_{n-1}, \sigma_{n}\right\}
\end{gathered}
$$

Metric Spaces

$$
\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n} \in \widehat{\mathscr{E}} \quad f(x), g(x) \in \mathscr{M}_{D}
$$

The a.c.s. convergence is metrizable

$$
\begin{gathered}
d_{a c s}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)= \\
\lim \sup _{n \rightarrow \infty} \min _{i}\left\{\frac{i-1}{n}+\sigma_{i}\left(A_{n}-B_{n}\right)\right\} \\
i \leq j \Longrightarrow \sigma_{i} \geq \sigma_{j} \\
\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}, \sigma_{k+1}, \ldots, \sigma_{n-1}, \sigma_{n}\right\}
\end{gathered}
$$

Metric Spaces

$$
\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n} \in \widehat{\mathscr{E}}
$$

The a.c.s. convergence is metrizable
$d_{a c s}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)=$
$\lim \sup _{n \rightarrow \infty} \min _{i}\left\{\frac{i-1}{n}+\sigma_{i}\left(A_{n}-B_{n}\right)\right\}$

$$
d_{a c s}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)=
$$

$$
f(x), g(x) \in \mathscr{M}_{D}
$$

The convergence in measure is metrizable

$$
d_{m}(f, g)=
$$

$$
\limsup _{n \rightarrow \infty} \min _{i}\left\{\frac{i-1}{n}+\sigma_{i}\left(A_{n}-B_{n}\right)\right\}
$$

$$
\inf _{z \in \mathbb{R}^{+}}\left\{\frac{\mu\{x:|f(x)-g(x)|>z\}}{\mu(D)}+z\right\}
$$

$$
\begin{gathered}
i \leq j \Longrightarrow \sigma_{i} \geq \sigma_{j} \\
\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}, \sigma_{k+1}, \ldots, \sigma_{n-1}, \sigma_{n}\right\}
\end{gathered}
$$

Metric Spaces

$$
\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n} \in \widehat{\mathscr{E}}
$$

The a.c.s. convergence is metrizable

$$
d_{a c s}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)=
$$

$$
\begin{gathered}
i \leq j \Longrightarrow \sigma_{i} \geq \sigma_{j} \\
\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}, \sigma_{k+1}, \ldots, \sigma_{n-1}, \sigma_{n}\right\}
\end{gathered}
$$

$$
f(x), g(x) \in \mathscr{M}_{D}
$$

The convergence in measure is metrizable

$$
d_{m}(f, g)=
$$

Metric Spaces

$$
\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n} \in \widehat{\mathscr{E}}
$$

The a.c.s. convergence is metrizable

$$
\begin{gathered}
d_{a c s}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)= \\
\lim \sup _{n \rightarrow \infty} \min _{i}\left\{\frac{i-1}{n}+\sigma_{i}\left(A_{n}-B_{n}\right)\right\}
\end{gathered}
$$

$$
i \leq j \Longrightarrow \sigma_{i} \geq \sigma_{j}
$$

$$
\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}, \sigma_{k+1}, \ldots, \sigma_{n-1}, \sigma_{n}\right\}
$$

$$
f(x), g(x) \in \mathscr{M}_{D}
$$

The convergence in measure is metrizable

$$
d_{m}(f, g)=
$$

$$
\inf _{z \in \mathbb{R}^{+}}\left\{\frac{\mu\{x:|f(x)-g(x)|>z\}}{\mu(D)}+z\right\}
$$

Metric Spaces

$$
\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n} \in \widehat{\mathscr{E}}
$$

The a.c.s. convergence is metrizable

$$
\begin{gathered}
d_{\mathrm{acs}}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)= \\
\lim \sup _{n \rightarrow \infty} \min _{i}\left\{\frac{i-1}{n}+\sigma_{i}\left(A_{n}-B_{n}\right)\right\}
\end{gathered}
$$

$$
i \leq j \Longrightarrow \sigma_{i} \geq \sigma_{j}
$$

$$
\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}, \sigma_{k+1}, \ldots, \sigma_{n-1}, \sigma_{n}\right\}
$$

$$
f(x), g(x) \in \mathscr{M}_{D}
$$

The convergence in measure is metrizable

$$
d_{m}(f, g)=
$$

$$
\inf _{z \in \mathbb{R}^{+}}\left\{\frac{\mu\{x:|f(x)-g(x)|>z\}}{\mu(D)}+z\right\}
$$

Theorem [Barbarino, LAA17]

Metric Spaces

$$
\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n} \in \widehat{\mathscr{E}}
$$

The a.c.s. convergence is metrizable

$$
\begin{gathered}
d_{a c s}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)= \\
\limsup _{n \rightarrow \infty} \min _{i}\left\{\frac{i-1}{n}+\sigma_{i}\left(A_{n}-B_{n}\right)\right\} \\
i \leq j \Longrightarrow \sigma_{i} \geq \sigma_{j} \\
\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}, \sigma_{k+1}, \ldots, \sigma_{n-1}, \sigma_{n}\right\}
\end{gathered}
$$

$$
f(x), g(x) \in \mathscr{M}_{D}
$$

The convergence in measure is metrizable

$$
d_{m}(f, g)=
$$

$$
\inf _{z \in \mathbb{R}^{+}}\left\{\frac{\mu\{x:|f(x)-g(x)|>z\}}{\mu(D)}+z\right\}
$$

Theorem [Barbarino, LAA17]

- $d_{a c s}, d_{m}$ are complete pseudometrics

Metric Spaces

$$
\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n} \in \widehat{\mathscr{E}}
$$

The a.c.s. convergence is metrizable

$$
\begin{gathered}
d_{a c s}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)= \\
\limsup _{n \rightarrow \infty} \min _{i}\left\{\frac{i-1}{n}+\sigma_{i}\left(A_{n}-B_{n}\right)\right\} \\
i \leq j \Longrightarrow \sigma_{i} \geq \sigma_{j} \\
\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}, \sigma_{k+1}, \ldots, \sigma_{n-1}, \sigma_{n}\right\}
\end{gathered}
$$

$$
f(x), g(x) \in \mathscr{M}_{D}
$$

The convergence in measure is metrizable

$$
d_{m}(f, g)=
$$

$$
\inf _{z \in \mathbb{R}^{+}}\left\{\frac{\mu\{x:|f(x)-g(x)|>z\}}{\mu(D)}+z\right\}
$$

