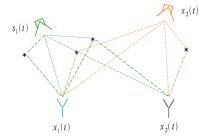
On the Rellich Eigendecomposition of Para-Hermitian Matrices on the Unit Circle

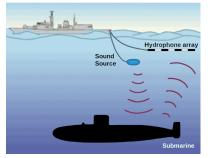
Giovanni Barbarino
Department of Mathematics
and Systems Analysis,
Aalto University

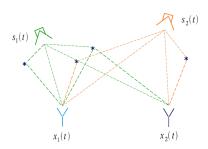
Vanni Noferini Department of Mathematics and Systems Analysis, Aalto University

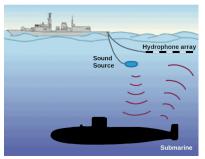
MSC09 - Polynomial and rational matrices and applications
II AS2023 Conference - Madrid

A first look to applications





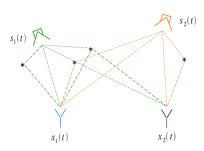


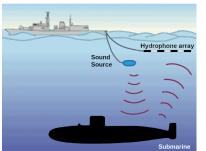


When the received signal $\{x_{\tau}\}_{\tau}$ is a convolutionary mixing of decorrelated signals, one can retrieve the original signal by diagonalizing the autocorrelation matrix of the z-series $x(z) = \sum_{\tau} x_{\tau} z^{-\tau}$ through Para-Unitary matrices

$$R(z) = \sum_{\tau} R_{\tau} z^{-\tau} \qquad R_{\tau} = \mathbb{E}[x_{t} x_{\tau-t}]$$
$$R(z) = Q(z)^{-1} \Sigma(z) Q(z)$$

The signal $Q(z) \times (z)$ is now decorrelated since its autocorrelation matrix $\Sigma(z)$ is diagonal





When the received signal $\{x_{\tau}\}_{\tau}$ is a convolutionary mixing of decorrelated signals, one can retrieve the original signal by diagonalizing the autocorrelation matrix of the z-series $x(z) = \sum_{\tau} x_{\tau} z^{-\tau}$ through Para-Unitary matrices

$$R(z) = \sum_{\tau} R_{\tau} z^{-\tau} \qquad R_{\tau} = \mathbb{E}[x_{t} x_{\tau-t}]$$
$$R(z) = Q(z)^{-1} \Sigma(z) Q(z)$$

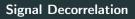
The signal Q(z)x(z) is now decorrelated since its autocorrelation matrix $\Sigma(z)$ is diagonal

R(z) is a Para-Hermitian (PH) matrix polynomial:

$$R(e^{i heta})$$
 is Hermitian and $R_{ au}^H=R_{- au}$

$$Q(z)$$
 is Para-unitary (PU):
 $Q(e^{i\theta})$ is unitary

How can we compute the **EVD** of a polynomial PH matrix?



When the received signal $\{x_{\tau}\}_{\tau}$ is a convolutionary mixing of decorrelated signals, one can retrieve the original signal by diagonalizing the autocorrelation matrix of the z-series $x(z) = \sum_{\tau} x_{\tau} z^{-\tau}$ through Para-Unitary matrices

$$R(z) = \sum_{\tau} R_{\tau} z^{-\tau} \qquad R_{\tau} = \mathbb{E}[x_{t} x_{\tau-t}]$$
$$R(z) = Q(z)^{-1} \Sigma(z) Q(z)$$

The signal $Q(z) \times (z)$ is now decorrelated since its autocorrelation matrix $\Sigma(z)$ is diagonal

When the received signal $\{x_{\tau}\}_{\tau}$ is a convolutionary mixing of decorrelated signals, one can retrieve the original signal by diagonalizing the autocorrelation matrix of the z-series $x(z) = \sum_{\tau} x_{\tau} z^{-\tau}$ through Para-Unitary matrices

$$R(z) = \sum_{\tau} R_{\tau} z^{-\tau} \qquad R_{\tau} = \mathbb{E}[\mathsf{x_t} \mathsf{x_{\tau-t}}]$$
 $R(z) = Q(z)^{-1} \Sigma(z) Q(z)$

The signal $Q(z) \times (z)$ is now decorrelated since its autocorrelation matrix $\Sigma(z)$ is diagonal

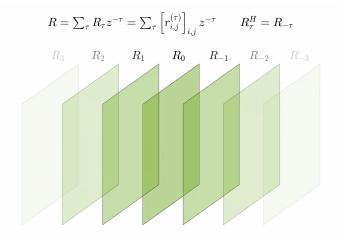
$$R(z)$$
 is a Para-Hermitian (PH) matrix polynomial:
 $R(e^{i\theta})$ is Hermitian and $R_{\tau}^{H}=R_{-\tau}$

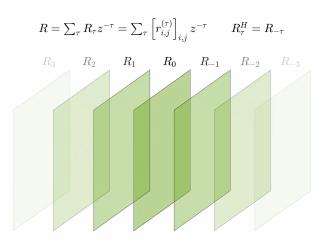
Q(z) is Para-unitary (PU):

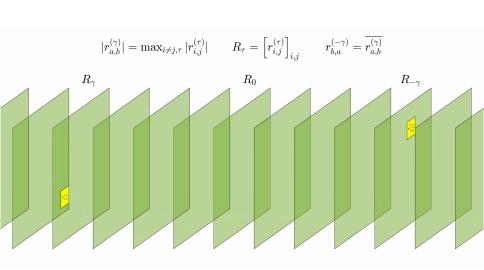
 $Q(e^{i\theta})$ is unitary

How can we compute the **EVD** of a polynomial PH matrix?

