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Reductions

Lemma (B., G., S. 2024)

Any matrix A ∈ Rm×n of spectral norm 1 and m ≥ n can be decomposed as
A = U⊤V where U ∈ R(m+n)×m,V ∈ R(m+n)×n have orthonormal columns

min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1

u⊤Av = min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1

u⊤U⊤Vv = min
ũ ∈ UP, ∥ũ∥ = 1,
ṽ ∈ VQ, ∥ṽ∥ = 1

ũ⊤ṽ

The minimum conical singular value problem
reduces polynomially

to the maximum angle between cones problem

Theorem (G., Glineur 2013)

Let B ∈ {0, 1}m×n be the bi-adjacency matrix of a bipartite graph with d ≥ max{m, n}.
min
x,y≥0

∥B − d(1− B)− xy⊤∥2F (Nonnegative Rank 1)

is solved by binary vectors x , y that identify the Maximum Edge Biclique

Theorem (Seeger, S. 2023)

σ0 = (u∗)⊤Av∗ = min
u,v≥0

u⊤Av : ∥u∥ = ∥v∥ = 1 (Pareto SV)

If A has at least one negative entry then (x∗, y∗) =
√
−σ0(u

∗, v∗) is optimal for

min
x,y≥0

∥ − A− xy⊤∥2F (Nonnegative Rank 1)
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ũ⊤ṽ

The minimum conical singular value problem
reduces polynomially

to the maximum angle between cones problem

Theorem (G., Glineur 2013)

Let B ∈ {0, 1}m×n be the bi-adjacency matrix of a bipartite graph with d ≥ max{m, n}.
min
x,y≥0

∥B − d(1− B)− xy⊤∥2F (Nonnegative Rank 1)

is solved by binary vectors x , y that identify the Maximum Edge Biclique

Theorem (Seeger, S. 2023)

σ0 = (u∗)⊤Av∗ = min
u,v≥0

u⊤Av : ∥u∥ = ∥v∥ = 1 (Pareto SV)

If A has at least one negative entry then (x∗, y∗) =
√
−σ0(u

∗, v∗) is optimal for

min
x,y≥0

∥ − A− xy⊤∥2F (Nonnegative Rank 1)



Reductions

Lemma (B., G., S. 2024)

Any matrix A ∈ Rm×n of spectral norm 1 and m ≥ n can be decomposed as
A = U⊤V where U ∈ R(m+n)×m,V ∈ R(m+n)×n have orthonormal columns

min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1

u⊤Av = min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1

u⊤U⊤Vv = min
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ũ⊤ṽ
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u⊤v P,Q ⊆ Rn non trivial (polyhedral) cones
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min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1,

u⊤v ≥ 0 =⇒ u, v are vertices of P,Q



Conic Angles

min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1,

u⊤v P,Q ⊆ Rn non trivial (polyhedral) cones

"Simple" Case:

If one of u, v in the antipodal pair is a vertex then the problem is
Polynomial in n and the number of generators of P,Q

min
v∈Q, ∥v∥=1

u⊤v = − max
v∈−Q, ∥v∥=1

u⊤v =⇒ v = − Proj(u,−Q)

∥Proj(u,−Q)∥
Proj(u,−Q) ≡ min

y≥0
∥u − (−H)y∥ ⟨H⟩ = Q, NNLS, convex



Conic Angles

min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1,

u⊤v P,Q ⊆ Rn non trivial (polyhedral) cones

if (u∗)⊤v∗ < 0, when is it that one among u, v is a vertex?

Theorem (B., G., S. 2024)
Let (u, v) be a stationary point and let u ∈ int(Fu), v ∈ int(Fv ) where Fu, Fv are
faces of P,Q. If dim(Fu) + dim(Fv ) > n and v ̸= ±u, then (u, v) is a saddle point

Corollary (B., G., S. 2024)
If (u, v) is a local minimum in dimension n ≤ 3 with u ̸= −v , then at least one
among u, v is a vertex