Theorem [Barbarino, LAA17]

- $d_{a c s}, d_{m}$ are complete pseudometrics
- $\left\{A_{n}\right\}_{n} \sim_{\sigma} f \Longrightarrow d_{a c s}\left(\left\{A_{n}\right\}_{n},\left\{0_{n}\right\}_{n}\right)=d_{m}(f, 0)$

Closure Property

Measurable Functions

Closure Property

Let $\left\{B_{n, m}\right\}_{n} \sim{ }_{\sigma} k_{m}(x)$. Given

1. $k_{m}(x) \xrightarrow{\mu} k(x)$
2. $\left\{A_{n}\right\}_{n} \sim_{\sigma} k(x)$
3. $\left\{B_{n, m}\right\}_{n} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$
$\left\{B_{n, m}\right\} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}$
$\downarrow \sim_{\sigma}$
$k_{m} \xrightarrow{\mu} k$

Measurable Functions

Closure Property

Let $\left\{B_{n, m}\right\}_{n} \sim{ }_{\sigma} k_{m}(x)$. Given

1. $k_{m}(x) \xrightarrow{\mu} k(x)$
2. $\left\{A_{n}\right\}_{n} \sim_{\sigma} k(x)$
3. $\left\{B_{n, m}\right\}_{n} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$
we have (1), (3) \Longrightarrow (2).

Measurable Functions

Closure Property

Let $\left\{B_{n, m}\right\}_{n} \sim{ }_{\sigma} k_{m}(x)$. Given

1. $k_{m}(x) \xrightarrow{\mu} k(x)$
2. $\left\{A_{n}\right\}_{n} \sim_{\sigma} k(x)$
3. $\left\{B_{n, m}\right\}_{n} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$
we have (1), (3) \Longrightarrow (2).

Problems

Measurable Functions

Closure Property

Let $\left\{B_{n, m}\right\}_{n} \sim_{\sigma} k_{m}(x)$. Given

1. $k_{m}(x) \xrightarrow{\mu} k(x)$
2. $\left\{A_{n}\right\}_{n} \sim_{\sigma} k(x)$
3. $\left\{B_{n, m}\right\}_{n} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$
we have (1), (3) \Longrightarrow (2).

Problems

- $\left\{A_{n}\right\}_{n} \sim_{\sigma} f,\left\{B_{n}\right\}_{n} \sim_{\sigma} g \nRightarrow d_{\text {acs }}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)=d_{m}(f, g)$

Measurable Functions

Closure Property

Let $\left\{B_{n, m}\right\}_{n} \sim_{\sigma} k_{m}(x)$. Given

1. $k_{m}(x) \xrightarrow{\mu} k(x)$
2. $\left\{A_{n}\right\}_{n} \sim_{\sigma} k(x)$
3. $\left\{B_{n, m}\right\}_{n} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$
we have (1), (3) \Longrightarrow (2).

Problems

- $\left\{A_{n}\right\}_{n} \sim_{\sigma} f,\left\{B_{n}\right\}_{n} \sim_{\sigma} g \nRightarrow d_{\text {acs }}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)=d_{m}(f, g)$
- Stronger,
$(1),(2) \nRightarrow(3)$
(3), (2) \nRightarrow
(1)

Measurable Functions

Closure Property

Let $\left\{B_{n, m}\right\}_{n} \sim_{\sigma} k_{m}(x)$. Given

1. $k_{m}(x) \xrightarrow{\mu} k(x)$
2. $\left\{A_{n}\right\}_{n} \sim_{\sigma} k(x)$
3. $\left\{B_{n, m}\right\}_{n} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$
we have (1), (3) \Longrightarrow (2).

Problems

- $\left\{A_{n}\right\}_{n} \sim_{\sigma} f,\left\{B_{n}\right\}_{n} \sim_{\sigma} g \nRightarrow d_{\text {acs }}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)=d_{m}(f, g)$
- Stronger,
$(1),(2) \nRightarrow(3)$
(3), (2) \nRightarrow
(1)

The Spectral Symbol is Not Unique

GLT Sequences

GLT Space

$$
\widehat{\mathscr{G}} \subseteq \widehat{\mathscr{E}} \times \mathscr{M}_{D}
$$

where $D=[0,1] \times[-\pi, \pi]$

GLT Space

$$
\widehat{\mathscr{G}} \subseteq \widehat{\mathscr{E}} \times \mathscr{M}_{D}
$$

where $D=[0,1] \times[-\pi, \pi]$

- $\left\{T_{n}(f)\right\}_{n} \sim_{\sigma} f(\theta) \quad f(\theta) \in L^{1}[-\pi, \pi]$
- $\left\{D_{n}(a)\right\}_{n} \sim_{\lambda, \sigma} a(x) \quad a(x) \in C([0,1])$
- $Z_{n} \sim_{\sigma} 0$

GLT Space

$$
\widehat{\mathscr{G}} \subseteq \widehat{\mathscr{E}} \times \mathscr{M}_{D}
$$

where $D=[0,1] \times[-\pi, \pi]$

- $\left\{T_{n}(f)\right\}_{n} \sim_{G L T} f(\theta) \quad f(\theta) \in L^{1}[-\pi, \pi]$
- $\left\{D_{n}(a)\right\}_{n} \sim_{G L T} a(x) \quad a(x) \in C([0,1])$
- $Z_{n} \sim_{G L T} 0$

GLT Space

$$
\widehat{\mathscr{G}} \subseteq \widehat{\mathscr{E}} \times \mathscr{M}_{D}
$$

where $D=[0,1] \times[-\pi, \pi]$

- $\left\{T_{n}(f)\right\}_{n} \sim_{G L T} f(\theta) \quad f(\theta) \in L^{1}[-\pi, \pi]$
- $\left\{D_{n}(a)\right\}_{n} \sim_{G L T} a(x) \quad a(x) \in C([0,1])$
- $Z_{n} \sim_{G L T} 0$

The algebra generated by $L^{1}[-\pi, \pi]$ and $C([0,1])$ is dense in \mathscr{M}_{D}.