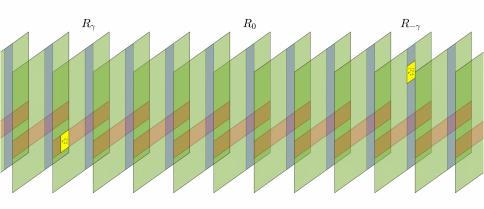
Second-Order Sequential Best Rotation: SBR2

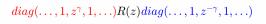


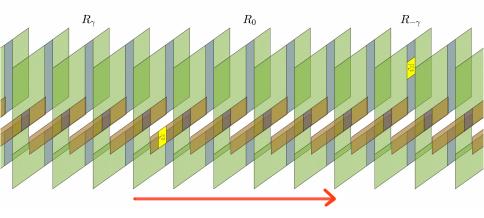


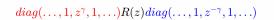


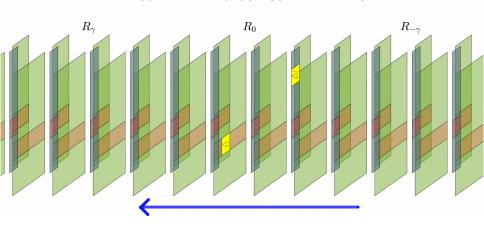
$$diag(\ldots,1,z^{\gamma},1,\ldots)R(z)diag(\ldots,1,z^{-\gamma},1,\ldots)$$



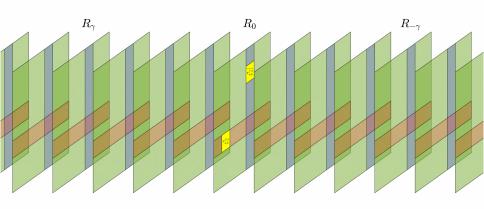






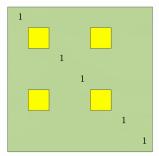


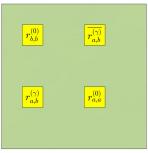
$$diag(\ldots,1,z^{\gamma},1,\ldots)R(z)diag(\ldots,1,z^{-\gamma},1,\ldots)$$

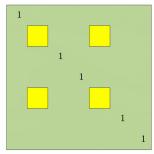


$$Q \ diag(\ldots,1,z^{\gamma},1,\ldots) R(z) diag(\ldots,1,z^{-\gamma},1,\ldots) \ Q^{-1}$$

 R_0







The iterated steps of SBR2 are

•
$$|r_{a,b}^{(\gamma)}| = \max_{i \neq j,\tau} |r_{i,j}^{(\tau)}|$$

•
$$QD_{\gamma}(z)R(z)D_{-\gamma}(z)Q^{-1} \rightarrow R(z)$$

The invariant quantity $N := \sum_{i} |r_{i,i}^{(0)}|^2$ bounded by the L^2 norm of all entries an for each step

$$N+2|r_{a,b}^{(\gamma)}|^2 \to \Lambda$$

N thus converges and $|r_{a,b}^{(\gamma)}| \to 0$:

the off-diagonal entries converge uniformly to zero

The algorithm also converges for other metrics, such as the Coding Gain (PD case):

$$AM(diag R_0) / GM(diag R_0)$$

Problem

The multiplication by $D_{\gamma}(z)$ makes the degree of the polynomial rise by γ

- $\,\rightarrow\,$ Number of off-diagonal elements rises
- → More computationally expensive

Several variations and techniques addressing his problem have been developed:

Trimming techniques, SMD, ME-SMD AEVD, MSME-SMD, MS-SBR2, OCMS

For all of them the convergence in norm is empirically observed but still missing

Conjecture

$$\sum_{i \neq i} \|r_{i,j}(z)\|_{L^2}^2 = \sum_{i \neq i, \tau} \|r_{i,j}^{(\tau)}(z)\|^2$$

The iterated steps of SBR2 are

$$\bullet \ |r_{\mathsf{a},\mathsf{b}}^{(\gamma)}| = \mathsf{max}_{i \neq j,\tau} \, |r_{i,j}^{(\tau)}|$$

•
$$QD_{\gamma}(z)R(z)D_{-\gamma}(z)Q^{-1} \rightarrow R(z)$$

The invariant quantity $N := \sum_i |r_{i,i}^{(0)}|^2$ is bounded by the L^2 norm of all entries and for each step

$$N+2|r_{a,b}^{(\gamma)}|^2 \rightarrow N$$

N thus converges and $|r_{a,b}^{(r)}| \to 0$: the off-diagonal entries converge uniformly to zero

The algorithm also converges for other metrics, such as the Coding Gain (PD case):

$$AM(diag R_0) / GM(diag R_0)$$

Problem

The multiplication by $D_{\gamma}(z)$ makes the degree of the polynomial rise by γ

- ightarrow Number of off-diagonal elements rises
- \rightarrow More computationally expensive

Several variations and techniques addressing this problem have been developed:

Trimming techniques, SMD, ME-SMD AEVD, MSME-SMD, MS-SBR2, OCMS-

For all of them the convergence in norm is empirically observed but still missing

Conjecture

$$\sum_{i\neq j} \|r_{i,j}(z)\|_{L^2}^2 = \sum_{i\neq j,\tau} \|r_{i,j}^{(\tau)}(z)\|^2$$

The iterated steps of SBR2 are

$$\bullet |r_{a,b}^{(\gamma)}| = \max_{i \neq j,\tau} |r_{i,j}^{(\tau)}|$$

•
$$QD_{\gamma}(z)R(z)D_{-\gamma}(z)Q^{-1} \rightarrow R(z)$$

The invariant quantity $N := \sum_i |r_{i,i}^{(0)}|^2$ is bounded by the L^2 norm of all entries and for each step

$$N+2|r_{a,b}^{(\gamma)}|^2 \rightarrow N$$

N thus converges and $|r_{a,b}^{(\gamma)}| \to 0$: the off-diagonal entries converge uniformly to zero

The algorithm also converges for other metrics, such as the Coding Gain (PD case):

$$AM(diag R_0) / GM(diag R_0)$$

Problem

The multiplication by $D_{\gamma}(z)$ makes the degree of the polynomial rise by γ

- ightarrow Number of off-diagonal elements rises
- → More computationally expensive

Several variations and techniques addressing this problem have been developed:

Trimming techniques, SMD, ME-SMD AEVD, MSME-SMD, MS-SBR2, OCMS-SBR2, SBR2C

For all of them the convergence in norm

Conjecture

$$\sum_{i \neq j} \|r_{i,j}(z)\|_{L^2}^2 = \sum_{i \neq j, \tau} \|r_{i,j}^{(\tau)}(z)\|^2$$