Algorithms



Brute Force Active Set

λ∗ = min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1,

u⊤Av = min
x ≥ 0, ∥Gx∥ = 1,
y ≥ 0, ∥Hy∥ = 1,

x⊤G⊤AHy

Idea: If we know the sets I, J of indices for which x∗
i , y

∗
j > 0, called Active Sets,

then a direct gradient computation solves the problem

KKT Conditions:
0 ≤ x∗ ⊥ G⊤AHy∗ − λ∗G⊤Gx∗ ≥ 0

0 ≤ y∗ ⊥ H⊤A⊤Gx∗ − λ∗H⊤Hy∗ ≥ 0

∥Gx∗∥ = ∥Hy∗∥ = 1

=⇒


0 < x , G

⊤
AHy − λ∗G

⊤
Gx = 0

0 < y , H
⊤
A⊤Gx − λ∗H

⊤
Hy = 0

x := x∗
I , y := y∗

J ,G := G:,I ,H := H:,J

Theorem (B., G., S. 2024)

For the optimal solution (u∗, v∗) = (Gx∗,Hy∗) = (Gx ,Hy) and λ∗ = (u∗)⊤Av∗

M∗ :=

(
0 H

†
A⊤G

G
†
AH 0

)
=⇒ M∗

(
y

x

)
= λ∗

(
y

x

)

where λ∗ is the least eigenvalue of M∗ (from 2° order KKT)

For any I,J , if λ is the least eigenvalue λ of M and admits a nonnegative eigenvector
then λ ≥ λ∗
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The Active Set algorithm cycles over all subsets of indices I,J and tests if the least
eigenvalue of M has a nonnegative eigenvector, giving us upper bounds on λ∗, and the
exact solution when I,J coincide with the active sets of (x∗, y∗)

Optimizations: 2 < |I|+ |J | ≤ m + n − Null(A⊤A− ∥A∥2I ) and G , H must be full rank
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Brute Force Active Set

Input: A ∈ Rm×n, G ∈ Rm×p, H ∈ Rn×q, P = ⟨G⟩, Q = ⟨H⟩
Output: λ = min u⊤Av such that ∥u∥ = ∥v∥ = 1, u ∈ P, v ∈ Q

1: λ = g⊤
i Ahj = mink,ℓ (G

⊤AH)k,ℓ, u = gi , v = hj , r = Null(A⊤A− ∥A∥2In)
2: I := {(I,J ) : 2 < |I|+ |J | ≤ m+ n− r , G := G:,I and H := H:,J full column rank}
3: for (I,J ) ∈ I , do
4: Ax = G

†
A⊤H, Ay = H

†
AG

5: Aλ = AyAx , Ãλ = Ax (or Aλ = AxAy , Ãλ = Ay if |I| > |J |)
6: if ρ(Aλ) ≤ λ2 then Skip to the next (I,J ) ∈ I

7: U right eigenspace of ρ(Aλ) in Aλ, µ = −
√

ρ(Aλ), W =

(
ÃλU/µ

U

)
8: Compute the reduced QR of W = VR

9: if (VV⊤ − I )z = 0, z ≥ 0, e⊤z = 1 admits a solution then
10: λ = µ, z = [y⊤ x⊤]⊤ (or z = [x⊤ y⊤]⊤if |I| > |J |)
11: u = Gx/∥Gx∥, v = Hy/∥Hy∥
12: end if
13: end for



Alternating projection with extrapolation

λ∗ = min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1,

u⊤Av

Idea: We have seen that if we know u∗ or v∗, then finding the other is equivalent to
solve an easy convex problem

Alternate Projection: starting from an initial feasible point (u0, v0) and k = 0

• uk+1 = argminx∈P x⊤Avk such that ∥x∥2 = 1

• vk+1 = argminy∈Q u⊤
k+1Ay such that ∥y∥2 = 1

• k = k + 1

To accelerate the convergence, we add an Extrapolation step after each update

• uk+1 = uk+1 + β(uk+1 − uk)

• vk+1 = vk+1 + β(vk+1 − vk)

• If the objective increases then we decrease β and go back to (uk , vk), otherwise
we increase β

The method converges to a stationary point, that may not be optimal
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To accelerate the convergence, we add an Extrapolation step after each update

• uk+1 = uk+1 + β(uk+1 − uk)

• vk+1 = vk+1 + β(vk+1 − vk)