GLT Space

$$
\widehat{\mathscr{G}} \subseteq \widehat{\mathscr{E}} \times \mathscr{M}_{D}
$$

where $D=[0,1] \times[-\pi, \pi]$

- $\left\{T_{n}(f)\right\}_{n} \sim_{G L T} f(\theta) \quad f(\theta) \in L^{1}[-\pi, \pi]$
- $\left\{D_{n}(a)\right\}_{n} \sim_{G L T} a(x) \quad a(x) \in C([0,1])$
- $Z_{n} \sim_{G L T} 0$

The algebra generated by $L^{1}[-\pi, \pi]$ and $C([0,1])$ is dense in \mathscr{M}_{D}.
GLT Algebra [Serra-Capizzano, LAA03]
The GLT Space is the smallest closed algebra with respect to $d_{a c s} \times d_{m}$ that contains

$$
\left\{T_{n}(f)\right\}_{n} \sim_{G L T} f(\theta) \quad\left\{D_{n}(a)\right\}_{n} \sim_{G L T} a(x) \quad Z_{n} \sim_{G L T} 0
$$

GLT Space

GLT Algebra [Serra-Capizzano, LAA03]
The GLT Space is the smallest closed algebra that contains

$$
\left\{T_{n}(f)\right\}_{n} \sim_{G L T} f(\theta) \quad\left\{D_{n}(a)\right\}_{n} \sim_{G L T} a(x) \quad Z_{n} \sim_{G L T} 0
$$

GLT Space

GLT Algebra [Serra-Capizzano, LAA03]
The GLT Space is the smallest closed algebra that contains

$$
\left\{T_{n}(f)\right\}_{n} \sim_{G L T} f(\theta) \quad\left\{D_{n}(a)\right\}_{n} \sim_{G L T} a(x) \quad Z_{n} \sim_{G L T} 0
$$

- Given $\left\{A_{n}\right\}_{n} \sim_{G L T} k$ and $c \in \mathbb{C}$

$$
\left\{c A_{n}\right\}_{n} \sim_{G L T} c k
$$

GLT Space

GLT Algebra [Serra-Capizzano, LAA03]
The GLT Space is the smallest closed algebra that contains

$$
\left\{T_{n}(f)\right\}_{n} \sim_{G L T} f(\theta) \quad\left\{D_{n}(a)\right\}_{n} \sim_{G L T} a(x) \quad Z_{n} \sim_{G L T} 0
$$

- Given $\left\{A_{n}\right\}_{n} \sim_{G L T} k$ and $c \in \mathbb{C}$

$$
\left\{c A_{n}\right\}_{n} \sim_{G L T} c k
$$

- Given $\left\{A_{n}\right\}_{n} \sim_{G L T} k_{1}$ and $\left\{B_{n}\right\}_{n} \sim_{G L T} k_{2}$

$$
\left\{A_{n}+B_{n}\right\}_{n} \sim_{G L T} k_{1}+k_{2} \quad\left\{A_{n} B_{n}\right\}_{n} \sim_{G L T} k_{1} k_{2}
$$

GLT Space

GLT Algebra [Serra-Capizzano, LAA03]
The GLT Space is the smallest closed algebra that contains

$$
\left\{T_{n}(f)\right\}_{n} \sim_{G L T} f(\theta) \quad\left\{D_{n}(a)\right\}_{n} \sim_{G L T} a(x) \quad Z_{n} \sim_{G L T} 0
$$

- Given $\left\{A_{n}\right\}_{n} \sim_{G L T} k$ and $c \in \mathbb{C}$

$$
\left\{c A_{n}\right\}_{n} \sim_{G L T} c k
$$

- Given $\left\{A_{n}\right\}_{n} \sim_{G L T} k_{1}$ and $\left\{B_{n}\right\}_{n} \sim_{G L T} k_{2}$

$$
\left\{A_{n}+B_{n}\right\}_{n} \sim_{G L T} k_{1}+k_{2} \quad\left\{A_{n} B_{n}\right\}_{n} \sim_{G L T} k_{1} k_{2}
$$

- Given $\left\{B_{n, m}\right\}_{n, m} \sim_{G L T} k_{m}$ with $\left\{B_{n, m}\right\}_{n, m} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$ and $k_{m} \xrightarrow{\mu} k$, then

$$
\left\{A_{n}\right\}_{n} \sim_{G L T} k
$$

GLT Space

GLT Algebra [Serra-Capizzano, LAA03]
The GLT Space is the smallest closed algebra that contains

$$
\left\{T_{n}(f)\right\}_{n} \sim_{G L T} f(\theta) \quad\left\{D_{n}(a)\right\}_{n} \sim_{G L T} a(x) \quad Z_{n} \sim_{G L T} 0
$$

- Given $\left\{A_{n}\right\}_{n} \sim_{G L T} k$ and $c \in \mathbb{C}$

$$
\left\{c A_{n}\right\}_{n} \sim_{G L T} c k
$$

- Given $\left\{A_{n}\right\}_{n} \sim_{G L T} k_{1}$ and $\left\{B_{n}\right\}_{n} \sim_{G L T} k_{2}$

$$
\left\{A_{n}+B_{n}\right\}_{n} \sim_{G L T} k_{1}+k_{2} \quad\left\{A_{n} B_{n}\right\}_{n} \sim_{G L T} k_{1} k_{2}
$$