The iterated steps of SBR2 are

$$\bullet |r_{a,b}^{(\gamma)}| = \max_{i \neq j,\tau} |r_{i,j}^{(\tau)}|$$

•
$$QD_{\gamma}(z)R(z)D_{-\gamma}(z)Q^{-1} \rightarrow R(z)$$

The invariant quantity $N := \sum_i |r_{i,i}^{(0)}|^2$ is bounded by the L^2 norm of all entries and for each step

$$N+2|r_{a,b}^{(\gamma)}|^2 \rightarrow N$$

N thus converges and $|r_{a,b}^{(\gamma)}| \to 0$: the off-diagonal entries converge uniformly to zero

The algorithm also converges for other metrics, such as the Coding Gain (PD case):

$$AM(diag R_0) / GM(diag R_0)$$

Problem

The multiplication by $D_{\gamma}(z)$ makes the degree of the polynomial rise by γ

- ightarrow Number of off-diagonal elements rises
- \rightarrow More computationally expensive

Several variations and techniques addressing this problem have been developed:

Trimming techniques, SMD, ME-SMD AEVD, MSME-SMD, MS-SBR2, OCMS-SBR2, SBR2C

For all of them the convergence in norm is empirically observed but still missing

Conjecture

the L^2 norm of all off-diagonal elements tend to zero

$$\sum_{i \neq j} \|r_{i,j}(z)\|_{L^2}^2 = \sum_{i \neq j,\tau} \|r_{i,j}^{(\tau)}(z)\|^2$$

The iterated steps of SBR2 are

$$\bullet |r_{a,b}^{(\gamma)}| = \max_{i \neq j,\tau} |r_{i,j}^{(\tau)}|$$

•
$$QD_{\gamma}(z)R(z)D_{-\gamma}(z)Q^{-1} \rightarrow R(z)$$

The invariant quantity $N := \sum_i |r_{i,i}^{(0)}|^2$ is bounded by the L^2 norm of all entries and for each step

$$N+2|r_{a,b}^{(\gamma)}|^2 \rightarrow N$$

N thus converges and $|r_{a,b}^{(\gamma)}| \to 0$: the off-diagonal entries converge uniformly to zero

The algorithm also converges for other metrics, such as the Coding Gain (PD case):

$$AM(diag R_0) / GM(diag R_0)$$

Problem

The multiplication by $D_{\gamma}(z)$ makes the degree of the polynomial rise by γ

- → Number of off-diagonal elements rises
- → More computationally expensive

Several variations and techniques addressing this problem have been developed:

Trimming techniques, SMD, ME-SMD AEVD, MSME-SMD, MS-SBR2, OCMS-

For all of them the convergence in norm is empirically observed but still missing

Conjecture

the L^2 norm of all off-diagonal elements tend to zero

$$\sum_{i \neq j} \|r_{i,j}(z)\|_{L^2}^2 = \sum_{i \neq j, \tau} \|r_{i,j}^{(\tau)}(z)\|^2$$

The iterated steps of SBR2 are

$$\bullet \ |r_{a,b}^{(\gamma)}| = \max_{i \neq j,\tau} |r_{i,j}^{(\tau)}|$$

•
$$QD_{\gamma}(z)R(z)D_{-\gamma}(z)Q^{-1} \rightarrow R(z)$$

The invariant quantity $N := \sum_i |r_{i,i}^{(0)}|^2$ is bounded by the L^2 norm of all entries and for each step

$$N+2|r_{a,b}^{(\gamma)}|^2 \rightarrow N$$

N thus converges and $|r_{a,b}^{(\gamma)}| \to 0$: the off-diagonal entries converge uniformly to zero

The algorithm also converges for other metrics, such as the Coding Gain (PD case):

$$AM(diag R_0) / GM(diag R_0)$$

Problem

The multiplication by $D_{\gamma}(z)$ makes the degree of the polynomial rise by γ

- ightarrow Number of off-diagonal elements rises
- → More computationally expensive

Several variations and techniques addressing this problem have been developed:

Trimming techniques, SMD, ME-SMD, AEVD, MSME-SMD, MS-SBR2, OCMS-SBR2, SBR2C

For all of them the convergence in norm is empirically observed but still missing

Conjecture

$$\sum_{i\neq j} \|r_{i,j}(z)\|_{L^{2}}^{2} = \sum_{i\neq j,\tau} \|r_{i,j}^{(\tau)}(z)\|^{2}$$

The iterated steps of SBR2 are

- $\bullet |r_{a,b}^{(\gamma)}| = \mathsf{max}_{i \neq j,\tau} |r_{i,j}^{(\tau)}|$
- $QD_{\gamma}(z)R(z)D_{-\gamma}(z)Q^{-1} \rightarrow R(z)$

The invariant quantity $N := \sum_i |r_{i,i}^{(0)}|^2$ is bounded by the L^2 norm of all entries and for each step

$$N+2|r_{a,b}^{(\gamma)}|^2 \to N$$

N thus converges and $|r_{a,b}^{(\gamma)}| \to 0$: the off-diagonal entries converge uniformly to zero

The algorithm also converges for other metrics, such as the Coding Gain (PD case):

$$AM(diag R_0) / GM(diag R_0)$$

Problem

The multiplication by $D_{\gamma}(z)$ makes the degree of the polynomial rise by γ

- ightarrow Number of off-diagonal elements rises
- → More computationally expensive

Several variations and techniques addressing this problem have been developed:
Trimming techniques, SMD, ME-SMD,

AEVD, MSME-SMD, MS-SBR2, OCMS-SBR2, SBR2C For all of them the convergence in norm

is empirically observed but still missing

Conjecture

tend to zero
$$\sum_{i\neq j}\|r_{i,j}(z)\|_{L^2}^2=\sum_{i\neq j}\|r_{i,j}^{(\tau)}(z)\|^2$$

Back to EVD

$$R(z) = U(z)\Sigma(z)U(z)^{H}$$

- ullet R(z) is PH and polynomial on S^1
- *U(z)* is PU
- $\Sigma(z)$ is diagonal and real on S^1

SBR2 computes an EVD of R(z), but its efficiency depends on the regularity of U(z) and $\Sigma(z)$: non-smooth or non-holomorphic functions require high degree polynomials to be approximated.

Questions

- → Are there non-trivially different EVDs?
- → What are their regularity
- → What EVD is the output of SBR2?