• If the objective increases then we decrease β and go back to (uk , vk), otherwise
we increase β

The method converges to a stationary point, that may not be optimal



Alternating projection with extrapolation

Input: A ∈ Rm×n, cones P ⊆ Rm and Q ⊆ Rn

Output: An approximate solution to minu∈P,v∈Q u⊤Av such that ∥u∥2 = ∥v∥2 = 1.
1: u = 0, v = 0, ve = v0, k = 1.
2: while k ≤ K and (∥u − up∥2 ≥ δ or ∥v − vp∥2 ≥ δ) do
3: up = u. % Keep previous iterate in memory
4: u = argminx∈P x⊤Ave such that ∥x∥2 = 1.
5: ue = u + β(u − up). % Extrapolated point
6: vp = v . % Keep previous iterate in memory
7: v = argminy∈Q u⊤

e Ay such that ∥y∥2 = 1.
8: ve = v + β(v − vp). % Extrapolated point
9: ek ← u⊤Av .

10: if k ≥ 2 and ek > ek−1 then
11: u = up, v = vp, β = β

η
.

12: else
13: β ← min(1, γβ).
14: end if
15: k ← k + 1.
16: end while



Sequential Regularized Partial Linearization

λ∗ = min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1,

u⊤Av = min
u ∈ P, u ̸= 0,
v ∈ Q, v ̸= 0,

u⊤Av

∥u∥∥v∥ = min
e⊤x = 1, x ≥ 0,
e⊤y = 1, y ≥ 0,

x⊤G⊤AHy

∥Gx∥∥Hy∥

Idea: If the minimum of fδ(x , y) := x⊤G⊤AHy − δ∥Gx∥∥Hy∥ over (x , y) ∈ ∆p ×∆q

is µ < 0 then we get a decrease in the objective function

x⊤G⊤AHy

∥Gx∥∥Hy∥ = δ +
µ

∥Gx∥∥Hy∥ < δ

Partial Linearization: starting from an initial feasible point (x0, y0) and k = 0,

• δ =
x⊤k G⊤AHyk
∥Gxk∥∥Hyk∥

• Linearize wrt x the function fδ(x , yk), penalize it with ∥x − xk∥2 and minimize it
to obtain xk+1

• Linearize wrt y the function fδ(xk+1, y), penalize it with ∥y − yk∥2 and minimize
it to obtain yk+1

• k = k + 1

To accelerate the convergence, we add an Extrapolation step



Sequential Regularized Partial Linearization

λ∗ = min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1,

u⊤Av = min
u ∈ P, u ̸= 0,
v ∈ Q, v ̸= 0,

u⊤Av

∥u∥∥v∥ = min
e⊤x = 1, x ≥ 0,
e⊤y = 1, y ≥ 0,

x⊤G⊤AHy

∥Gx∥∥Hy∥

Idea: If the minimum of fδ(x , y) := x⊤G⊤AHy − δ∥Gx∥∥Hy∥ over (x , y) ∈ ∆p ×∆q

is µ < 0 then we get a decrease in the objective function

x⊤G⊤AHy

∥Gx∥∥Hy∥ = δ +
µ

∥Gx∥∥Hy∥ < δ

Partial Linearization: starting from an initial feasible point (x0, y0) and k = 0,

• δ =
x⊤k G⊤AHyk
∥Gxk∥∥Hyk∥

• Linearize wrt x the function fδ(x , yk), penalize it with ∥x − xk∥2 and minimize it
to obtain xk+1

• Linearize wrt y the function fδ(xk+1, y), penalize it with ∥y − yk∥2 and minimize
it to obtain yk+1

• k = k + 1

To accelerate the convergence, we add an Extrapolation step



Sequential Regularized Partial Linearization

λ∗ = min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1,

u⊤Av = min
u ∈ P, u ̸= 0,
v ∈ Q, v ̸= 0,

u⊤Av

∥u∥∥v∥ = min
e⊤x = 1, x ≥ 0,
e⊤y = 1, y ≥ 0,

x⊤G⊤AHy

∥Gx∥∥Hy∥

Idea: If the minimum of fδ(x , y) := x⊤G⊤AHy − δ∥Gx∥∥Hy∥ over (x , y) ∈ ∆p ×∆q

is µ < 0 then we get a decrease in the objective function

x⊤G⊤AHy

∥Gx∥∥Hy∥ = δ +
µ

∥Gx∥∥Hy∥ < δ

Partial Linearization: starting from an initial feasible point (x0, y0) and k = 0,

