Computing cone-constrained singular values of matrices

Giovanni Barbarino ¹ Nicolas Gillis ¹ David Sossa ²

Householder Symposium XXII

09 Jun 2025

¹Université de Mons, Belgium

²Universidad de O'Higgins, Rancagua, Chile

Class of Computational Complexity

$$\min_{ \begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray} } u^\top A v \qquad P, Q \quad \text{closed convex cones} \\ \text{finitely generated}$$

$$\min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}}$$

 $\min_{\substack{u \in P, \ \|u\| = 1, \\ Q \text{ finitely generated}}} u^\top A v \qquad P, Q \quad \text{closed convex cones} \\ \quad \text{finitely generated}$

Pareto Singular Values

$$\min_{\begin{subarray}{c} u \geq 0, \ \|u\| = 1, \\ v \geq 0, \ \|v\| = 1, \end{subarray}} \ u^\top A v$$

$$\min_{\substack{u \in P, ||u|| = 1, \\ v \in Q, ||v|| = 1,}}$$

 $\min_{u \in P, \|u\| = 1,} u^{\top} A v \qquad P, Q \quad \text{closed convex cones}$ finitely generated

Pareto Singular Values

$$\min_{\begin{subarray}{c} u \geq 0, \ \|u\| = 1, \\ v \geq 0, \ \|v\| = 1, \end{subarray}} \ u^\top A v$$

Conic Angles

$$\min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} u^\top v$$

$$\min_{\begin{subarray}{c} u \in P, \|u\| = 1, \\ v \in Q, \|v\| = 1, \end{subarray}}$$

 $\min_{u \in P, \|u\| = 1,} u^{\top} A v \qquad P, Q \quad \text{closed convex cones}$ finitely generated

$$\min_{\substack{u \ge 0, \ \|u\| = 1, \\ v > 0, \ \|v\| = 1,}} u^{\top} A v$$

Conic Angles

$$\min_{\begin{subarray}{c} u \in P, \ ||u|| = 1, \\ v \in Q, \ ||v|| = 1, \end{subarray}} u^{\top} v$$

Singular Values

$$\min_{\|u\|=\|v\|=1} u^\top A v$$

$$\min_{\begin{subarray}{c} u \in P, \|u\| = 1, \\ v \in Q, \|v\| = 1, \end{subarray}} u^{\top} A v$$

$$u^{\top}Av$$

P,Q closed convex cones finitely generated

$$\min_{\substack{u \ge 0, \ \|u\| = 1, \\ v > 0, \ \|v\| = 1,}} u^{\top} A v$$

Conic Angles

$$\min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} \ u^\top v$$

Singular Values

$$\min_{\|u\|=\|v\|=1} u^\top A v$$

Polynomial Time $O(mn^2)$ to compute all Singular Values

$$\min_{\substack{u \in P, \ ||u|| = 1, \\ v \in Q, \ ||v|| = 1,}} u^{\top} A v$$

$$u^{\top}Av$$

P,Q closed convex cones finitely generated

Conic Angles

Pareto Singular Values

$$\min_{\substack{u \ge 0, \ ||u|| = 1, \\ v > 0, \ ||v|| = 1,}} u^{\top} A v$$

 $u^{\top}v$ \min $u \in P, ||u|| = 1,$ $v \in Q, ||v|| = 1,$

Singular Values

$$\min_{\|u\|=\|v\|=1} u^\top A v$$

Polynomial Time $O(mn^2)$ to compute all Singular Values

Lemma (B., G., S. 2024)

Any matrix $A \in \mathbb{R}^{m \times n}$ of spectral norm 1 and $m \ge n$ can be decomposed as $A = U^\top V$ where $U \in \mathbb{R}^{(m+n) \times m}$, $V \in \mathbb{R}^{(m+n) \times n}$ have orthonormal columns

$$\min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1 \end{subarray} } \begin{subarray}{c} \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1 \end{subarray} } \begin{subarray}{c} u^\top Vv = \min_{\begin{subarray}{c} \widetilde{u} \in UP, \ \|\widetilde{u}\| = 1, \\ \widetilde{v} \in VQ, \ \|\widetilde{v}\| = 1 \end{subarray} } \begin{subarray}{c} \widetilde{u}^\top \widetilde{v} \\ \widetilde{v} \in VQ, \ \|\widetilde{v}\| = 1 \end{subarray}$$

The minimum conical singular value problem reduces polynomially

Theorem (G., Glineur 2013)

Let $B \in \{0,1\}^{m imes n}$ be the bi-adjacency matrix of a bipartite graph with $d \geq \max\{m,n\}$

$$\min_{\substack{v>0 \ v>0}} \|B-d(1-B)-xy^{\top}\|_F^2$$
 (Nonnegative Rank 1)

is solved by binary vectors x, y that identify the Maximum Edge Biclique

Theorem (Seeger, S. 2023)

$$\sigma_0 = (u^*)^\top A v^* = \min_{u,v \ge 0} u^\top A v$$
 : $||u|| = ||v|| = 1$ (Pareto SV)

If A has at least one negative entry then $(x^*, y^*) = \sqrt{-\sigma_0}(u^*, v^*)$ is optimal for

$$\min_{\substack{x > 0 \ y > 0}} \| -A - xy^{\top} \|_F^2$$
 (Nonnegative Rank 1)

Lemma (B., G., S. 2024)

Any matrix $A \in \mathbb{R}^{m \times n}$ of spectral norm 1 and $m \ge n$ can be decomposed as $A = U^\top V$ where $U \in \mathbb{R}^{(m+n) \times m}$, $V \in \mathbb{R}^{(m+n) \times n}$ have orthonormal columns

$$\min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1 \end{subarray} } \begin{subarray}{c} u^\top A v = & \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1 \end{subarray} } \begin{subarray}{c} u^\top U^\top V v = & \min_{\begin{subarray}{c} \widetilde{u} \in UP, \ \|\widetilde{u}\| = 1, \\ \widetilde{v} \in VQ, \ \|\widetilde{v}\| = 1 \end{subarray} } \begin{subarray}{c} \widetilde{u}^\top \widetilde{v} \\ \widetilde{v} \in VQ, \ \|\widetilde{v}\| = 1 \end{subarray}$$

The minimum conical singular value problem reduces polynomially

Theorem (G., Glineur 2013)

Let $B \in \{0,1\}^{m imes n}$ be the bi-adjacency matrix of a bipartite graph with $d \geq \max\{m,n\}$

$$\min_{x,y>0} \|B - d(1-B) - xy^{\top}\|_F^2 \qquad \text{(Nonnegative Rank 1)}$$

is solved by binary vectors x, y that identify the Maximum Edge Biclique

Theorem (Seeger, S. 2023)

$$\sigma_0 = (u^*)^\top A v^* = \min_{u = 0} u^\top A v : ||u|| = ||v|| = 1$$
 (Pareto SV)

f A has at least one negative entry then $(x^*, y^*) = \sqrt{-\sigma_0}(u^*, v^*)$ is optimal for

$$\min_{\substack{y > 0 \\ y > 0}} \| -A - xy^{\top} \|_F^2$$
 (Nonnegative Rank 1)

Lemma (B., G., S. 2024)

Any matrix $A \in \mathbb{R}^{m \times n}$ of spectral norm 1 and $m \ge n$ can be decomposed as $A = U^{\top}V$ where $U \in \mathbb{R}^{(m+n) \times m}$, $V \in \mathbb{R}^{(m+n) \times n}$ have orthonormal columns

$$\min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1 \end{subarray} } u^\top A v = \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1 \end{subarray} } u^\top U^\top V v = \min_{\begin{subarray}{c} \widetilde{u} \in UP, \ \|\widetilde{u}\| = 1, \\ \widetilde{v} \in VQ, \ \|\widetilde{v}\| = 1 \end{subarray} } \widetilde{u}^\top \widetilde{v}$$

The minimum conical singular value problem reduces polynomially

to the maximum angle between cones problem

Theorem (G., Glineur 2013)