Back to EVD

$$R(z) = U(z)\Sigma(z)U(z)^{H}$$

- R(z) is PH and polynomial on S^1
- *U(z)* is PU
- $\Sigma(z)$ is diagonal and real on S^1

SBR2 computes an EVD of R(z), but its efficiency depends on the regularity of U(z) and $\Sigma(z)$: non-smooth or non-holomorphic functions require high degree polynomials to be approximated.

ightarrow Are there non-trivially different EVDs?

- ightarrow What are their regularity?
- → What EVD is the output of SBR2?

Back to EVD

$$R(z) = U(z)\Sigma(z)U(z)^{H}$$

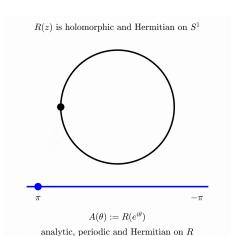
- R(z) is PH and polynomial on S^1
- *U(z)* is PU
- $\Sigma(z)$ is diagonal and real on S^1

SBR2 computes an EVD of R(z), but its efficiency depends on the regularity of U(z) and $\Sigma(z)$: non-smooth or non-holomorphic functions require high degree polynomials to be approximated.

Questions

- → Are there non-trivially different EVDs?
- → What are their regularity?
- \rightarrow What EVD is the output of SBR2?

Analytic EVD



Rellich Theorem

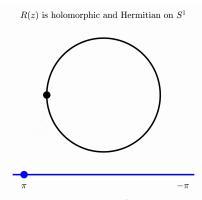
Given $A(\theta)$ analytical and Hermitian on an open interval $I\subseteq\mathbb{R}$, then it admits an analytical EVD on I

$$A(\theta) = Q(\theta)D(\theta)Q(\theta)^{F}$$

By the Fourier series of the real analytical EVD on $[-\pi, \pi]$ we obtain

$$R(z) = U(z)\Sigma(z)U(z)^{H}$$

that is an holomorphic EVD on S^1 since $A(\theta)$ is periodic



 $A(\theta) := R(e^{i\theta})$ analytic, periodic and Hermitian on R

Rellich Theorem

Given $A(\theta)$ analytical and Hermitian on an open interval $I\subseteq\mathbb{R}$, then it admits an analytical EVD on I

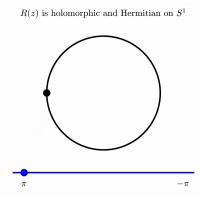
$$A(\theta) = Q(\theta)D(\theta)Q(\theta)^{H}$$

By the Fourier series of the real analytical EVD on $[-\pi, \pi]$ we obtain

$$R(z) = U(z)\Sigma(z)U(z)^{H}$$

that is an holomorphic EVD on S^1 since $A(\theta)$ is periodic

....right?



 $A(\theta) := R(e^{i\theta})$ analytic, periodic and Hermitian on R

Rellich Theorem

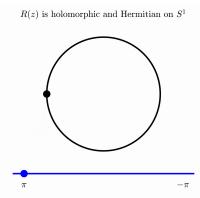
Given $A(\theta)$ analytical and Hermitian on an open interval $I\subseteq\mathbb{R}$, then it admits an analytical EVD on I

$$A(\theta) = Q(\theta)D(\theta)Q(\theta)^{H}$$

By the Fourier series of the real analytical EVD on $[-\pi,\pi]$ we obtain

$$R(z) = U(z)\Sigma(z)U(z)^{H}$$

that is an holomorphic EVD on S^1 since $A(\theta)$ is periodic



 $A(\theta) := R(e^{i\theta})$ analytic, periodic and Hermitian on R

Rellich Theorem

Given $A(\theta)$ analytical and Hermitian on an open interval $I\subseteq\mathbb{R}$, then it admits an analytical EVD on I

$$A(\theta) = Q(\theta)D(\theta)Q(\theta)^{H}$$

By the Fourier series of the real analytical EVD on $[-\pi,\pi]$ we obtain

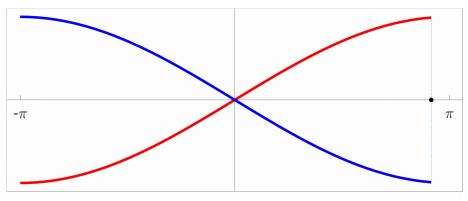
$$R(z) = U(z)\Sigma(z)U(z)^{H}$$

that is an holomorphic EVD on S^1 since $A(\theta)$ is periodic

....right?

$$R(z) = \begin{pmatrix} 0 & 1 - z^{-1} \\ 1 - z & 0 \end{pmatrix} \qquad A(\theta) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -ie^{i\theta/2} & ie^{i\theta/2} \end{pmatrix} \begin{pmatrix} 2\sin(\theta/2) & 0 \\ 0 & -2\sin(\theta/2) \end{pmatrix} \begin{pmatrix} 1 & ie^{-i\theta/2} \\ 1 & -ie^{-i\theta/2} \end{pmatrix}$$

$$R(z) = \begin{pmatrix} 0 & 1 - z^{-1} \\ 1 - z & 0 \end{pmatrix} \qquad A(\theta) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -ie^{i\theta/2} & ie^{i\theta/2} \end{pmatrix} \begin{pmatrix} 2\sin(\theta/2) & 0 \\ 0 & -2\sin(\theta/2) \end{pmatrix} \begin{pmatrix} 1 & ie^{-i\theta/2} \\ 1 & -ie^{-i\theta/2} \end{pmatrix}$$



$$A(\theta) = \left(\begin{array}{cc} 0 & 2 + 0.3i \\ 2 - 0.3i & 0 \end{array}\right) = \frac{1}{2} \left(\begin{array}{cc} 1 & 1 \\ 1 - 0.1i & -1 + 0.1i \end{array}\right) \left(\begin{array}{cc} 2 & 0 \\ 0 & -2 \end{array}\right) \left(\begin{array}{cc} 1 & 1 + 0.1i \\ 1 & -1 - 0.1i \end{array}\right)$$

$$R(z) = \begin{pmatrix} 0 & 1 - z^{-1} \\ 1 - z & 0 \end{pmatrix} \qquad A(\theta) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -ie^{i\theta/2} & ie^{i\theta/2} \end{pmatrix} \begin{pmatrix} 2\sin(\theta/2) & 0 \\ 0 & -2\sin(\theta/2) \end{pmatrix} \begin{pmatrix} 1 & ie^{-i\theta/2} \\ 1 & -ie^{-i\theta/2} \end{pmatrix}$$

$$-\pi \qquad \qquad \pi$$

$$A(\theta) = \begin{pmatrix} 0 & 2 + 0.3i \\ 2 - 0.3i & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 - 0.1i & -1 + 0.1i \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 + 0.1i \\ 1 & -1 - 0.1i \end{pmatrix}$$