- Given $\left\{B_{n, m}\right\}_{n, m} \sim_{G L T} k_{m}$ with $\left\{B_{n, m}\right\}_{n, m} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$ and $k_{m} \xrightarrow{\mu} k$, then

$$
\left\{A_{n}\right\}_{n} \sim_{G L T} k
$$

The GLT symbol is always Unique and a Spectral Symbol

Three Classes of Matrices

Examples of Symbol

- $Z_{n} \sim_{G L T} 0$
- $\left\{D_{n}(a)\right\}_{n} \sim_{G L T} a(x)$ where $a(x) \in C([0,1])$
- $\left\{T_{n}(f)\right\}_{n} \sim_{G L T} f(\theta)$ where $f(\theta) \in L^{1}[-\pi, \pi]$

They appear frequently in PDEs

$$
\begin{aligned}
& \begin{cases}\left(a(x) u^{\prime}(x)\right)^{\prime} & =f(x) \quad x \in[0,1] \quad \xrightarrow{F D} \quad A_{n} u_{n}=f_{n} \\
u(0)=u(1)= & 0\end{cases} \\
& A_{n}=D_{n}(a) T_{n}(2-2 \cos (\theta))+Z_{n}
\end{aligned}
$$

- The sequence $\left\{A_{n}\right\}_{n}$ has a spectral symbol?
- How do we compute it?

Three Classes of Matrices

Examples of Symbol

- $Z_{n} \sim_{G L T} 0$
- $\left\{D_{n}(a)\right\}_{n} \sim_{G L T} a(x)$ where $a(x) \in C([0,1])$
- $\left\{T_{n}(f)\right\}_{n} \sim_{G L T} f(\theta)$ where $f(\theta) \in L^{1}[-\pi, \pi]$

They appear frequently in PDEs

$$
\begin{aligned}
&\left\{\begin{array}{rl}
\left(a(x) u^{\prime}(x)\right)^{\prime}= & f(x) \quad x \in[0,1] \quad \stackrel{F D}{u} \quad \\
u(0)=u(1)= & 0
\end{array} \quad A_{n} u_{n}=f_{n}\right. \\
& A_{n}=D_{n}(a) T_{n}(2-2 \cos (\theta))+Z_{n} \\
&\left\{A_{n}\right\}_{n} \sim_{G L T} a(x)(2-2 \cos (\theta))
\end{aligned}
$$

GLT properties

$\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n}: A_{n} \in \mathbb{C}^{n \times n}\right\} \quad \mathscr{M}_{D}=\{k: D \rightarrow \mathbb{C}, k$ measurable $\}$

$$
\begin{gathered}
\widehat{\mathscr{E}} \\
\cup 1 \\
P_{1}(\widehat{\mathscr{G}})
\end{gathered}
$$

$$
\begin{gathered}
\mathscr{M}_{D} \\
\cup 1 \\
P_{2}(\widehat{\mathscr{G}})
\end{gathered}
$$

Main Properties

1. $\widehat{\mathscr{G}}$ is an algebra
2. $\widehat{\mathscr{G}}$ is closed as a pseudometric space into $\widehat{\mathscr{E}} \times \mathscr{M}_{D}$
3. GLT symbols are spectral symbols
($\widehat{\mathscr{G}}$ contains \mathscr{Z} the set of zero-distributed sequences)

GLT properties

$$
\begin{array}{cc}
\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n}: A_{n} \in \mathbb{C}^{n \times n}\right\} & \mathscr{M}_{D}=\{k: D \rightarrow \mathbb{C}, k \text { measurable }\} \\
\widehat{\mathscr{E}} & \mathscr{M}_{D} \\
\cup & \cup 1 \\
\widehat{S}: P_{1}(\widehat{\mathscr{G}}) \longrightarrow P_{2}(\widehat{\mathscr{G}})
\end{array}
$$

Main Properties

1. $\widehat{\mathscr{G}}$ is an algebra
2. $\widehat{\mathscr{G}}$ is closed as a pseudometric space into $\widehat{\mathscr{E}} \times \mathscr{M}_{D}$
3. GLT symbols are spectral symbols
($\widehat{\mathscr{G}}$ contains \mathscr{Z} the set of zero-distributed sequences)

GLT properties

$$
\begin{array}{cc}
\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n}: A_{n} \in \mathbb{C}^{n \times n}\right\} & \mathscr{M}_{D}=\{k: D \rightarrow \mathbb{C}, k \text { measurable }\} \\
\widehat{\mathscr{E}} & \mathscr{M}_{D} \\
\cup & \cup 1 \\
\widehat{S}: P_{1}(\widehat{\mathscr{G}}) \longrightarrow & P_{2}(\widehat{\mathscr{G}})
\end{array}
$$

Main Properties

1. \widehat{S} is a homomorphism of algebras
2. $\widehat{\mathscr{G}}$ is closed as a pseudometric space into $\widehat{\mathscr{E}} \times \mathscr{M}_{D}$
3. GLT symbols are spectral symbols
($\widehat{\mathscr{G}}$ contains \mathscr{Z} the set of zero-distributed sequences)

GLT properties

$$
\begin{array}{cc}
\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n}: A_{n} \in \mathbb{C}^{n \times n}\right\} & \mathscr{M}_{D}=\{k: D \rightarrow \mathbb{C}, k \text { measurable }\} \\
\widehat{\mathscr{E}} & \mathscr{M}_{D} \\
\cup 1 & \cup 1 \\
\widehat{S}: P_{1}(\widehat{\mathscr{G}}) \longrightarrow P_{2}(\widehat{\mathscr{G}})
\end{array}
$$

Main Properties

1. \widehat{S} is a homomorphism of algebras
2. The graph of \widehat{S} into $\widehat{\mathscr{E}} \times \mathscr{M}_{D}$ is closed
3. GLT symbols are spectral symbols
($\widehat{\mathscr{G}}$ contains \mathscr{Z} the set of zero-distributed sequences)

GLT properties

$$
\begin{array}{cc}
\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n}: A_{n} \in \mathbb{C}^{n \times n}\right\} & \mathscr{M}_{D}=\{k: D \rightarrow \mathbb{C}, k \text { measurable }\} \\
\widehat{\mathscr{E}} & \mathscr{M}_{D} \\
\cup & \cup \\
\widehat{S}: P_{1}(\widehat{\mathscr{G}}) \longrightarrow & P_{2}(\widehat{\mathscr{G}})
\end{array}
$$