Let $B \in \{0,1\}^{m imes n}$ be the bi-adjacency matrix of a bipartite graph with $d \geq \max\{m,n\}$

$$\min_{\substack{y \ge 0 \\ y \ge 0}} \|B - d(1 - B) - xy^\top\|_F^2 \qquad \text{(Nonnegative Rank 1)}$$

is solved by binary vectors x, y that identify the Maximum Edge Biclique

Theorem (Seeger, S. 2023)

$$\sigma_0 = (u^*)^\top A v^* = \min_{u \neq 0} u^\top A v : ||u|| = ||v|| = 1$$
 (Pareto SV)

f A has at least one negative entry then $(x^*, v^*) = \sqrt{-\sigma_0}(u^*, v^*)$ is optimal for

$$\min_{x \to 0} \| -A - xy^\top \|_F^2$$
 (Nonnegative Rank 1)

Lemma (B., G., S. 2024)

Any matrix $A \in \mathbb{R}^{m \times n}$ of spectral norm 1 and $m \ge n$ can be decomposed as $A = U^\top V$ where $U \in \mathbb{R}^{(m+n) \times m}$, $V \in \mathbb{R}^{(m+n) \times n}$ have orthonormal columns

$$\min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1 \end{subarray} } \begin{subarray}{c} u^\top Av = & \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1 \end{subarray} } \begin{subarray}{c} u^\top Vv = & \min_{\begin{subarray}{c} \widetilde{u} \in UP, \ \|\widetilde{u}\| = 1, \\ \widetilde{v} \in VQ, \ \|\widetilde{v}\| = 1 \end{subarray} } \begin{subarray}{c} \widetilde{u}^\top \widetilde{v} \\ v \in Q, \ \|v\| = 1 \end{subarray}$$

The minimum conical singular value problem reduces polynomially

to the maximum angle between cones problem

Theorem (G., Glineur 2013)

Let $B \in \{0,1\}^{m \times n}$ be the bi-adjacency matrix of a bipartite graph with $d \ge \max\{m,n\}$.

$$\min_{x,y>0} \|B - d(1-B) - xy^{\top}\|_F^2 \qquad \text{(Nonnegative Rank 1)}$$

is solved by binary vectors x, y that identify the Maximum Edge Biclique

$$\sigma_0 = (u^*)^\top A v^* = \min_{u,v > 0} u^\top A v : ||u|| = ||v|| = 1$$
 (Pareto SV)

If A has at least one negative entry then $(x^*, y^*) = \sqrt{-\sigma_0}(u^*, v^*)$ is optimal for

$$\min_{\substack{x > 0 \\ y > 0}} \| -A - xy^{\top} \|_F^2 \qquad \text{(Nonnegative Rank 1)}$$

Lemma (B., G., S. 2024)

Any matrix $A \in \mathbb{R}^{m \times n}$ of spectral norm 1 and $m \ge n$ can be decomposed as $A = U^\top V$ where $U \in \mathbb{R}^{(m+n) \times m}$, $V \in \mathbb{R}^{(m+n) \times n}$ have orthonormal columns

$$\min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1 \end{subarray} } \begin{subarray}{c} u^\top Av = & \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1 \end{subarray} } \begin{subarray}{c} u^\top V = & \min_{\begin{subarray}{c} \widetilde{u} \in UP, \ \|\widetilde{u}\| = 1, \\ \widetilde{v} \in VQ, \ \|\widetilde{v}\| = 1 \end{subarray} } \begin{subarray}{c} \widetilde{u}^\top \widetilde{v} \\ \widetilde{v} \in VQ, \ \|\widetilde{v}\| = 1 \end{subarray}$$

The minimum conical singular value problem reduces polynomially

to the maximum angle between cones problem

Theorem (G., Glineur 2013)

Let $B \in \{0,1\}^{m \times n}$ be the bi-adjacency matrix of a bipartite graph with $d \geq \max\{m,n\}$.

$$\min_{x,y>0} \|B - d(1-B) - xy^{\top}\|_F^2 \qquad \text{(Nonnegative Rank 1)}$$

is solved by binary vectors x, y that identify the Maximum Edge Biclique

Theorem (Seeger, S. 2023)

$$\sigma_0 = (u^*)^\top A v^* = \min_{u,v \ge 0} u^\top A v : ||u|| = ||v|| = 1$$
 (Pareto SV)

If A has at least one negative entry then $(x^*, y^*) = \sqrt{-\sigma_0}(u^*, v^*)$ is optimal for

$$\min_{x,y>0} \| -A - xy^\top \|_F^2 \qquad \text{(Nonnegative Rank 1)}$$

Theorem (Peeters 2003)

The Maximal Edge Biclique problem is NP-hard

Maximal Edge Biclique

Maximum Number of Edges in a Bipartite Connected Subgraph

Theorem (Peeters 2003)

The Maximal Edge Biclique problem is NP-hard

Maximal Edge Biclique

Maximum Number of Edges in a Bipartite Connected Subgraph

NP-hard

Nonnegative Rank 1

$$\min_{x,y \geq 0} \|M - xy^\top\|$$

Theorem (Peeters 2003)

The Maximal Edge Biclique problem is NP-hard

Maximal Edge Biclique

Maximum Number of Edges in a Bipartite Connected Subgraph

NP-hard

Nonnegative Rank 1

$$\min_{x,y \geq 0} \|M - xy^\top\|$$

NP-hard

Pareto Singular Values

 $\min_{\substack{u \ge 0, \ \|u\| = 1, \\ v > 0, \ \|v\| = 1,}} u^{\top} A v$

Theorem (Peeters 2003)

The Maximal Edge Biclique problem is NP-hard

Maximal Edge Biclique

Maximum Number of Edges in a Bipartite Connected Subgraph

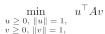
NP-hard

Nonnegative Rank 1

 $\min_{x,y \geq 0} \|M - xy^\top\|$

NP-hard

Pareto Singular Values



NP-hard

Conic Singular Values

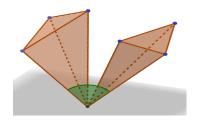
$$\min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} u^{\top} A v$$

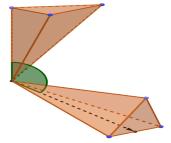
NP-hard

Conic Angles

$$\min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} \ u^\top v$$

$$\min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} u^\top v \qquad P, Q \subseteq \mathbb{R}^n \ \ \text{non trivial (polyhedral) cones}$$

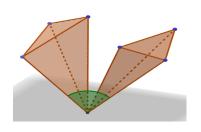


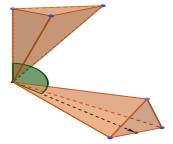


$$\label{eq:polymer} \begin{array}{ll} \min & u^\top v & P, Q \subseteq \mathbb{R}^n \ \ \text{non trivial (polyhedral) cones} \\ u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{array}$$

"Simple" Case:

$$\min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} u^\top v \geq 0 \implies u, v \text{ are vertices of } P, Q$$





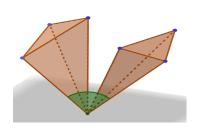
$$\min_{\begin{subarray}{c} u\in P,\ \|u\|=1,\\ v\in Q,\ \|v\|=1,\end{subarray}} u^\top v \qquad P,Q\subseteq \mathbb{R}^n \ \ \text{non trivial (polyhedral) cones}$$

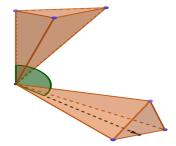
"Simple" Case:

If one of u, v in the antipodal pair is a vertex then the problem is **Polynomial** in n and the number of generators of P, Q

$$\min_{v \in Q, \, \|v\|=1} u^\top v = -\max_{v \in -Q, \, \|v\|=1} u^\top v \implies v = -\frac{Proj(u, -Q)}{\|Proj(u, -Q)\|}$$

$$Proj(u, -Q) \equiv \min_{y \ge 0} \|u - (-H)y\| \qquad \langle H \rangle = Q, \text{ NNLS, convex}$$





$$\min_{\begin{subarray}{c} u\in P,\ \|u\|=1,\\ v\in Q,\ \|v\|=1,\end{subarray}} u^\top v \qquad P,Q\subseteq \mathbb{R}^n \ \ \text{non trivial (polyhedral) cones}$$

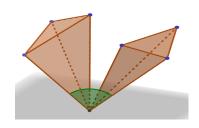
if $(u^*)^\top v^* < 0$, when is it that one among u, v is a vertex?