They can come out from subband coders

$$R(z) = \begin{pmatrix} 0 & 1 - z^{-1} \\ 1 - z & 0 \end{pmatrix} \qquad A(\theta) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -ie^{i\theta/2} & ie^{i\theta/2} \end{pmatrix} \begin{pmatrix} 2\sin(\theta/2) & 0 \\ 0 & -2\sin(\theta/2) \end{pmatrix} \begin{pmatrix} 1 & ie^{-i\theta/2} \\ 1 & -ie^{-i\theta/2} \end{pmatrix}$$

$$R(z) = \begin{pmatrix} 0 & 1 - z^{-1} \\ 1 - z & 0 \end{pmatrix} \qquad A(\theta) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -ie^{i\theta/2} & ie^{i\theta/2} \end{pmatrix} \begin{pmatrix} 2\sin(\theta/2) & 0 \\ 0 & -2\sin(\theta/2) \end{pmatrix} \begin{pmatrix} 1 & ie^{-i\theta/2} \\ 1 & -ie^{-i\theta/2} \end{pmatrix}$$

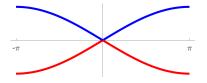
$$R(z) = \begin{pmatrix} 0 & 1 - z^{-1} \\ 1 - z & 0 \end{pmatrix} \qquad A(\theta) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -ie^{i\theta/2} & ie^{i\theta/2} \end{pmatrix} \begin{pmatrix} 2\sin(\theta/2) & 0 \\ 0 & -2\sin(\theta/2) \end{pmatrix} \begin{pmatrix} 1 & ie^{-i\theta/2} \\ 1 & -ie^{-i\theta/2} \end{pmatrix}$$

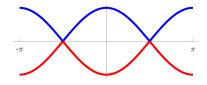
They can come out from subband coders

- There always exists an EVD $R(z) = U(z)\Sigma(z)U(z)^H$ with $\Sigma(z)$ and U(z) holomorphic on $S^1/\{-1\}$, but in general not continuous on S^1
- There are examples of smooth PH R(z) with non-modulated smooth eigenvalues but no continuous EVD
- There always exists an EVD $R(z) = U(z)\Sigma(z)U(z)^H$ with $\Sigma(z)$ majorized (sorted elements) and continuous. U(z) and $\Sigma(z)$ are also piecewise holomorphic on S^1

- There always exists an EVD $R(z) = U(z)\Sigma(z)U(z)^H$ with $\Sigma(z)$ and U(z) holomorphic on $S^1/\{-1\}$, but in general not continuous on S^1
- ullet There are examples of smooth PH R(z) with non-modulated smooth eigenvalues but no continuous EVD
- There always exists an EVD $R(z) = U(z)\Sigma(z)U(z)^H$ with $\Sigma(z)$ majorized (sorted elements) and continuous. U(z) and $\Sigma(z)$ are also piecewise holomorphic on S^1

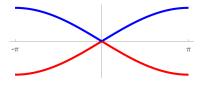
- There always exists an EVD $R(z) = U(z)\Sigma(z)U(z)^H$ with $\Sigma(z)$ and U(z) holomorphic on $S^1/\{-1\}$, but in general not continuous on S^1
- \bullet There are examples of smooth PH R(z) with non-modulated smooth eigenvalues but no continuous EVD
- There always exists an EVD $R(z) = U(z)\Sigma(z)U(z)^H$ with $\Sigma(z)$ majorized (sorted elements) and continuous. U(z) and $\Sigma(z)$ are also piecewise holomorphic on S^1

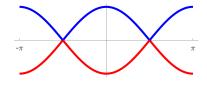




This is what SBR2 usually converges to, even when there exist holomorphic eigenvalues, since it majorizes $N:=\sum_i |r_{i,i}^{(0)}|^2$ and the Coding Gain over all PU-similar matrices

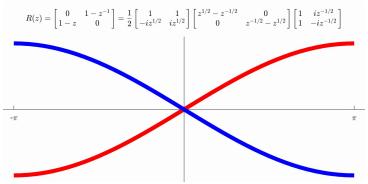
- There always exists an EVD $R(z) = U(z)\Sigma(z)U(z)^H$ with $\Sigma(z)$ and U(z) holomorphic on $S^1/\{-1\}$, but in general not continuous on S^1
- \bullet There are examples of smooth PH R(z) with non-modulated smooth eigenvalues but no continuous EVD
- There always exists an EVD $R(z) = U(z)\Sigma(z)U(z)^H$ with $\Sigma(z)$ majorized (sorted elements) and continuous. U(z) and $\Sigma(z)$ are also piecewise holomorphic on S^1





This is what SBR2 usually converges to, even when there exist holomorphic eigenvalues, since it majorizes $N:=\sum_i |r_{i,i}^{(0)}|^2$ and the Coding Gain over all PU-similar matrices

In these cases a DFT approach is preferred, more expensive but approximates the holomorphic solution if it exists



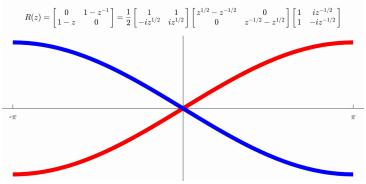
Idea: In $A(\theta) = Q(\theta)D(\theta)Q(\theta)^H$, the eigenvalues of $D(-\pi)$ and $D(\pi)$ are just permuted, so if L is the order of the permutation, then $D(\theta)$ and $D(\theta + 2\pi L)$ have the same eigenvalues:

$R(z^L)$ has holomorphic eigenvalues

Theorem [B., Noferini (2023)]