Main Properties

1. \widehat{S} is a homomorphism of algebras
2. The graph of \widehat{S} into $\widehat{\mathscr{E}} \times \mathscr{M}_{D}$ is closed
3. $\left\{A_{n}\right\}_{n} \sim_{\sigma} \widehat{S}\left(\left\{A_{n}\right\}_{n}\right)$
($\widehat{\mathscr{G}}$ contains \mathscr{Z} the set of zero-distributed sequences)

GLT properties

$$
\begin{array}{cc}
\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n}: A_{n} \in \mathbb{C}^{n \times n}\right\} & \mathscr{M}_{D}=\{k: D \rightarrow \mathbb{C}, k \text { measurable }\} \\
\widehat{\mathscr{E}} & \mathscr{M}_{D} \\
\cup & \cup 1 \\
\widehat{S}: P_{1}(\widehat{\mathscr{G}}) \longrightarrow & P_{2}(\widehat{\mathscr{G}})
\end{array}
$$

Main Properties

1. \widehat{S} is a homomorphism of algebras
2. The graph of \widehat{S} into $\widehat{\mathscr{E}} \times \mathscr{M}_{D}$ is closed
3. $\left\{A_{n}\right\}_{n} \sim_{\sigma} \widehat{S}\left(\left\{A_{n}\right\}_{n}\right)$
$\left(\operatorname{ker}(\widehat{S})=P_{1}(\mathscr{Z})\right)$

GLT properties

$$
\begin{array}{ccc}
\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n}: A_{n} \in \mathbb{C}^{n \times n}\right\} & \mathscr{M}_{D}=\{k: D \rightarrow \mathbb{C}, k \text { measurable }\} \\
\mathscr{E} & \mathscr{M}_{D} & \mathscr{E}=\widehat{\mathscr{E}} / \mathscr{Z} \\
\cup & \cup 1 & P_{2}(\mathscr{G}) \\
S: P_{1}(\mathscr{G}) \longrightarrow \mathscr{G}=\widehat{\mathscr{G}} / \mathscr{Z}
\end{array}
$$

Main Properties

1. S is a homomorphism of algebras
2. The graph of S into $\mathscr{E} \times \mathscr{M}_{D}$ is closed
3. $\left\{A_{n}\right\}_{n} \sim_{\sigma} S\left(\left\{A_{n}\right\}_{n}\right)$
(S is injective)

GLT properties

$$
\begin{array}{ccc}
\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n}: A_{n} \in \mathbb{C}^{n \times n}\right\} & \mathscr{M}_{D}=\{k: D \rightarrow \mathbb{C}, k \text { measurable }\} \\
\mathscr{E} & \mathscr{M}_{D} & \mathscr{E}=\widehat{\mathscr{E}} / \mathscr{Z} \\
\cup & \cup 1 & P_{2}(\mathscr{G}) \\
S: P_{1}(\mathscr{G}) \longrightarrow \mathscr{G}=\widehat{\mathscr{G}} / \mathscr{Z}
\end{array}
$$

Main Properties

1. S is a homomorphism of algebras
2. The graph of S into $\mathscr{E} \times \mathscr{M}_{D}$ is closed
3. $\left\{A_{n}\right\}_{n} \sim_{\sigma} S\left(\left\{A_{n}\right\}_{n}\right)$
(S is injective)
More?

Identification

Let $\left\{A_{n}\right\}_{n},\left\{C_{n}\right\}_{n} \in P_{1}(\mathscr{G})$.

1. S homomorphism of algebras

Let $\left\{A_{n}\right\}_{n},\left\{C_{n}\right\}_{n} \in P_{1}(\mathscr{G})$.

1. S homomorphism of algebras

$$
\Longrightarrow S\left(\left\{A_{n}\right\}_{n}-\left\{C_{n}\right\}_{n}\right)=S\left(\left\{A_{n}\right\}_{n}\right)-S\left(\left\{C_{n}\right\}_{n}\right)=k_{A}-k_{C}
$$

Let $\left\{A_{n}\right\}_{n},\left\{C_{n}\right\}_{n} \in P_{1}(\mathscr{G})$.

1. S homomorphism of algebras

$$
\Longrightarrow S\left(\left\{A_{n}\right\}_{n}-\left\{C_{n}\right\}_{n}\right)=S\left(\left\{A_{n}\right\}_{n}\right)-S\left(\left\{C_{n}\right\}_{n}\right)=k_{A}-k_{C}
$$

4. $\left\{A_{n}\right\}_{n} \sim_{\sigma} S\left(\left\{A_{n}\right\}_{n}\right)$

$$
\Longrightarrow\left\{A_{n}\right\}_{n}-\left\{C_{n}\right\}_{n} \sim_{\sigma} k_{A}-k_{C}
$$

Th2. $\left\{A_{n}\right\}_{n} \sim_{\sigma} f \Longrightarrow d_{\text {acs }}\left(\left\{A_{n}\right\}_{n},\left\{0_{n}\right\}_{n}\right)=d_{m}(f, 0)$

Let $\left\{A_{n}\right\}_{n},\left\{C_{n}\right\}_{n} \in P_{1}(\mathscr{G})$.

1. S homomorphism of algebras

$$
\Longrightarrow S\left(\left\{A_{n}\right\}_{n}-\left\{C_{n}\right\}_{n}\right)=S\left(\left\{A_{n}\right\}_{n}\right)-S\left(\left\{C_{n}\right\}_{n}\right)=k_{A}-k_{C}
$$

4. $\left\{A_{n}\right\}_{n} \sim_{\sigma} S\left(\left\{A_{n}\right\}_{n}\right)$

$$
\Longrightarrow\left\{A_{n}\right\}_{n}-\left\{C_{n}\right\}_{n} \sim_{\sigma} k_{A}-k_{C}
$$

Th2. $\left\{A_{n}\right\}_{n} \sim_{\sigma} f \Longrightarrow d_{\text {acs }}\left(\left\{A_{n}\right\}_{n},\left\{0_{n}\right\}_{n}\right)=d_{m}(f, 0)$

$$
\begin{aligned}
\Longrightarrow d_{a c s}\left(\left\{A_{n}\right\}_{n},\left\{C_{n}\right\}_{n}\right) & =d_{a c s}\left(\left\{A_{n}\right\}_{n}-\left\{C_{n}\right\}_{n},\left\{0_{n}\right\}_{n}\right) \\
=d_{m}\left(k_{A}-k_{C}, 0\right) & =d_{m}\left(k_{A}, k_{C}\right)
\end{aligned}
$$

Let $\left\{A_{n}\right\}_{n},\left\{C_{n}\right\}_{n} \in P_{1}(\mathscr{G})$.