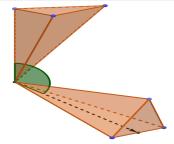
Theorem (B., G., S. 2024)

Let (u, v) be a stationary point and let $u \in int(F_u)$, $v \in int(F_v)$ where F_u , F_v are faces of P, Q. If $dim(F_u) + dim(F_v) > n$ and $v \neq \pm u$, then (u, v) is a saddle point

Corollary (B., G., S. 2024)

If (u, v) is a local minimum in dimension $n \le 3$ with $u \ne -v$, then at least one among u, v is a vertex





Algorithms

$$\lambda^* = \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} \begin{subarray}{c} u^\top A v = \min_{\begin{subarray}{c} x \ge 0, \ \|Gx\| = 1, \\ y \ge 0, \ \|Hy\| = 1, \end{subarray}} \begin{subarray}{c} x^\top G^\top A H y \\ y \ge 0, \ \|Hy\| = 1, \end{subarray}$$

Idea: If we know the sets \mathcal{I} , \mathcal{J} of indices for which $x_i^*, y_j^* > 0$, called **Active Sets**, then a direct gradient computation solves the problem

KKT Conditions

$$\begin{cases} 0 \le x^* \perp G^\top A H y^* - \lambda^* G^\top G x^* \ge 0 \\ 0 \le y^* \perp H^\top A^\top G x^* - \lambda^* H^\top H y^* \ge 0 \\ \|Gx^*\| = \|Hy^*\| = 1 \end{cases} \implies \begin{cases} 0 < \overline{x}, \quad \overline{G}^\top A \overline{H} \overline{y} - \lambda^* \overline{G}^\top \overline{G} \overline{x} = 0 \\ 0 < \overline{y}, \quad \overline{H}^\top A^\top \overline{G} \overline{x} - \lambda^* \overline{H}^\top \overline{H} \overline{y} = 0 \\ \overline{x} := x_{\mathcal{I}}^*, \overline{y} := y_{\mathcal{J}}^*, \overline{G} := G_{:,\mathcal{I}}, \overline{H} := H_{:,\mathcal{J}} \end{cases}$$

Theorem (B., G., S. 2024)

For the optimal solution $(u^*, v^*) = (Gx^*, Hy^*) = (\overline{Gx}, \overline{Hy})$ and $\lambda^* = (u^*)^{\top} A v^*$

$$M^* := \begin{pmatrix} 0 & \overline{H}^\dagger A^\top \overline{G} \\ \overline{G}^\dagger A \overline{H} & 0 \end{pmatrix} \implies M^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix} = \lambda^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix}$$

where λ^* is the least eigenvalue of M^* (from 2° order KKT)

$$\lambda^* = \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} \begin{subarray}{c} u^\top A v = \min_{\begin{subarray}{c} x \ge 0, \ \|Gx\| = 1, \\ y \ge 0, \ \|Hy\| = 1, \end{subarray}} \begin{subarray}{c} x^\top G^\top A H y \\ y \ge 0, \ \|Hy\| = 1, \end{subarray}$$

Idea: If we know the sets \mathcal{I} , \mathcal{J} of indices for which $x_i^*, y_j^* > 0$, called **Active Sets**, then a direct gradient computation solves the problem

KKT Conditions

$$\begin{cases} 0 \le x^* \perp G^\top A H y^* - \lambda^* G^\top G x^* \ge 0 \\ 0 \le y^* \perp H^\top A^\top G x^* - \lambda^* H^\top H y^* \ge 0 \\ \|G x^*\| = \|H y^*\| = 1 \end{cases} \implies \begin{cases} 0 < \overline{x}, \quad \overline{G}^\top A \overline{H} \overline{y} - \lambda^* \overline{G}^\top \overline{G} \overline{x} = 0 \\ 0 < \overline{y}, \quad \overline{H}^\top A^\top \overline{G} \overline{x} - \lambda^* \overline{H}^\top \overline{H} \overline{y} = 0 \\ \overline{x} := x_{\mathcal{I}}^*, \overline{y} := y_{\mathcal{J}}^*, \overline{G} := G_{:,\mathcal{I}}, \overline{H} := H_{:,\mathcal{J}} \end{cases}$$

Theorem (B., G., S. 2024)

For the optimal solution $(u^*, v^*) = (Gx^*, Hy^*) = (\overline{Gx}, \overline{Hy})$ and $\lambda^* = (u^*)^\top A v^*$

$$M^* := \begin{pmatrix} 0 & \overline{H}^\dagger A^\top \overline{G} \\ \overline{G}^\dagger A \overline{H} & 0 \end{pmatrix} \implies M^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix} = \lambda^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix}$$

where λ^* is the least eigenvalue of M^* (from 2° order KKT

$$\lambda^* = \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} \begin{subarray}{c} u^\top Av = \min_{\begin{subarray}{c} x \ge 0, \ \|Gx\| = 1, \\ y \ge 0, \ \|Hy\| = 1, \end{subarray}} \begin{subarray}{c} x^\top G^\top A H y \\ y \ge 0, \ \|Hy\| = 1, \end{subarray}$$

Idea: If we know the sets \mathcal{I} , \mathcal{J} of indices for which $x_i^*, y_j^* > 0$, called **Active Sets**, then a direct gradient computation solves the problem

KKT Conditions:

$$\begin{cases} 0 \leq x^* \perp G^\top A H y^* - \lambda^* G^\top G x^* \geq 0 \\ 0 \leq y^* \perp H^\top A^\top G x^* - \lambda^* H^\top H y^* \geq 0 \\ \|Gx^*\| = \|Hy^*\| = 1 \end{cases} \implies \begin{cases} 0 < \overline{x}, \quad \overline{G}^\top A \overline{H} \overline{y} - \lambda^* \overline{G}^\top \overline{G} \overline{x} = 0 \\ 0 < \overline{y}, \quad \overline{H}^\top A^\top \overline{G} \overline{x} - \lambda^* \overline{H}^\top \overline{H} \overline{y} = 0 \\ \overline{x} := x_{\mathcal{I}}^*, \overline{y} := y_{\mathcal{J}}^*, \overline{G} := G_{\mathbb{R}, \mathcal{I}}, \overline{H} := H_{\mathbb{R}, \mathcal{I}} \end{cases}$$

Theorem (B., G., S. 2024)

For the optimal solution $(u^*, v^*) = (Gx^*, Hy^*) = (\overline{Gx}, \overline{Hy})$ and $\lambda^* = (u^*)^{\top} A v^*$

$$M^* := \begin{pmatrix} 0 & \overline{H}^\dagger A^\top \overline{G} \\ \overline{G}^\dagger A \overline{H} & 0 \end{pmatrix} \implies M^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix} = \lambda^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix}$$

where λ^* is the least eigenvalue of M^* (from 2° order KKT)

$$\lambda^* = \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} \begin{subarray}{c} u^\top A v = \min_{\begin{subarray}{c} x \ge 0, \ \|Gx\| = 1, \\ y \ge 0, \ \|Hy\| = 1, \end{subarray}} \begin{subarray}{c} x^\top G^\top A H y \\ y \ge 0, \ \|Hy\| = 1, \end{subarray}$$

Idea: If we know the sets \mathcal{I} , \mathcal{J} of indices for which $x_i^*, y_j^* > 0$, called **Active Sets**, then a direct gradient computation solves the problem