For any PH matrix R(z) holomorphic on S^1 there exists an integer L such that $R(z^L)$ admits an holomorphic EVD

Equivalently, R(z) admits an holomorphic EVD in the field of Puiseux series (holomorphic in $w=z^{1/L}$)



Idea: In $A(\theta) = Q(\theta)D(\theta)Q(\theta)^H$, the eigenvalues of $D(-\pi)$ and $D(\pi)$ are just permuted, so if L is the order of the permutation, then $D(\theta)$ and $D(\theta + 2\pi L)$ have the same eigenvalues:

 $R(z^L)$ has holomorphic eigenvalues

Theorem [B., Noferini (2023)]

For any PH matrix R(z) holomorphic on S^1 there exists an integer L such that $R(z^L)$ admits an holomorphic EVD

Equivalently, R(z) admits an holomorphic EVD in the field of Puiseux series (holomorphic in $w=z^{1/L}$)

Idea: In $A(\theta) = Q(\theta)D(\theta)Q(\theta)^H$, the eigenvalues of $D(-\pi)$ and $D(\pi)$ are just permuted, so if L is the order of the permutation, then $D(\theta)$ and $D(\theta + 2\pi L)$ have the same eigenvalues:

 $R(z^L)$ has holomorphic eigenvalues

Theorem [B., Noferini (2023)]

For any PH matrix R(z) holomorphic on S^1 there exists an integer L such that $R(z^L)$ admits an holomorphic EVD

Equivalently, R(z) admits an holomorphic EVD in the field of Puiseux series (holomorphic in $w=z^{1/L}$)

Idea: In $A(\theta) = Q(\theta)D(\theta)Q(\theta)^H$, the eigenvalues of $D(-\pi)$ and $D(\pi)$ are just permuted, so if L is the order of the permutation, then $D(\theta)$ and $D(\theta + 2\pi L)$ have the same eigenvalues:

 $R(z^{L})$ has holomorphic eigenvalues

Theorem [B., Noferini (2023)]

For any PH matrix R(z) holomorphic on S^1 there exists an integer L such that $R(z^L)$ admits an holomorphic EVD

Equivalently, R(z) admits an holomorphic EVD in the field of Puiseux series (holomorphic in $w = z^{1/L}$)

Remarks and Consequences

$\Sigma(z)$ is holomorphic by construction

Theorem [Wimmer (1986)]

Given $A(\theta)$ analytical and Hermitian on an open interval $I \subseteq \mathbb{R}$, if it admits analytical eigenvalues on I, then it admits an analytical EVD on I.

- Wimmer only uses that the ring H(I)
 of holomorphic functions on I is an
 EDD (admits Smith Normal Form) and
 that z → z̄ is in H(I)
- The hypotheses are true for any I connected subset of the complex plane that are either lines or a circles
- The same can be proved if R(z) is a matrix in Puiseux series

 $z\mapsto \overline{z}$ is not holomorphic on any open subset of \mathbb{C} , but if I is a line or a circle on the complex plane, then it extends to a Moebius transformation and viceversa:

Given a generic line

$$I = \{ te^{i\theta} + \beta : t \in \mathbb{R} \},\$$

$$\overline{z}|_{I} = e^{-2i\theta}z + \overline{\beta} - \beta e^{-2i\theta}$$

• Given a generic circle

$$I = \{\beta + \rho e^{i\theta} : \theta \in \mathbb{R}\},\$$

$$\overline{z}|_{I} = \frac{\overline{\beta}z + \rho^2 - |\beta|^2}{z - \beta}$$

Qeustion

$\Sigma(z)$ is holomorphic by construction

Theorem [Wimmer (1986)]

Given $A(\theta)$ analytical and Hermitian on an open interval $I \subseteq \mathbb{R}$, if it admits analytical eigenvalues on I, then it admits an analytical EVD on I.

- Wimmer only uses that the ring $\mathcal{H}(I)$ of holomorphic functions on I is an EDD (admits Smith Normal Form) and that $z \mapsto \overline{z}$ is in $\mathcal{H}(I)$
- The hypotheses are true for any I connected subset of the complex plane that are either lines or a circles
- The same can be proved if R(z) is a matrix in Puiseux series

 $z\mapsto \overline{z}$ is not holomorphic on any open subset of \mathbb{C} , but if I is a line or a circle on the complex plane, then it extends to a Moebius transformation and viceversa:

Given a generic line

$$I = \{te^{i\theta} + \beta : t \in \mathbb{R}\},\$$

$$\overline{z}|_{I} = e^{-2i\theta}z + \overline{\beta} - \beta e^{-2i\theta}$$

• Given a generic circle

$$I = \{\beta + \rho e^{i\theta} : \theta \in \mathbb{R}\},\$$

$$\overline{z}|_{I} = \frac{\overline{\beta}z + \rho^{2} - |\beta|^{2}}{z - \beta}$$

Qeustion

$\Sigma(z)$ is holomorphic by construction

Theorem [Wimmer (1986)]

Given $A(\theta)$ analytical and Hermitian on an open interval $I \subseteq \mathbb{R}$, if it admits analytical eigenvalues on I, then it admits an analytical EVD on I.

- Wimmer only uses that the ring H(I) of holomorphic functions on I is an EDD (admits Smith Normal Form) and that z → z̄ is in H(I)
- The hypotheses are true for any I connected subset of the complex plane that are either lines or a circles
- The same can be proved if R(z) is a matrix in Puiseux series

 $z \mapsto \overline{z}$ is not holomorphic on any open subset of \mathbb{C} , but if I is a line or a circle on the complex plane, then it extends to a Moebius transformation and viceversa:

• Given a generic line $I = \{te^{i\theta} + \beta : t \in \mathbb{R}\}$

$$\overline{z}|_{I} = e^{-2i\theta}z + \overline{\beta} - \beta e^{-2i\theta}$$

• Given a generic circle

$$I = \{\beta + \rho e^{i\theta} : \theta \in \mathbb{R}\},\$$

$$\overline{z}|_{I} = \frac{\overline{\beta}z + \rho^{2} - |\beta|^{2}}{z - \beta}$$

Qeustion

 $\Sigma(z)$ is holomorphic by construction

Theorem [Wimmer (1986)]

Given $A(\theta)$ analytical and Hermitian on an open interval $I \subseteq \mathbb{R}$, if it admits analytical eigenvalues on I, then it admits an analytical EVD on I.