1. S homomorphism of algebras

$$
\Longrightarrow S\left(\left\{A_{n}\right\}_{n}-\left\{C_{n}\right\}_{n}\right)=S\left(\left\{A_{n}\right\}_{n}\right)-S\left(\left\{C_{n}\right\}_{n}\right)=k_{A}-k_{C}
$$

4. $\left\{A_{n}\right\}_{n} \sim_{\sigma} S\left(\left\{A_{n}\right\}_{n}\right)$

$$
\Longrightarrow\left\{A_{n}\right\}_{n}-\left\{C_{n}\right\}_{n} \sim_{\sigma} k_{A}-k_{C}
$$

Th2. $\left\{A_{n}\right\}_{n} \sim_{\sigma} f \Longrightarrow d_{\text {acs }}\left(\left\{A_{n}\right\}_{n},\left\{0_{n}\right\}_{n}\right)=d_{m}(f, 0)$

$$
\begin{aligned}
\Longrightarrow d_{a c s}\left(\left\{A_{n}\right\}_{n},\left\{C_{n}\right\}_{n}\right) & =d_{a c s}\left(\left\{A_{n}\right\}_{n}-\left\{C_{n}\right\}_{n},\left\{0_{n}\right\}_{n}\right) \\
=d_{m}\left(k_{A}-k_{C}, 0\right) & =d_{m}\left(k_{A}, k_{C}\right)
\end{aligned}
$$

S is an isometry

Let $k \in \mathscr{M}_{D}$
Let $k \in \mathscr{M}_{D}$ and $k_{m} \xrightarrow{\mu} k$ such that exist $S\left(\left\{B_{n, m}\right\}\right)=k_{m}$
Iso. S is an isometry
$\longrightarrow d \operatorname{ISR}\}\{E\},)=d_{m}\left(k_{s}, k_{f}\right) \longrightarrow\left\{B_{n, m}\right\}$ Cauchy
Th1. \mathscr{E} is complete $\Longrightarrow \exists\left\{A_{n}\right\}_{n}:\left\{B_{n, m}\right\}_{n, m} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$
2. The graph of S into $\mathscr{E} \times \mathscr{M}_{n}$ is closed $\Longrightarrow S\left(\left\{A_{m}\right\}_{n}\right)=k$

$$
k
$$

Let $k \in \mathscr{M}_{D}$
Let $k \in \mathscr{M}_{D}$ and $k_{m} \xrightarrow{\mu} k$ such that exist $S\left(\left\{B_{n, m}\right\}\right)=k_{m}$

$$
\begin{aligned}
& \left\{B_{n, m}\right\} \\
& \qquad \begin{array}{l}
\\
k_{m} \\
S
\end{array} \quad \mu
\end{aligned}
$$

Let $k \in \mathscr{M}_{D}$
Let $k \in \mathscr{M}_{D}$ and $k_{m} \xrightarrow{\mu} k$ such that exist $S\left(\left\{B_{n, m}\right\}\right)=k_{m}$ Iso. S is an isometry

$$
\Longrightarrow d_{a c s}\left(\left\{B_{n, s}\right\},\left\{B_{n, r}\right\}\right)=d_{m}\left(k_{s}, k_{r}\right) \Longrightarrow\left\{B_{n, m}\right\} \text { Cauchy }
$$

$$
\underset{k_{m}}{\substack{\left\{B_{n, m}\right\} \\ k_{m} \\ \mu}}
$$

Let $k \in \mathscr{M}_{D}$
Let $k \in \mathscr{M}_{D}$ and $k_{m} \xrightarrow{\mu} k$ such that exist $S\left(\left\{B_{n, m}\right\}\right)=k_{m}$
Iso. S is an isometry

$$
\Longrightarrow d_{a c s}\left(\left\{B_{n, s}\right\},\left\{B_{n, r}\right\}\right)=d_{m}\left(k_{s}, k_{r}\right) \Longrightarrow\left\{B_{n, m}\right\} \text { Cauchy }
$$

Th1. \mathscr{E} is complete $\Longrightarrow \exists\left\{A_{n}\right\}_{n}:\left\{B_{n, m}\right\}_{n, m} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$

$$
\begin{gathered}
\left\{B_{n, m}\right\} \xrightarrow{\text { acs }}\left\{A_{n}\right\} \\
\qquad \begin{array}{l}
\text { } \\
k_{m} \xrightarrow{\mu} k
\end{array}
\end{gathered}
$$

Let $k \in \mathscr{M}_{D}$
Let $k \in \mathscr{M}_{D}$ and $k_{m} \xrightarrow{\mu} k$ such that exist $S\left(\left\{B_{n, m}\right\}\right)=k_{m}$
Iso. S is an isometry

$$
\Longrightarrow d_{a c s}\left(\left\{B_{n, s}\right\},\left\{B_{n, r}\right\}\right)=d_{m}\left(k_{s}, k_{r}\right) \Longrightarrow\left\{B_{n, m}\right\} \text { Cauchy }
$$

Th1. \mathscr{E} is complete $\Longrightarrow \exists\left\{A_{n}\right\}_{n}:\left\{B_{n, m}\right\}_{n, m} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$
2. The graph of S into $\mathscr{E} \times \mathscr{M}_{D}$ is closed $\Longrightarrow S\left(\left\{A_{n}\right\}_{n}\right)=k$

$$
\begin{aligned}
& \left\{B_{n, m}\right\} \xrightarrow{\text { acs }}\left\{A_{n}\right\} \\
& \underset{k_{m}}{\downarrow} \quad \stackrel{\downarrow}{ }{ }^{\downarrow}
\end{aligned}
$$