• δ =
x⊤k G⊤AHyk
∥Gxk∥∥Hyk∥

• Linearize wrt x the function fδ(x , yk), penalize it with ∥x − xk∥2 and minimize it
to obtain xk+1

• Linearize wrt y the function fδ(xk+1, y), penalize it with ∥y − yk∥2 and minimize
it to obtain yk+1

• k = k + 1

To accelerate the convergence, we add an Extrapolation step



Sequential Regularized Partial Linearization

λ∗ = min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1,

u⊤Av = min
u ∈ P, u ̸= 0,
v ∈ Q, v ̸= 0,

u⊤Av

∥u∥∥v∥ = min
e⊤x = 1, x ≥ 0,
e⊤y = 1, y ≥ 0,

x⊤G⊤AHy

∥Gx∥∥Hy∥

Idea: If the minimum of fδ(x , y) := x⊤G⊤AHy − δ∥Gx∥∥Hy∥ over (x , y) ∈ ∆p ×∆q

is µ < 0 then we get a decrease in the objective function

x⊤G⊤AHy

∥Gx∥∥Hy∥ = δ +
µ

∥Gx∥∥Hy∥ < δ

Partial Linearization: starting from an initial feasible point (x0, y0) and k = 0,

• δ =
x⊤k G⊤AHyk
∥Gxk∥∥Hyk∥

• Linearize wrt x the function fδ(x , yk), penalize it with ∥x − xk∥2 and minimize it
to obtain xk+1

• Linearize wrt y the function fδ(xk+1, y), penalize it with ∥y − yk∥2 and minimize
it to obtain yk+1

• k = k + 1

To accelerate the convergence, we add an Extrapolation step



Input: A ∈ Rm×n, cones P ⊆ Rm and Q ⊆ Rn

Output: An approximate solution to minu∈P,v∈Q⟨u,Av⟩ such that ∥u∥ = ∥v∥ = 1
1: Set

δk :=
⟨Gxk ,AHy k⟩
∥Gxk∥∥Hy k∥

2: Let Lk
1(x) :=

〈
Gx ,AHy k − δk∥Gxk∥−1∥Hy k∥Gxk

〉
Compute a solution x̃k to the convex program

min Lk
1(x) +

µ1
2 ∥x − xk∥2 such that x ∈ ∆p

3: Let Lk
2(y) :=

〈
Hy ,A⊤Gxk − δk∥Gxk∥∥Hy k∥−1Hy k

〉
Compute a solution ỹ k to the convex program

min Lk
2(y) +

µ2
2 ∥y − y k∥2 such that y ∈ ∆q

4: Let dk
1 := x̃k − xk and dk

2 := ỹ k − y k

5: If (|Lk
1(d

k
1 )| < δ and |Lk

2(d
k
2 )| < δ) or k ≥ K terminate

Otherwise, let tk := βρℓk , where ℓk is the smallest nonnegative integer ℓ such that

Φ(xk + tkdk
1 , y

k + tkdk
2 ) ≤ Φ(xk , y k) + αtk

Lk
1(d

k
1 ) + Lk

2(d
k
2 )

∥Gxk∥∥Hy k∥

Set
(
xk+1, y k+1) := (xk , y k) + tk(d

k
1 , d

k
2 ) and k = k + 1. Go to step 1



Experiments



An Example: Schur Cone

We test and compare the following algorithms on several problems:

• Brute Force Active Set

• Alternating projection with extrapolation

• Sequential Regularized Partial Linearization

• Gurobi (exact nonconvex quadratic solver based on McCormick relaxation)

The Schur Cone is generated by the matrix

H =



1 0 . . . 0
−1 1 . . . 0
0 −1 . . . 0
...

...
...