- Wimmer only uses that the ring H(I) of holomorphic functions on I is an EDD (admits Smith Normal Form) and that z → z̄ is in H(I)
- The hypotheses are true for any I connected subset of the complex plane that are either lines or a circles
- The same can be proved if R(z) is a matrix in Puiseux series

 $z\mapsto \overline{z}$ is not holomorphic on any open subset of \mathbb{C} , but if I is a line or a circle on the complex plane, then it extends to a Moebius transformation and viceversa:

Given a generic line $I = \{te^{i\theta} + \beta : t \in \mathbb{R}\}$

$$\overline{z}|_{I} = e^{-2i\theta}z + \overline{\beta} - \beta e^{-2i\theta}$$

• Given a generic circle

$$I = \{\beta + \rho e^{i\theta} : \theta \in \mathbb{R}\},\$$

$$\overline{z}|_{I} = \frac{\overline{\beta}z + \rho^{2} - |\beta|^{2}}{z - \beta}$$

Qeustion

 $\Sigma(z)$ is holomorphic by construction

Theorem [Wimmer (1986)]

Given $A(\theta)$ analytical and Hermitian on an open interval $I \subseteq \mathbb{R}$, if it admits analytical eigenvalues on I, then it admits an analytical EVD on I.

- Wimmer only uses that the ring $\mathcal{H}(I)$ of holomorphic functions on I is an EDD (admits Smith Normal Form) and that $z\mapsto \overline{z}$ is in $\mathcal{H}(I)$
- The hypotheses are true for any I connected subset of the complex plane that are either lines or a circles
- The same can be proved if R(z) is a matrix in Puiseux series

 $z\mapsto \overline{z}$ is not holomorphic on any open subset of \mathbb{C} , but if I is a line or a circle on the complex plane, then it extends to a Moebius transformation and viceversa:

• Given a generic line $I = \{te^{i\theta} + \beta : t \in \mathbb{R}\},$

$$\overline{z}|_{I} = e^{-2i\theta}z + \overline{\beta} - \beta e^{-2i\theta}$$

• Given a generic circle $I = \{\beta + \rho e^{i\theta} : \theta \in \mathbb{R}\},\$

$$\overline{z}|_{I} = \frac{\overline{\beta}z + \rho^{2} - |\beta|^{2}}{z - \beta}$$

Qeustion

 $\Sigma(z)$ is holomorphic by construction

Theorem [Wimmer (1986)]

Given $A(\theta)$ analytical and Hermitian on an open interval $I \subseteq \mathbb{R}$, if it admits analytical eigenvalues on I, then it admits an analytical EVD on I.

- Wimmer only uses that the ring $\mathcal{H}(I)$ of holomorphic functions on I is an EDD (admits Smith Normal Form) and that $z\mapsto \overline{z}$ is in $\mathcal{H}(I)$
- The hypotheses are true for any I connected subset of the complex plane that are either lines or a circles
- The same can be proved if R(z) is a matrix in Puiseux series

 $z\mapsto \overline{z}$ is not holomorphic on any open subset of \mathbb{C} , but if I is a line or a circle on the complex plane, then it extends to a Moebius transformation and viceversa:

• Given a generic line $I = \{te^{i\theta} + \beta : t \in \mathbb{R}\},\$

$$\overline{z}|_{I} = e^{-2i\theta}z + \overline{\beta} - \beta e^{-2i\theta}$$

• Given a generic circle $I = \{\beta + \rho e^{i\theta} : \theta \in \mathbb{R}\},$

$$\overline{z}|_{I} = \frac{\overline{\beta}z + \rho^2 - |\beta|^2}{z - \beta}$$

Qeustion

Pseudo-Circulant

 $R(z^L)$ admits an holomorphic S^1 for any holomorphic (Puiseux) $n \times n$ PH matrix R(z), where L is at most the Landau number $L(n) \sim \exp(\sqrt{n \log(n)})$, but n is usually small in applications (one can take $L = lcm(1, \ldots, n) \sim e^n$)

Pseudo-Circulant: There exist $\phi_0(z),\phi_1(z),\ldots,\phi_n(z)\in\mathcal{H}(S^1)$ for which $\phi_k(z)=z^{-1}\phi_{n-k}$ and

Its eigenvalues are modulated: there exists $\lambda(z)\in\mathcal{H}(S^1)$ such that $\lambda_j(e^{i\theta})=\lambda(e^{2\pi ji/n}e^{i\theta/n})$

Theorem [B., Noferini (2023)]

Any holomorphic PH matrix R(z) admits an holomorphic decomposition $R(z) = U(z)C(z)U(z)^H$ where U(z) is PU, C(z) is block diagonal with pseudo-circulant blocks and the block sizes reflect the periodicity of the eigenvalues

Pseudo-Circulant

 $R(z^L)$ admits an holomorphic S^1 for any holomorphic (Puiseux) $n \times n$ PH matrix R(z), where L is at most the Landau number $L(n) \sim \exp(\sqrt{n\log(n)})$, but n is usually small in applications (one can take $L = lcm(1, \ldots, n) \sim e^n$)

Pseudo-Circulant: There exist $\phi_0(z), \phi_1(z), \dots, \phi_n(z) \in \mathcal{H}(S^1)$ for which $\overline{\phi_k(z)} = z^{-1}\phi_{n-k}$ and

$$\begin{pmatrix} \phi_{0}(z) & z^{-1}\phi_{n-1}(z) & \dots & z^{-1}\phi_{z}(z) \\ \phi_{1}(z) & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & z^{-1}\phi_{n-1}(z) \\ \phi_{n-1}(z) & \dots & \phi_{1}(z) & \phi_{0}(z) \end{pmatrix}$$

Its eigenvalues are modulated: there exists $\lambda(z) \in \mathcal{H}(S^1)$ such that $\lambda_j(e^{i\theta}) = \lambda(e^{2\pi ji/n}e^{i\theta/n})$

Any holomorphic PH matrix R(z) admits an holomorphic decomposition $R(z) = U(z)C(z)U(z)^H$ where U(z) is PU, C(z) is block diagonal with pseudo-circulant blocks and the block sizes reflect the periodicity of the eigenvalues