KKT Conditions:

$$\begin{cases} 0 \leq x^* \perp G^\top A H y^* - \lambda^* G^\top G x^* \geq 0 \\ 0 \leq y^* \perp H^\top A^\top G x^* - \lambda^* H^\top H y^* \geq 0 \\ \|G x^*\| = \|H y^*\| = 1 \end{cases} \implies \begin{cases} 0 < \overline{x}, \quad \overline{G}^\top A \overline{H} \overline{y} - \lambda^* \overline{G}^\top \overline{G} \overline{x} = 0 \\ 0 < \overline{y}, \quad \overline{H}^\top A^\top \overline{G} \overline{x} - \lambda^* \overline{H}^\top \overline{H} \overline{y} = 0 \\ \overline{x} := x_{\mathcal{I}}^*, \overline{y} := y_{\mathcal{J}}^*, \overline{G} := G_{:,\mathcal{I}}, \overline{H} := H_{:,\mathcal{J}} \end{cases}$$

Theorem (B., G., S. 2024)

For the optimal solution $(u^*, v^*) = (Gx^*, Hy^*) = (\overline{G}\overline{x}, \overline{H}\overline{y})$ and $\lambda^* = (u^*)^\top A v^*$

$$M^* := \begin{pmatrix} 0 & \overline{H}^\dagger A^\top \overline{G} \\ \overline{G}^\dagger A \overline{H} & 0 \end{pmatrix} \implies M^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix} = \lambda^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix}$$

where λ^* is the least eigenvalue of M^* (from 2° order KKT)

$$\lambda^* = \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} \begin{subarray}{c} u^\top A v = \min_{\begin{subarray}{c} x \ge 0, \ \|Gx\| = 1, \\ y \ge 0, \ \|Hy\| = 1, \end{subarray}} \begin{subarray}{c} x^\top G^\top A H y \\ y \ge 0, \ \|Hy\| = 1, \end{subarray}$$

Idea: If we know the sets \mathcal{I} , \mathcal{J} of indices for which $x_i^*, y_j^* > 0$, called **Active Sets**, then a direct gradient computation solves the problem

KKT Conditions:

$$\begin{cases} 0 \leq x^* \perp G^\top A H y^* - \lambda^* G^\top G x^* \geq 0 \\ 0 \leq y^* \perp H^\top A^\top G x^* - \lambda^* H^\top H y^* \geq 0 \\ \|Gx^*\| = \|Hy^*\| = 1 \end{cases} \implies \begin{cases} 0 < \overline{x}, \quad \overline{G}^\dagger A \overline{H} \overline{y} - \lambda^* \overline{x} = 0 \\ 0 < \overline{y}, \quad \overline{H}^\dagger A^\top \overline{G} \overline{x} - \lambda^* \overline{y} = 0 \\ \overline{x} := x_{\mathcal{I}}^*, \overline{y} := y_{\mathcal{J}}^*, \overline{G} := G_{:,\mathcal{I}}, \overline{H} := H_{:,\mathcal{J}} \end{cases}$$

Theorem (B., G., S. 2024)

For the optimal solution $(u^*, v^*) = (Gx^*, Hy^*) = (\overline{G}\overline{x}, \overline{H}\overline{y})$ and $\lambda^* = (u^*)^\top A v^*$

$$M^* := \begin{pmatrix} 0 & \overline{H}^{\dagger} A^{\top} \overline{G} \\ \overline{G}^{\dagger} A \overline{H} & 0 \end{pmatrix} \implies M^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix} = \lambda^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix}$$

where λ^* is the least eigenvalue of M^* (from 2° order KKT)

$$\lambda^* = \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} \begin{subarray}{c} u^\top A v = \min_{\begin{subarray}{c} x \geq 0, \ \|Gx\| = 1, \\ y \geq 0, \ \|Hy\| = 1, \end{subarray}} \begin{subarray}{c} x^\top G^\top A H y \\ y \geq 0, \ \|Hy\| = 1, \end{subarray}$$

Idea: If we know the sets \mathcal{I} , \mathcal{J} of indices for which $x_i^*, y_j^* > 0$, called **Active Sets**, then a direct gradient computation solves the problem

KKT Conditions:

$$\begin{cases} 0 \leq x^* \perp G^\top A H y^* - \lambda^* G^\top G x^* \geq 0 \\ 0 \leq y^* \perp H^\top A^\top G x^* - \lambda^* H^\top H y^* \geq 0 \\ \|Gx^*\| = \|Hy^*\| = 1 \end{cases} \implies \begin{cases} 0 < \overline{x}, \quad \overline{G}^\dagger A \overline{H} \overline{y} - \lambda^* \overline{x} = 0 \\ 0 < \overline{y}, \quad \overline{H}^\dagger A^\top \overline{G} \overline{x} - \lambda^* \overline{y} = 0 \\ \overline{x} := x_{\mathcal{I}}^*, \overline{y} := y_{\mathcal{J}}^*, \overline{G} := G_{:,\mathcal{I}}, \overline{H} := H_{:,\mathcal{J}} \end{cases}$$

Theorem (B., G., S. 2024)

For the optimal solution $(u^*, v^*) = (Gx^*, Hy^*) = (\overline{G}\overline{x}, \overline{H}\overline{y})$ and $\lambda^* = (u^*)^\top A v^*$

$$M^* := \begin{pmatrix} 0 & \overline{H}^{\dagger} A^{\top} \overline{G} \\ \overline{G}^{\dagger} A \overline{H} & 0 \end{pmatrix} \implies M^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix} = \lambda^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix}$$

where λ^* is the least eigenvalue of M^* (from 2° order KKT)

$$\lambda^* = \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} \begin{subarray}{c} u^\top A v = \min_{\begin{subarray}{c} x \ge 0, \ \|Gx\| = 1, \\ y \ge 0, \ \|Hy\| = 1, \end{subarray}} \begin{subarray}{c} x^\top G^\top A H y \\ y \ge 0, \ \|Hy\| = 1, \end{subarray}$$

Idea: If we know the sets \mathcal{I} , \mathcal{J} of indices for which $x_i^*, y_j^* > 0$, called **Active Sets**, then a direct gradient computation solves the problem

The Active Set algorithm cycles over all subsets of indices \mathcal{I}, \mathcal{J} and tests if the least eigenvalue of M has a nonnegative eigenvector, giving us upper bounds on λ^* , and the exact solution when \mathcal{I}, \mathcal{J} coincide with the active sets of (x^*, y^*)

Optimizations: $2 < |\mathcal{I}| + |\mathcal{J}| \le m + n - \text{Null}(A^{\top}A - ||A||^2I)$ and \overline{G} , \overline{H} must be full rank

Theorem (B., G., S. 2024)

For the optimal solution $(u^*, v^*) = (Gx^*, Hy^*) = (\overline{G}\overline{x}, \overline{H}\overline{y})$ and $\lambda^* = (u^*)^{\top} A v^*$

$$M^* := \begin{pmatrix} 0 & \overline{H}^{\dagger} A^{\top} \overline{G} \\ \overline{G}^{\dagger} A \overline{H} & 0 \end{pmatrix} \implies M^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix} = \lambda^* \begin{pmatrix} \overline{y} \\ \overline{x} \end{pmatrix}$$

where λ^* is the least eigenvalue of M^* (from 2° order KKT)

Input:
$$A \in \mathbb{R}^{m \times n}$$
, $G \in \mathbb{R}^{m \times p}$, $H \in \mathbb{R}^{n \times q}$, $P = \langle G \rangle$, $Q = \langle H \rangle$

Output: $\lambda = \min u^{\top} A v$ such that ||u|| = ||v|| = 1, $u \in P$, $v \in Q$

1:
$$\lambda = g_i^{\top} A h_j = \min_{k,\ell} (G^{\top} A H)_{k,\ell}, \ u = g_i, \ v = h_j, \ r = \text{Null}(A^{\top} A - ||A||^2 I_n)$$

2: $\mathscr{I} := \{ (\mathcal{I}, \mathcal{J}) : 2 < |\mathcal{I}| + |\mathcal{J}| \le m + n - r, \ \overline{G} := G_{:,\mathcal{I}} \ \text{and} \ \overline{H} := H_{:,\mathcal{J}} \ \text{full column rank} \}$

3: **for**
$$(\mathcal{I}, \mathcal{J}) \in \mathscr{I}$$
, **do**
4: $A_{\vee} = \overline{G}^{\dagger} A^{\top} \overline{H} A_{\vee} = \overline{H}^{\dagger} A \overline{G}$