0 0 . . . 1
0 0 . . . −1


∈ Rn×n−1 ⟨H⟩ ⊆ e⊥

One can prove that the maximum angle between the Schur cone Q and Rn
+ is achieved by

y = en ∈ P x = (a a . . . a b) ∈ Q a =

√
1

n(n − 1)
b = −

√
1− 1

n
= x⊤y
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Schur Cone and Positive Orthant

Table 1: Numerical comparison for Gur and BFAS for different dimensions for the
problem of finding the maximum angle between the Schur cone and Rn

+. The table
reports the optimal objective functions values found in the timelimit (60 seconds) and
the actual elapsed time. We also report the exact value for each problem.

n 5 10 20 50

exact 0.852416π 0.897584π 0.928217π 0.954833π

Gur 0.852416π 0.897584π 0.928218π 0.954833π
0.1134 s 0.2016 s 20.1493 s 60∗ s

BFAS 0.852416π 0.897584π 0.750000π 0.750000π
0.3310 s 48.3153 s 60∗ s 60∗ s

n 100 200 500

exact 0.968116π 0.977473π 0.985760π

Gur 0.968116π 0.977473π 0.985756π
60∗ s 60∗ s 60∗ s

BFAS 0.750000π 0.750000π 0.750000π
60∗ s 60∗ s 60∗ s



Schur Cone and Positive Orthant

Table 1: Numerical comparison for Gurobi and BFAS for different dimensions for the
problem of finding the maximum angle between the Schur cone and itself. The table
reports the optimal objective functions values found in the timelimit (60 seconds) and
the actual elapsed time. We also report the exact value for each problem.

n 5 10 20 50

exact 0.800000π 0.900000π 0.950000π 0.980000π

Gur 0.800001π 0.900000π 0.950000π 0.980000π
0.2508 s 60∗ s 60∗ s 60∗ s

BFAS 0.800000π 0.900000π 0.859157π 0.804087π
0.3856 s 60∗ s 60∗ s 60∗ s

n 100 200 500

exact 0.990000π 0.995000π 0.998000π

Gur 0.936315π 0.994996π 0.998011π
60∗ s 60∗ s 60∗ s

BFAS 0.750000π 0.750000π 0.750000π
60∗ s 60∗ s 60∗ s



Schur Cone and Positive Orthant

Schur - Nonnegative Orthant, n = 200

Schur - Schur, n = 200



Maximum Edge Biclique Problem

Recall that solving the Pareto singular value problem is equivalent to solve the
maximum edge biclique problem.

Here we thus test all four algorithms on four bipartite graphs taken from a
benchmark dataset1. All graphs have been randomly generated with a fixed
edge density, and then a biclique has been added to them. In particular,

• the first graph is a 100× 100 graph with density 0.2 and planted biclique
of size 50× 50 = 2500,

• the second graph is a 300× 300 graph with density 0.3 and planted
biclique of size 2× 55 = 110,

• the third graph is a 100× 100 graph with density 0.71 and planted
biclique of size 80× 80 = 6400,

• the fourth graph is a 10000× 300 graph with density 0.03 and planted
biclique of size 22× 2 = 44.

1Shaham, E.: maximum biclique benchmark. https://github.com/shahamer/
maximum-biclique-benchmark (2019)



Maximum Edge Biclique Problem

Table 1: Numerical comparison for Gurobi, BFAS, E-AO and SRPL for the problem of
finding the maximum edge biclique in four different bipartite graphs. The table reports
the maximum edgee biclique found in the timelimit (10 seconds) for Gurobi and
BFAS. The reported number for E-AO and SRPL are instead the average value found
at 10 seconds for 100 runs, and in parentheses the best value found throughout all 100
runs when it differs from the average one. Gurobi cannot be executed on the last
graph due to its excessive size.

n 100× 100 300× 300 100× 100 10000× 300

Gur 2500 0 310 NA
BFAS 3 2 2 2
E-AO 66 114 87 12
SRPL 2500 114 6400 46(358)



Maximum Angle between PSD and Nonnegative Symmetric Matrices

Given ⟨A,B⟩ = Tr(A⊤B) an open question is the maximum angle between the cone of
PSD matrices Pn and the cone of nonnegative symmetric matrices N n for n ≥ 5
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n = 2, 3, 4 =⇒ γn =
3
4
π lim

n→∞
γn ↑ π

All antipodal couples (and the best known for n = 5) are circulant matrices



Maximum Angle between PSD and Nonnegative Symmetric Matrices

Given ⟨A,B⟩ = Tr(A⊤B) an open question is the maximum angle between the cone of
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π lim
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γn ↑ π