Let $k \in \mathscr{M}_{D}$
Let $k \in \mathscr{M}_{D}$ and $k_{m} \xrightarrow{\mu} k$ such that exist $S\left(\left\{B_{n, m}\right\}\right)=k_{m}$
Iso. S is an isometry

$$
\Longrightarrow d_{a c s}\left(\left\{B_{n, s}\right\},\left\{B_{n, r}\right\}\right)=d_{m}\left(k_{s}, k_{r}\right) \Longrightarrow\left\{B_{n, m}\right\} \text { Cauchy }
$$

Th1. \mathscr{E} is complete $\Longrightarrow \exists\left\{A_{n}\right\}_{n}:\left\{B_{n, m}\right\}_{n, m} \xrightarrow{\text { a.c.s. }}\left\{A_{n}\right\}_{n}$
2. The graph of S into $\mathscr{E} \times \mathscr{M}_{D}$ is closed $\Longrightarrow S\left(\left\{A_{n}\right\}_{n}\right)=k$

$\widetilde{\operatorname{Im}}(S)$ is closed in \mathscr{M}_{D}
$\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n}: A_{n} \in \mathbb{C}^{n \times n}\right\} \quad \mathscr{M}_{D}=\{k: D \rightarrow \mathbb{C}, k$ measurable $\}$

$$
\begin{array}{ccc}
\mathscr{E} & \mathscr{M}_{D} & \mathscr{E}=\widehat{\mathscr{E}} / \mathscr{Z} \\
\cup \| & \cup \| & P_{2}(\mathscr{G})
\end{array}
$$

Main Properties

1. S is a homomorphism of algebras
2. The graph of S into $\mathscr{E} \times \mathscr{M}_{D}$ is closed
3. $\left\{A_{n}\right\}_{n} \sim_{\sigma} S\left(\left\{A_{n}\right\}_{n}\right)$

More?
$\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n}: A_{n} \in \mathbb{C}^{n \times n}\right\} \quad \mathscr{M}_{D}=\{k: D \rightarrow \mathbb{C}, k$ measurable $\}$

Main Properties

1. S is a homomorphism of algebras
2. The graph of S into $\mathscr{E} \times \mathscr{M}_{D}$ is closed
3. $\left\{A_{n}\right\}_{n} \sim_{\sigma} S\left(\left\{A_{n}\right\}_{n}\right)$
S is an isometry and $\widetilde{I m}(S)$ is closed

We know that, for GLT, $\widetilde{\operatorname{Im}}(S)$ is dense in \mathscr{M}_{D}, so
$\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n}: A_{n} \in \mathbb{C}^{n \times n}\right\} \quad \mathscr{M}_{D}=\{k: D \rightarrow \mathbb{C}, k$ measurable $\}$

Main Properties

1. S is a homomorphism of groups
2. The graph of S into $\mathscr{E} \times \mathscr{M}_{D}$ is closed
3. $\left\{A_{n}\right\}_{n} \sim_{\sigma} S\left(\left\{A_{n}\right\}_{n}\right)$
S is an isometry and $\widetilde{I m}(S)$ is closed

We know that, for GLT, $\widetilde{\operatorname{Im}}(S)$ is dense in \mathscr{M}_{D}, so
$\widehat{\mathscr{E}}:=\left\{\left\{A_{n}\right\}_{n}: A_{n} \in \mathbb{C}^{n \times n}\right\} \quad \mathscr{M}_{D}=\{k: D \rightarrow \mathbb{C}, k$ measurable $\}$

Main Properties

1. S is a homomorphism of groups
2. The graph of S into $\mathscr{E} \times \mathscr{M}_{D}$ is closed
3. $\left\{A_{n}\right\}_{n} \sim_{\sigma} S\left(\left\{A_{n}\right\}_{n}\right)$
S is an isometry and $\widetilde{I m}(S)$ is closed
We know that, for GLT, $\widetilde{\operatorname{Im}}(S)$ is dense in \mathscr{M}_{D}, so

$$
\mathscr{G} \cong \mathscr{M}_{D}
$$

[Barbarino, LAA17]

$\left\{A_{n}\right\}$

- given $\left\{A_{n}\right\}_{n}$ find $\left\{B_{n, m}\right\}_{n, m}$ GLT sequences with symbols k_{m} if k_{m} converges, then also $\left\{B_{n, m}\right\}_{n, m}$ converges

$$
\begin{array}{cc}
\left\{B_{n, m}\right\} & \left\{A_{n}\right\} \\
\downarrow_{m} & \\
k_{m} &
\end{array}
$$

- given $\left\{A_{n}\right\}_{n}$
- find $\left\{B_{n, m}\right\}_{n, m}$ GLT sequences with symbols k_{m}

$$
\begin{array}{rll}
\left\{B_{n, m}\right\} & & \left\{A_{n}\right\} \\
\qquad \begin{array}{lll}
\downarrow \\
k_{m} & & \\
& & \\
& &
\end{array}
\end{array}
$$

- given $\left\{A_{n}\right\}_{n}$
- find $\left\{B_{n, m}\right\}_{n, m}$ GLT sequences with symbols k_{m}
- if k_{m} converges, then also $\left\{B_{n, m}\right\}_{n, m}$ converges

$$
\begin{aligned}
& \left\{B_{n, m}\right\} \ldots \text { acs }->\left\{A_{n}\right\} \\
& \underset{k_{m}}{\downarrow} \xrightarrow{\downarrow} k
\end{aligned}
$$