5:
$$A_{\lambda} = A_{\nu}A_{\kappa}$$
, $\widetilde{A}_{\lambda} = A_{\kappa}$ (or $A_{\lambda} = A_{\kappa}A_{\nu}$, $\widetilde{A}_{\lambda} = A_{\nu}$ if $|\mathcal{I}| > |\mathcal{J}|$)

6: **if**
$$\rho(A_{\lambda}) \leq \lambda^2$$
 then Skip to the next $(\mathcal{I}, \mathcal{J}) \in \mathscr{I}$

7:
$$U$$
 right eigenspace of $\rho(A_{\lambda})$ in A_{λ} , $\mu = -\sqrt{\rho(A_{\lambda})}$, $W = \begin{pmatrix} \widetilde{A}_{\lambda}U/\mu \\ U \end{pmatrix}$

8: Compute the reduced QR of
$$W = VR$$

9: if
$$(VV^{\top} - I)z = 0$$
, $z \ge 0$, $e^{\top}z = 1$ admits a solution then

10:
$$\lambda = \mu$$
, $z = [y^\top x^\top]^\top$ (or $z = [x^\top y^\top]^\top$ if $|\mathcal{I}| > |\mathcal{J}|$)
11: $u = \overline{G}x/\|\overline{G}x\|$, $v = \overline{H}v/\|\overline{H}v\|$

11:
$$u = Gx/\|Gx\|, v = Hy/\|Hy\|$$

12: **end if**

$$\lambda^* = \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} \ u^\top A v$$

Idea: We have seen that if we know u^* or v^* , then finding the other is equivalent to solve an easy convex problem

Alternate Projection: starting from an initial feasible point (u_0, v_0) and k = 0

- $u_{k+1} = \arg\min_{x \in P} x^{\top} A v_k$ such that $||x||_2 = 1$
- $v_{k+1} = \arg\min_{y \in Q} u_{k+1}^{\top} Ay$ such that $||y||_2 = 1$
- k = k + 1

To accelerate the convergence, we add an Extrapolation step after each update

- $u_{k+1} = u_{k+1} + \beta(u_{k+1} u_k)$
- $v_{k+1} = v_{k+1} + \beta(v_{k+1} v_k)$
- If the objective increases then we decrease β and go back to (u_k, v_k) , otherwise we increase β

$$\lambda^* = \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} u^\top A v$$

Idea: We have seen that if we know u^* or v^* , then finding the other is equivalent to solve an easy convex problem

Alternate Projection: starting from an initial feasible point (u_0, v_0) and k = 0

- $u_{k+1} = \arg\min_{x \in P} x^{\top} A v_k$ such that $||x||_2 = 1$
- $v_{k+1} = \arg\min_{y \in Q} u_{k+1}^{\top} Ay$ such that $||y||_2 = 1$
- k = k + 1

To accelerate the convergence, we add an Extrapolation step after each update

- $u_{k+1} = u_{k+1} + \beta(u_{k+1} u_k)$
- $v_{k+1} = v_{k+1} + \beta(v_{k+1} v_k)$
- If the objective increases then we decrease β and go back to (u_k, v_k) , otherwise we increase β

$$\lambda^* = \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} u^\top A v$$

Idea: We have seen that if we know u^* or v^* , then finding the other is equivalent to solve an easy convex problem

Alternate Projection: starting from an initial feasible point (u_0, v_0) and k = 0

- $u_{k+1} = \arg\min_{x \in P} x^{\top} A v_k$ such that $||x||_2 = 1$
- ullet $v_{k+1} = \operatorname{arg\,min}_{y \in \mathcal{Q}} u_{k+1}^{\top} A y$ such that $\|y\|_2 = 1$
- k = k + 1

To accelerate the convergence, we add an Extrapolation step after each update

- $u_{k+1} = u_{k+1} + \beta(u_{k+1} u_k)$
- $v_{k+1} = v_{k+1} + \beta(v_{k+1} v_k)$
- If the objective increases then we decrease β and go back to (u_k, v_k) , otherwise we increase β

$$\lambda^* = \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} \ u^\top A v$$

Idea: We have seen that if we know u^* or v^* , then finding the other is equivalent to solve an easy convex problem

Alternate Projection: starting from an initial feasible point (u_0, v_0) and k = 0

- $u_{k+1} = \arg\min_{x \in P} x^{\top} A v_k$ such that $||x||_2 = 1$
- $v_{k+1} = \arg\min_{y \in Q} u_{k+1}^{\top} Ay$ such that $||y||_2 = 1$
- k = k + 1

To accelerate the convergence, we add an Extrapolation step after each update

- $u_{k+1} = u_{k+1} + \beta(u_{k+1} u_k)$
- $v_{k+1} = v_{k+1} + \beta(v_{k+1} v_k)$
- If the objective increases then we decrease β and go back to (u_k, v_k) , otherwise we increase β

$$\lambda^* = \min_{\begin{subarray}{c} u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1, \end{subarray}} u^\top A v$$

Idea: We have seen that if we know u^* or v^* , then finding the other is equivalent to solve an easy convex problem

Alternate Projection: starting from an initial feasible point (u_0, v_0) and k = 0

- $u_{k+1} = \arg\min_{x \in P} x^{\top} A v_k$ such that $||x||_2 = 1$
- $v_{k+1} = \arg\min_{y \in Q} u_{k+1}^{\top} Ay$ such that $||y||_2 = 1$
- k = k + 1

To accelerate the convergence, we add an Extrapolation step after each update

- $u_{k+1} = u_{k+1} + \beta(u_{k+1} u_k)$
- $v_{k+1} = v_{k+1} + \beta(v_{k+1} v_k)$
- If the objective increases then we decrease β and go back to (u_k, v_k) , otherwise we increase β

Input: $A \in \mathbb{R}^{m \times n}$, cones $P \subseteq \mathbb{R}^m$ and $Q \subseteq \mathbb{R}^n$

```
Output: An approximate solution to \min_{u \in P, v \in Q} u^{\top} A v such that ||u||_2 = ||v||_2 = 1.
```

- 1: u = 0, v = 0, $v_e = v_0$, k = 1.
- 2: while $k \le K$ and $(\|u u_p\|_2 \ge \delta \text{ or } \|v v_p\|_2 \ge \delta)$ do
- 3: $u_p = u$. % Keep previous iterate in memory
- 4: $u = \arg\min_{x \in P} x^{\top} A v_e$ such that $||x||_2 = 1$.
- 5: $u_e = u + \beta(u u_p)$. % Extrapolated point
- 6: $v_p = v$. % Keep previous iterate in memory
- 7: $v = \arg\min_{y \in Q} u_e^\top Ay$ such that $||y||_2 = 1$.
- 8: $v_e = v + \beta(v v_p)$. % Extrapolated point
- 9: $e_k \leftarrow u^{\top} A v$.
- 10: **if** $k \ge 2$ and $e_k > e_{k-1}$ **then**
- 11: $u = u_p, \ v = v_p, \ \beta = \frac{\beta}{\eta}.$
- 12: else
- 13: $\beta \leftarrow \min(1, \gamma\beta)$.
- 14: end if
- 15: $k \leftarrow k + 1$. 16: **end while**

$$\lambda^* = \min_{\substack{u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1,}} u^\top A v = \min_{\substack{u \in P, \ u \neq 0, \\ v \in Q, \ v \neq 0,}} \frac{u^\top A v}{\|u\| \|v\|} = \min_{\substack{e^\top x = 1, \ x \geq 0, \\ e^\top y = 1, \ y \geq 0,}} \frac{x^\top G^\top A H y}{\|Gx\| \|Hy\|}$$