All antipodal couples (and the best known for n = 5) are circulant matrices
If SCn is the algebra of circulant matrices, SCn ∩Pn and SCn ∩N n are both polyhedral
cones and an alternating algorithm using projections to maximize γn will converge to a
stationary point of the problem that is still circulant



Maximum Angle between PSD and Nonnegative Symmetric Matrices

Given ⟨A,B⟩ = Tr(A⊤B) an open question is the maximum angle between the cone of
PSD matrices Pn and the cone of nonnegative symmetric matrices N n for n ≥ 5

n = 2, 3, 4 =⇒ γn =
3
4
π lim

n→∞
γn ↑ π

All antipodal couples (and the best known for n = 5) are circulant matrices
If SCn is the algebra of circulant matrices, SCn ∩Pn and SCn ∩N n are both polyhedral
cones and an alternating algorithm using projections to maximize γn will converge to a
stationary point of the problem that is still circulant

Left: Best known lower
bounds on γn

Right: Gurobi solutions
- In black the exact angle
SCn ∩ Pn ∠ SCn ∩N n

- In blue if a previous angle
was bigger then the exact so-
lution
- In red if it is a lower bound



Table 2: Numerical comparison of Gur and BFAS for different dimensions for the problem of finding
the maximum angle between the PSD cone and the nonnegative symmetric cone, both restricted to
the subalgebra of circulant matrices. Timelimit: 60 seconds

n 13 15 17 19 21 23

exact 0.762950π 0.757765π 0.764971π 0.768062π 0.768769π 0.766370π

Gur 0.762950π 0.757765π 0.764971π 0.767876π 0.765409π 0.766370π
0.854 s 25.061 s 60∗ s 60∗ s 60∗ s 60∗ s

BFAS 0.762950π 0.757765π 0.764971π 0.768062π 0.768768π 0.766370π
0.333 s 0.356 s 1.114 s 4.418 s 19.953 s 60∗ s

Table 3: Numerical comparison of Gur, BFAS, E-AO and SRPL for the same problem. Timelimit: 10
seconds. When the exact value is not available, the best known lower bound is reported with an
asterisk

n 17 19 21 23 25 27

exact 0.764971π 0.768062π 0.768769π 0.766370π 0.767385π∗ 0.768258π∗

Gur 0.764971π 0.759309π 0.765409π 0.766370π 0.767385π 0.760879π
BFAS 0.764971π 0.768062π 0.768768π 0.766370π 0.762620π 0.756841π
E-AO 0.764971π 0.768062π 0.768768π 0.766370π 0.767385π 0.768258π
SRPL 0.764970π 0.768062π 0.768768π 0.766369π 0.767384π 0.768257π



PSD and SNN matrices

Since E-AO and SRPL main steps are projections, they can be adapted to the
case of NON-polyhedral cones, as long as we know how to compute the
projection on such cones
We can thus test them on the task to find the maximum angle between the
cone of Positive Semi-Definite matrices and the cone of Symmetric
Nonnegative matrices

Table 4: Numerical comparison for E-AO and SRPL for different dimensions for the problem of
finding the maximum angle between the PSD cone and the nonnegative symmetric cone. The table
reports the best and average value found over 10000 random initializations, together with the average
elapsed time. We also report the best known value for each dimension.

n 30 40 50 60

best known 0.7757π 0.7789π 0.7812π 0.7837π

EAOb 0.7757π 0.7789π 0.7812π 0.7837π
EAOa 0.7741π 0.7768π 0.7790π 0.7805π

0.111± 0.054 s 0.701± 0.235 s 1.263± 0.273 s 2.852± 0.321 s
SRPLb 0.7757π 0.7789π 0.7812π 0.7837π
SRPLa 0.7739π 0.7766π 0.7787π 0.7802π

0.062± 0.025 s 0.155± 0.060 s 0.319± 0.130 s 0.565± 0.229 s
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