- given $\left\{A_{n}\right\}_{n}$
- find $\left\{B_{n, m}\right\}_{n, m}$ GLT sequences with symbols k_{m}
- if k_{m} converges, then also $\left\{B_{n, m}\right\}_{n, m}$ converges
- if $\left\{B_{n, m}\right\}_{n, m}$ converges to $\left\{A_{n}\right\}_{n}$

$$
\begin{array}{cc}
\left\{B_{n, m}\right\}-\operatorname{acs} & \left\{A_{n}\right\} \\
\qquad & \\
k_{m} \xrightarrow{\mu} & S
\end{array}
$$

- given $\left\{A_{n}\right\}_{n}$
- find $\left\{B_{n, m}\right\}_{n, m}$ GLT sequences with symbols k_{m}
- if k_{m} converges, then also $\left\{B_{n, m}\right\}_{n, m}$ converges
- if $\left\{B_{n, m}\right\}_{n, m}$ converges to $\left\{A_{n}\right\}_{n}$
- Then $\left\{A_{n}\right\}_{n}$ has spectral symbol k

$\left\{B_{n, m}\right\} \cdots \underset{\text { acs }}{ }\left\{A_{n}\right\}$

- given $\left\{A_{n}\right\}_{n}$
- find $\left\{B_{n, m}\right\}_{n, m}$ GLT sequences with symbols k_{m}
- if k_{m} converges, then also $\left\{B_{n, m}\right\}_{n, m}$ converges
- if $\left\{B_{n, m}\right\}_{n, m}$ converges to $\left\{A_{n}\right\}_{n}$
- Then $\left\{A_{n}\right\}_{n}$ has spectral symbol k
\longrightarrow proving the acs convergence is difficult

Metrics on \mathscr{M}_{D}

Let $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be an increasing bounded concave and continuous function with $\varphi(0)=0$

Metrics on \mathscr{M}_{D}

Let $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be an increasing bounded concave and continuous function with $\varphi(0)=0$

We can define corresponding metrics on \mathscr{E} and \mathscr{M}_{D}

$$
\begin{array}{ll}
p_{m}^{\varphi}(f):=\frac{1}{|D|} \int_{D} \varphi(|f|) & p^{\varphi}\left(\left\{A_{n}\right\}_{n}\right):=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \varphi\left(\sigma_{i}\left(A_{n}\right)\right) \\
d_{m}^{\varphi}(f, g):=p_{m}^{\varphi}(f-g) & d^{\varphi}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right):=p^{\varphi}\left(\left\{A_{n}-B_{n}\right\}_{n}\right)
\end{array}
$$

Metrics on \mathscr{M}_{D}

Let $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be an increasing bounded concave and continuous function with $\varphi(0)=0$

We can define corresponding metrics on \mathscr{E} and \mathscr{M}_{D}

$$
\begin{array}{ll}
p_{m}^{\varphi}(f):=\frac{1}{|D|} \int_{D} \varphi(|f|) & p^{\varphi}\left(\left\{A_{n}\right\}_{n}\right):=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \varphi\left(\sigma_{i}\left(A_{n}\right)\right) \\
d_{m}^{\varphi}(f, g):=p_{m}^{\varphi}(f-g) & d^{\varphi}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right):=p^{\varphi}\left(\left\{A_{n}-B_{n}\right\}_{n}\right)
\end{array}
$$

Theorem 3 [Barbarino, Garoni, '17] d^{φ} is a complete metric on \mathscr{E} inducing the acs convergence.

$$
\left\{A_{n}\right\}_{n} \sim_{\sigma} f \Longrightarrow p^{\varphi}\left(\left\{A_{n}\right\}_{n}\right)=p_{m}^{\varphi}(f)
$$

$\left\{A_{n}\right\}_{n} \sim_{G L T} k,\left\{B_{n}\right\}_{n} \sim_{G L T} h \Longrightarrow d^{\varphi}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)=d_{m}^{\varphi}(k, h)$

Metrics on \mathscr{M}_{D}

Concave functions

- $\varphi_{1}(x)=\min \{x, 1\}$
- $\varphi_{2}(x)=\frac{x}{x+1}$

Metrics on \mathscr{M}_{D}

Concave functions

- $\varphi_{1}(x)=\min \{x, 1\}$
- $\varphi_{2}(x)=\frac{x}{x+1}$

$$
\begin{aligned}
& d_{1}^{\varphi}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \min \left\{\sigma_{i}\left(A_{n}-B_{n}\right), 1\right\} \\
& d_{2}^{\varphi}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma_{i}\left(A_{n}-B_{n}\right)}{\sigma_{i}\left(A_{n}-B_{n}\right)+1}
\end{aligned}
$$

Metrics on \mathscr{M}_{D}

Concave functions

- $\varphi_{1}(x)=\min \{x, 1\}$
- $\varphi_{2}(x)=\frac{x}{x+1}$

$$
\begin{aligned}
& d_{1}^{\varphi}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \min \left\{\sigma_{i}\left(A_{n}-B_{n}\right), 1\right\} \\
& d_{2}^{\varphi}\left(\left\{A_{n}\right\}_{n},\left\{B_{n}\right\}_{n}\right)=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma_{i}\left(A_{n}-B_{n}\right)}{\sigma_{i}\left(A_{n}-B_{n}\right)+1}
\end{aligned}
$$

\longrightarrow New ways to test the acs convergence

References

Fi. Barbarino. Equivalence between GLT sequences and measurable functions. Linear Algebra and its Applications, 529:397-412, 2017.
(G. Barbarino and C. Garoni. From convergence in measure to convergence of matrix-sequences through concave functions and singular values. submitted for publication, 2017.
C. Garoni and S. Serra-Capizzano. Generalized Locally Toeplitz Sequences: Theory and Applications, volume I. Springer, 2017.
S. Serra-Capizzano. Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach. Linear Algebra and its Applications, 328(1-3):121-130, 2001.
S. Serra-Capizzano. Generalized locally Toeplitz sequences: Spectral analysis and applications to discretized partial differential equations. Linear Algebra and its Applications, 366(CORTONA 2000 Sp. Issue):371-402, 2003.

嗇 P. Tilli. Locally Toeplitz sequences: spectral properties and applications. Linear Algebra and its Applications, 278(97):91-120, 1998.