Idea: If the minimum of $f_{\delta}(x, y) := x^{\top} G^{\top} A H y - \delta \|Gx\| \|Hy\|$ over $(x, y) \in \Delta_{p} \times \Delta_{q}$ is $\mu < 0$ then we get a decrease in the objective function

$$\frac{\mathbf{x}^{\top} \mathbf{G}^{\top} \mathbf{A} \mathbf{H} \mathbf{y}}{\|\mathbf{G} \mathbf{x}\| \|\mathbf{H} \mathbf{y}\|} = \delta + \frac{\mu}{\|\mathbf{G} \mathbf{x}\| \|\mathbf{H} \mathbf{y}\|} < \delta$$

Partial Linearization: starting from an initial feasible point (x_0, y_0) and k = 0,

- $\delta = \frac{\mathbf{x}_k^{\mathsf{T}} \mathbf{G}^{\mathsf{T}} \mathbf{A} \mathbf{H} \mathbf{y}_k}{\|\mathbf{G} \mathbf{x}_k\| \|\mathbf{H} \mathbf{y}_k\|}$
- Linearize wrt x the function $f_{\delta}(x, y_k)$, penalize it with $||x x_k||^2$ and minimize it to obtain x_{k+1}
- Linearize wrt y the function $f_{\delta}(x_{k+1}, y)$, penalize it with $||y y_k||^2$ and minimize it to obtain y_{k+1}
- k = k + 1

$$\lambda^* = \min_{\substack{u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1,}} u^\top A v = \min_{\substack{u \in P, \ u \neq 0, \\ v \in Q, \ v \neq 0,}} \frac{u^\top A v}{\|u\| \|v\|} = \min_{\substack{e^\top x = 1, \ x \geq 0, \\ e^\top y = 1, \ y \geq 0,}} \frac{x^\top G^\top A H y}{\|Gx\| \|Hy\|}$$

Idea: If the minimum of $f_{\delta}(x,y) := x^{\top} G^{\top} A H y - \delta \|Gx\| \|Hy\|$ over $(x,y) \in \Delta_{p} \times \Delta_{q}$ is $\mu < 0$ then we get a decrease in the objective function

$$\frac{\mathbf{x}^{\top}\mathbf{G}^{\top}\mathbf{A}\mathbf{H}\mathbf{y}}{\|\mathbf{G}\mathbf{x}\|\|\mathbf{H}\mathbf{y}\|} = \delta + \frac{\mu}{\|\mathbf{G}\mathbf{x}\|\|\mathbf{H}\mathbf{y}\|} < \delta$$

Partial Linearization: starting from an initial feasible point (x_0, y_0) and k = 0,

- $\delta = \frac{\mathbf{x}_k^{\mathsf{T}} \mathbf{G}^{\mathsf{T}} \mathbf{A} \mathbf{H} \mathbf{y}_k}{\|\mathbf{G} \mathbf{x}_k\| \|\mathbf{H} \mathbf{y}_k\|}$
- Linearize wrt x the function $f_{\delta}(x, y_k)$, penalize it with $||x x_k||^2$ and minimize it to obtain x_{k+1}
- Linearize wrt y the function $f_{\delta}(x_{k+1}, y)$, penalize it with $||y y_k||^2$ and minimize it to obtain y_{k+1}
- k = k + 1

$$\lambda^* = \min_{\substack{u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1,}} u^\top A v = \min_{\substack{u \in P, \ u \neq 0, \\ v \in Q, \ v \neq 0,}} \frac{u^\top A v}{\|u\| \|v\|} = \min_{\substack{e^\top x = 1, \ x \geq 0, \\ e^\top y = 1, \ y \geq 0,}} \frac{x^\top G^\top A H y}{\|Gx\| \|Hy\|}$$

Idea: If the minimum of $f_{\delta}(x,y) := x^{\top} G^{\top} A H y - \delta \|Gx\| \|Hy\|$ over $(x,y) \in \Delta_p \times \Delta_q$ is $\mu < 0$ then we get a decrease in the objective function

$$\frac{\mathbf{x}^{\top}\mathbf{G}^{\top}\mathbf{A}\mathbf{H}\mathbf{y}}{\|\mathbf{G}\mathbf{x}\|\|\mathbf{H}\mathbf{y}\|} = \delta + \frac{\mu}{\|\mathbf{G}\mathbf{x}\|\|\mathbf{H}\mathbf{y}\|} < \delta$$

Partial Linearization: starting from an initial feasible point (x_0, y_0) and k = 0,

- $\delta = \frac{\mathbf{x}_k^\top \mathbf{G}^\top \mathbf{A} \mathbf{H} \mathbf{y}_k}{\|\mathbf{G} \mathbf{x}_k\| \|\mathbf{H} \mathbf{y}_k\|}$
- Linearize wrt x the function $f_{\delta}(x, y_k)$, penalize it with $||x x_k||^2$ and minimize it to obtain x_{k+1}
- Linearize wrt y the function $f_{\delta}(x_{k+1}, y)$, penalize it with $||y y_k||^2$ and minimize it to obtain y_{k+1}
- k = k + 1

$$\lambda^* = \min_{\substack{u \in P, \ \|u\| = 1, \\ v \in Q, \ \|v\| = 1}} u^\top A v = \min_{\substack{u \in P, \ u \neq 0, \\ v \in Q, \ v \neq 0,}} \frac{u^\top A v}{\|u\| \|v\|} = \min_{\substack{e^\top x = 1, \ x \geq 0, \\ e^\top y = 1, \ y \geq 0,}} \frac{x^\top G^\top A H y}{\|Gx\| \|Hy\|}$$

Idea: If the minimum of $f_{\delta}(x,y) := x^{\top} G^{\top} A H y - \delta \|Gx\| \|Hy\|$ over $(x,y) \in \Delta_p \times \Delta_q$ is $\mu < 0$ then we get a decrease in the objective function

$$\frac{\mathbf{x}^{\top}\mathbf{G}^{\top}\mathbf{A}\mathbf{H}\mathbf{y}}{\|\mathbf{G}\mathbf{x}\|\|\mathbf{H}\mathbf{y}\|} = \delta + \frac{\mu}{\|\mathbf{G}\mathbf{x}\|\|\mathbf{H}\mathbf{y}\|} < \delta$$

Partial Linearization: starting from an initial feasible point (x_0, y_0) and k = 0,

- $\delta = \frac{\mathbf{x}_k^\top \mathbf{G}^\top \mathbf{A} \mathbf{H} \mathbf{y}_k}{\|\mathbf{G} \mathbf{x}_k\| \|\mathbf{H} \mathbf{y}_k\|}$
- Linearize wrt x the function $f_{\delta}(x, y_k)$, penalize it with $||x x_k||^2$ and minimize it to obtain x_{k+1}
- Linearize wrt y the function $f_{\delta}(x_{k+1}, y)$, penalize it with $||y y_k||^2$ and minimize it to obtain y_{k+1}
- k = k + 1

Output: An approximate solution to $\min_{u \in P, v \in Q} \langle u, Av \rangle$ such that ||u|| = ||v|| = 1

1: Set
$$\delta_k := rac{\langle \mathit{Gx}^k, \mathit{AHy}^k
angle}{\| \mathit{Gx}^k \| \| \mathit{Hy}^k \|}$$

2: Let $L_1^k(x) := \langle Gx, AHy^k - \delta_k || Gx^k ||^{-1} || Hy^k || Gx^k \rangle$ Compute a solution \tilde{x}^k to the convex program

Input: $A \in \mathbb{R}^{m \times n}$, cones $P \subseteq \mathbb{R}^m$ and $Q \subseteq \mathbb{R}^n$

$$\min L_1^k(x) + \frac{\mu_1}{2} ||x - x^k||^2$$
 such that $x \in \Delta_p$

3: Let $L_2^k(y) := \langle Hy, A^\top Gx^k - \delta_k \| Gx^k \| \| Hy^k \|^{-1} Hy^k \rangle$ Compute a solution \tilde{y}^k to the convex program

$$\min L_2^k(y) + \frac{\mu_2}{2} \|y - y^k\|^2$$
 such that $y \in \Delta_q$

4: Let $d_1^k := \tilde{x}^k - x^k$ and $d_2^k := \tilde{v}^k - v^k$ 5: If $(|L_1^k(d_1^k)| < \delta$ and $|L_2^k(d_2^k)| < \delta$) or k > K terminate

Otherwise, let $t_k := \beta \rho^{\ell_k}$, where ℓ_k is the smallest nonnegative integer ℓ such that

$$\Phi(x^{k} + t^{k}d_{1}^{k}, y^{k} + t^{k}d_{2}^{k}) \leq \Phi(x^{k}, y^{k}) + \alpha t_{k} \frac{L_{1}^{\kappa}(d_{1}^{\kappa}) + L_{2}^{\kappa}(d_{2}^{\kappa})}{\|Gx^{k}\| \|Hy^{k}\|}$$

Set $(x^{k+1}, y^{k+1}) := (x^k, y^k) + t_k(d_1^k, d_2^k)$ and k = k+1. Go to step 1

Experiments

An Example: Schur Cone

We test and compare the following algorithms on several problems:

- Brute Force Active Set
- Alternating projection with extrapolation
- Sequential Regularized Partial Linearization
- Gurobi (exact nonconvex quadratic solver based on McCormick relaxation)

The Schur Cone is generated by the matrix

$$H = \left(egin{array}{cccc} 1 & 0 & \dots & 0 \ -1 & 1 & \dots & 0 \ 0 & -1 & \dots & 0 \ dots & dots & dots \ 0 & 0 & \dots & 1 \ 0 & 0 & \dots & -1 \end{array}
ight) \in \mathbb{R}^{n imes n - 1} \qquad \langle H
angle \subseteq e^{-r}$$

One can prove that the maximum angle between the Schur cone Q and \mathbb{R}^n_+ is achieved by

$$y = e_n \in P$$
 $x = (aa...ab) \in Q$ $a = \sqrt{\frac{1}{n(n-1)}}$ $b = -\sqrt{1 - \frac{1}{n}} = x^{\top}y$

An Example: Schur Cone

We test and compare the following algorithms on several problems:

- Brute Force Active Set
- Alternating projection with extrapolation
- Sequential Regularized Partial Linearization
- Gurobi (exact nonconvex quadratic solver based on McCormick relaxation)

The **Schur Cone** is generated by the matrix

$$H = \left(egin{array}{cccc} 1 & 0 & \dots & 0 \\ -1 & 1 & \dots & 0 \\ 0 & -1 & \dots & 0 \\ dots & dots & dots \\ 0 & 0 & \dots & 1 \\ 0 & 0 & \dots & -1 \end{array}
ight) \in \mathbb{R}^{n \times n - 1} \qquad \langle H \rangle \subseteq e^{\perp}$$

One can prove that the maximum angle between the Schur cone Q and \mathbb{R}^n_+ is achieved by

$$y=e_n\in P$$
 $x=(aa\ldots ab)\in Q$ $a=\sqrt{rac{1}{n(n-1)}}$ $b=-\sqrt{1-rac{1}{n}}=x^ op y$

Schur Cone and Positive Orthant

Table 1: Numerical comparison for Gur and BFAS for different dimensions for the problem of finding the maximum angle between the Schur cone and \mathbb{R}^n_+ . The table reports the optimal objective functions values found in the timelimit (60 seconds) and the actual elapsed time. We also report the exact value for each problem.

n	5	10	20	50
exact	0.852416π	0.897584π	0.928217π	0.954833π
Gur	0.852416π	0.897584π	0.928218π	0.954833π
	0.1134 s	0.2016 s	20.1493 s	60* s
BFAS	0.852416π	$\textbf{0.897584}\pi$	0.750000π	0.750000π
	0.3310 s	48.3153 s	60* s	60* s

n	100	200	500
exact	0.968116π	0.977473π	0.985760π
Gur	0.968116π	0.977473π	0.985756π
	60* s	60* s	60* s
BFAS	0.750000π	0.750000π	0.750000π
	60* s	60* s	60* s

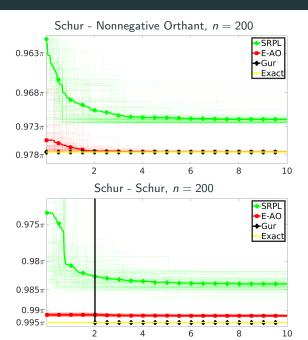
Schur Cone and Positive Orthant

Table 1: Numerical comparison for Gurobi and BFAS for different dimensions for the problem of finding the maximum angle between the Schur cone and itself. The table reports the optimal objective functions values found in the timelimit (60 seconds) and the actual elapsed time. We also report the exact value for each problem.

n	5	10	20	50
exact	0.800000π	0.900000π	0.950000π	0.980000π
Gur	0.800001π	0.900000π	0.950000π	0.980000π
	0.2508 s	60* s	60* s	60* s
BFAS	0.800000π	0.900000π	0.859157π	0.804087π
	0.3856 s	60* s	60* s	60* s

n	100	200	500
exact	0.990000π	0.995000π	0.998000π
Gur	0.936315π	0.994996π	0.998011π
	60* s	60* s	60* s
BFAS	0.750000π	0.750000π	0.750000π
	60* s	60* s	60* s

Schur Cone and Positive Orthant



Maximum Edge Biclique Problem

Recall that solving the Pareto singular value problem is equivalent to solve the maximum edge biclique problem.

Here we thus test all four algorithms on four bipartite graphs taken from a benchmark dataset¹. All graphs have been randomly generated with a fixed edge density, and then a biclique has been added to them. In particular,

- the first graph is a 100×100 graph with density 0.2 and planted biclique of size $50 \times 50 = 2500$,
- the second graph is a 300 \times 300 graph with density 0.3 and planted biclique of size 2 \times 55 = 110,
- the third graph is a 100×100 graph with density 0.71 and planted biclique of size $80 \times 80 = 6400$,
- the fourth graph is a 10000×300 graph with density 0.03 and planted biclique of size $22 \times 2 = 44$.

¹Shaham, E.: maximum biclique benchmark. https://github.com/shahamer/maximum-biclique-benchmark (2019)

Maximum Edge Biclique Problem

Table 1: Numerical comparison for Gurobi, BFAS, E-AO and SRPL for the problem of finding the maximum edge biclique in four different bipartite graphs. The table reports the maximum edgee biclique found in the timelimit (10 seconds) for Gurobi and BFAS. The reported number for E-AO and SRPL are instead the average value found at 10 seconds for 100 runs, and in parentheses the best value found throughout all 100 runs when it differs from the average one. Gurobi cannot be executed on the last graph due to its excessive size.

n	100 × 100	300 × 300	100×100	10000×300
Gur	2500	0	310	NA
BFAS	3	2	2	2
E-AO	66	114	87	12
SRPL	2500	114	6400	46(358)

Given $\langle A,B\rangle=Tr(A^{\top}B)$ an open question is the maximum angle between the cone of PSD matrices \mathcal{P}^n and the cone of nonnegative symmetric matrices \mathcal{N}^n for $n\geq 5$

Given $\langle A,B\rangle=Tr(A^{\top}B)$ an open question is the maximum angle between the cone of PSD matrices \mathcal{P}^n and the cone of nonnegative symmetric matrices \mathcal{N}^n for $n\geq 5$

$$n=2,3,4 \implies \gamma_n=\frac{3}{4}\pi \qquad \lim_{n\to\infty}\gamma_n\uparrow\pi$$

All antipodal couples (and the best known for n = 5) are circulant matrices

Given $\langle A,B\rangle=Tr(A^{\top}B)$ an open question is the maximum angle between the cone of PSD matrices \mathcal{P}^n and the cone of nonnegative symmetric matrices \mathcal{N}^n for $n\geq 5$

$$n = 2, 3, 4 \implies \gamma_n = \frac{3}{4}\pi \qquad \lim_{n \to \infty} \gamma_n \uparrow \pi$$

All antipodal couples (and the best known for n=5) are circulant matrices If \mathcal{SC}^n is the algebra of circulant matrices, $\mathcal{SC}^n \cap \mathcal{P}^n$ and $\mathcal{SC}^n \cap \mathcal{N}^n$ are both polyhedral cones and an alternating algorithm using projections to maximize γ_n will converge to a stationary point of the problem that is still circulant

Given $\langle A,B\rangle=Tr(A^{\top}B)$ an open question is the maximum angle between the cone of PSD matrices \mathcal{P}^n and the cone of nonnegative symmetric matrices \mathcal{N}^n for $n\geq 5$

$$n = 2, 3, 4 \implies \gamma_n = \frac{3}{4}\pi \qquad \lim_{n \to \infty} \gamma_n \uparrow \pi$$

All antipodal couples (and the best known for n=5) are circulant matrices If \mathcal{SC}^n is the algebra of circulant matrices, $\mathcal{SC}^n \cap \mathcal{P}^n$ and $\mathcal{SC}^n \cap \mathcal{N}^n$ are both polyhedral cones and an alternating algorithm using projections to maximize γ_n will converge to a stationary point of the problem that is still circulant

5 6	$0.7575 \pi \\ 0.7575 \pi$	$0.7575 \pi \\ 0.7575 \pi$	18 19	$0.7699 \pi \\ 0.7703 \pi$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Left: Best known lower
7	$0.7575~\pi$	0.7575π	20	0.7719π	0.7719π	bounds on γ_n
8	$0.7608~\pi$	$0.7608 \ \pi$	21	$0.7719~\pi$	$0.7719 \ \pi$	
9	$0.7608 \ \pi$	$0.7608 \ \pi$	22	$0.7719 \ \pi$	0.7719π	Right: Gurobi solutions
10	$0.7609 \ \pi$	0.7608π	23	$0.7722~\pi$	$0.7719 \ \pi$	- In black the exact angle
11	$0.7627~\pi$	0.7627π	24	0.7735π	$0.7730 \ \pi$	$\mathcal{SC}^n \cap \mathcal{P}^n \angle \mathcal{SC}^n \cap \mathcal{N}^n$
12	$0.7649 \ \pi$	0.7649π	25	0.7735π	$0.7730 \ \pi$	
13	$0.7649 \ \pi$	$0.7649 \ \pi$	26	0.7735π	$0.7730 \ \pi$	- In blue if a previous angle
14	$0.7659 \ \pi$	$0.7649 \ \pi$	27	0.7739π	$0.7730 \ \pi$	was bigger then the exact so-
15	$0.7678~\pi$	$0.7649 \ \pi$	28	$0.7750 \ \pi$	$0.7730 \ \pi$	lution
16	$0.7699 \ \pi$	$0.7670 \ \pi$	29	$0.7750 \ \pi$	$0.7741 \ \pi$	
17	0.7699π	$0.7670 \ \pi$	30	0.7757π	0.7741π	 In red if it is a lower bound

the maximum angle between the PSD cone and the nonnegative symmetric cone, both restricted to the subalgebra of circulant matrices. Timelimit: 60 seconds 13 15 17 19 21 23 n 0.762950π 0.757765π 0.764971π 0.768062π 0.768769π 0.766370π exact Gur 0.757765π 0.764971π 0.767876π 0.762950π 0.765409π 0.766370π 0.854 s25.061 s 60* s60* s60* s 60* s**BFAS** 0.762950π 0.757765π 0.764971π 0.768062π 0.768768π 0.766370π N 333 c 0.356 s1 114 c 4 418 s 10 053 s 60* s

Table 2: Numerical comparison of Gur and BFAS for different dimensions for the problem of finding

Table 3: Numerical comparison of Gur, BFAS, E-AO and SRPL for the same problem. T	00 3	
Table 3: Numerical comparison of Gur, BFAS, E-AO and SRPL for the same problem. T		
Table 3: Numerical comparison of Gur, BFAS, E-AO and SRPL for the same problem. T		
	imelimit: 1	0
seconds. When the exact value is not available, the best known lower bound is reported v asterisk	vith an	
n 17 10 21 23 25	07	ī

5			•	•		he same problem bound is report)
_	n	17	19	21	23	25	27	
	exact	0.764971π	0.768062π	0.768769π	0.766370π	$0.767385\pi^*$	$0.768258\pi^*$	

 0.765409π

 0.768768π

 0.768768π

 0.768768π

 0.766370π

 0.766370π

 0.766370π

 0.766369π

 0.767385π

 0.762620π

 0.767385π

 0.767384π

 0.760879π

 0.756841π

 0.768258π

 0.768257π

Gur

BFAS

E-AO

SRPL

 0.764971π

 0.764971π

 0.764971π

 0.764970π

 0.759309π

 0.768062π

 0.768062π

 0.768062π

PSD and **SNN** matrices

Since E-AO and SRPL main steps are projections, they can be adapted to the case of NON-polyhedral cones, as long as we know how to compute the projection on such cones

We can thus test them on the task to find the maximum angle between the cone of Positive Semi-Definite matrices and the cone of Symmetric Nonnegative matrices

Table 4: Numerical comparison for E-AO and SRPL for different dimensions for the problem of inding the maximum angle between the PSD cone and the nonnegative symmetric cone. The table reports the best and average value found over 10000 random initializations, together with the average clapsed time. We also report the best known value for each dimension.

PSD and **SNN** matrices

Since E-AO and SRPL main steps are projections, they can be adapted to the case of NON-polyhedral cones, as long as we know how to compute the projection on such cones

We can thus test them on the task to find the maximum angle between the cone of Positive Semi-Definite matrices and the cone of Symmetric Nonnegative matrices

Table 4: Numerical comparison for E-AO and SRPL for different dimensions for the problem of finding the maximum angle between the PSD cone and the nonnegative symmetric cone. The table reports the best and average value found over 10000 random initializations, together with the average elapsed time. We also report the best known value for each dimension.

n	30	40	50	60
best known	0.7757π	0.7789π	0.7812π	0.7837π
EAO _b	0.7757π	0.7789π	0.7812π	0.7837π
EAO_a	0.7741π	0.7768π	0.7790π	0.7805π
	$0.111 \pm 0.054 \; \mathrm{s}$	$0.701 \pm 0.235 \; s$	$1.263 \pm 0.273 \; \text{s}$	$2.852 \pm 0.321 \; \mathrm{s}$
$SRPL_b$	0.7757π	0.7789π	0.7812π	0.7837π
$SRPL_{a}$	0.7739π	0.7766π	0.7787π	0.7802π
	$0.062 \pm 0.025 \text{ s}$	$0.155 \pm 0.060 \; \mathrm{s}$	$0.319 \pm 0.130 \; \mathrm{s}$	$0.565 \pm 0.229 \; \mathrm{s}$

- Giovanni Barbarino, Nicolas Gillis, and David Sossa. **Computing cone-constrained singular values of matrices.** *Arxiv* 2504.04069, 2025.
- Welington de Oliveira, Valentina Sessa, and David Sossa. Computing critical angles between two convex cones. *Journal of Optimization Theory and Applications*, 201(2):866–898, 2024.
- Alberto Seeger and David Sossa. Cone-constrained singular value problems. J. Convex Anal., 30:1285–1306, 2023.
- Alberto Seeger and David Sossa. Singular value problems under nonnegativity constraints. *Positivity*, 27, 2023.
- Nicolas Gillis and François Glineur. A continuous characterization of the maximum-edge biclique problem. J. Glob. Optim., 58:439–464, 2014.
- Felix Goldberg and Naomi Shaked-Monderer. On the maximum angle between copositive matrices. The Electronic Journal of Linear Algebra, 27(1), 2014.
- Alberto Seeger and Alfredo Iusem. **Axiomatization of the index of pointedness for closed convex cones.** *Computational and Applied Mathematics*, 24(2):245–283, 2005.
- R. Peeters. The maximum edge biclique problem is np-complete. *Discret. Appl. Math.*, 131(3):651–654, 2003.

Workshop on Low-Rank Models and Applications (LRMA)

11-12 September 2025, Mons, Belgium

Plenary speakers: Stanislav Budzinskiy, Luca Calatroni, Alice Cortinovis, Mariya Ishteva, Paul Magron, Margherita Porcelli, Bertrand Rivet, and Lawrence Saul. https://sites.google.com/view/lrma25

Thank You!