Pseudo-Circulant

L is at most the Landau number $L(n) \sim \exp(\sqrt{n\log(n)})$, but n is usually small in applications (one can take $L = lcm(1, \dots, n) \sim e^n$)

 $R(z^L)$ admits an holomorphic S^1 for any holomorphic (Puiseux) $n \times n$ PH matrix R(z), where

and
$$/ \hspace{.1cm} \phi_0(z) \hspace{.1cm} z^{-1} \phi_{n-1}(z) \hspace{.1cm} \ldots \hspace{.1cm} z^{-1} \phi_z(z) \hspace{.1cm} \backslash$$

Pseudo-Circulant: There exist $\phi_0(z), \phi_1(z), \dots, \phi_n(z) \in \mathcal{H}(S^1)$ for which $\overline{\phi_k(z)} = z^{-1}\phi_{n-k}$

$$\begin{pmatrix} \phi_0(z) & z^{-1}\phi_{n-1}(z) & \dots & z^{-1}\phi_z(z) \\ \phi_1(z) & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & z^{-1}\phi_{n-1}(z) \\ \phi_{n-1}(z) & \dots & \phi_1(z) & \phi_0(z) \end{pmatrix}$$

Its eigenvalues are modulated: there exists $\lambda(z) \in \mathcal{H}(S^1)$ such that $\lambda_j(e^{i\theta}) = \lambda(e^{2\pi ji/n}e^{i\theta/n})$

Theorem [B., Noferini (2023)] Any holomorphic PH matrix R(z) admits an holomorphic decomposition

 $R(z) = U(z)C(z)U(z)^H$ where U(z) is PU, C(z) is block diagonal with pseudo-circulant blocks and the block sizes reflect the periodicity of the eigenvalues

Polynomial SVD

Theorem [B., Noferini (2023)]

Any holomorphic (Puiseux) rectangular matrix $\mathit{M}(z)$ admits an holomorphic SVD

$$M(z^{L}) = U(z)S(z)V(z)^{H}$$

for some integer L, where U(z) and V(z) are PU and S(z) is rectangular, real and diagonal

$$N(z)=egin{pmatrix}0&M(z)\M(z)^H&0\end{pmatrix}$$
 is holomorphic and PH, so $N(z^L)$ admits a holomorphic EVD as

$$N(z^{L}) = \begin{pmatrix} 0 & M(z^{L}) \\ M(z^{L})^{H} & 0 \end{pmatrix} = \begin{pmatrix} F(z) & F(z) \\ E(z) & -E(z) \end{pmatrix} \begin{pmatrix} \Lambda(z) & 0 \\ 0 & \Lambda(z) \end{pmatrix} \begin{pmatrix} F(z)^{H} & E(z)^{H} \\ F(z)^{H} & -E(z)^{H} \end{pmatrix}$$

so that the SVD becomes

$$M(z^{L}) = \sqrt{2}F(z) \cdot \Lambda(z) \cdot \sqrt{2}E(z)^{H}$$

Example:

$$[1+z^2] = [z] \cdot [z+z^{-1}] \cdot [1]$$
 $[1+z] = [z^{1/2}] \cdot [z^{1/2}+z^{-1/2}] \cdot [1+z]$

Polynomial SVD

Theorem [B., Noferini (2023)]

Any holomorphic (Puiseux) rectangular matrix $\mathit{M}(z)$ admits an holomorphic SVD

$$M(z^{L}) = U(z)S(z)V(z)^{H}$$

for some integer L, where U(z) and V(z) are PU and S(z) is rectangular, real and diagonal

$$N(z) = \begin{pmatrix} 0 & M(z) \\ M(z)^H & 0 \end{pmatrix} \text{ is holomorphic and PH, so } N(z^L) \text{ admits a holomorphic EVD as}$$

$$N(z^L) = \begin{pmatrix} 0 & M(z^L) \\ M(z^L)^H & 0 \end{pmatrix} = \begin{pmatrix} F(z) & F(z) \\ F(z) & -E(z) \end{pmatrix} \begin{pmatrix} \Lambda(z) & 0 \\ 0 & \Lambda(z) \end{pmatrix} \begin{pmatrix} F(z)^H & E(z)^H \\ F(z)^H & -E(z)^H \end{pmatrix}$$

so that the SVD becomes

so that the SVD becomes
$$M(z^{L}) = \sqrt{2}F(z) \cdot \Lambda(z) \cdot \sqrt{2}E(z)^{H}$$

Example:

$$[1+z^2] = [z] \cdot [z+z^{-1}] \cdot [1]$$
 $[1+z] = [z^{1/2}] \cdot [z^{1/2}+z^{-1/2}] \cdot [1]$

Sign Characteristic

Given f(x) analytic on I real interval with zeros x_i , let

$$f(x) = \epsilon_i c_i (x - x_i)^{m_i} + O(|x - x_i|^{m_i+1})$$

with $\epsilon_i=\pm 1,\ c_i>0$

The **Sign Feature** of x_i is ϵ_i if the molteplicity m_i is odd and 0 if m_i is even

Given f(x) analytic on I real interval with zeros x_i , let

$$f(x) = \epsilon_i c_i (x - x_i)^{m_i} + O(|x - x_i|^{m_i+1})$$

with $\epsilon_i = \pm 1$, $c_i > 0$

The **Sign Feature** of x_i is ϵ_i if the molteplicity m_i is odd and 0 if m_i is even

The local sum of sign features is constant for small enough perturbations

Given f(x) analytic on I real interval with zeros x_i , let

$$f(x) = \epsilon_i c_i (x - x_i)^{m_i} + O(|x - x_i|^{m_i+1})$$
with $\epsilon_i = \pm 1$, $c_i > 0$

The **Sign Feature** of x_i is ϵ_i if the molteplicity m_i is odd and 0 if m_i is even

The local sum of sign features is constant for small enough perturbations

Given A(x) Hermitian analytic on I real interval with eigenvalues $\lambda_i(x)$ and finite eigenvalues x_j , notice that x_j are zeros of $det(A(x)) = \prod_i \lambda_i(x)$

$$\lambda_i(x) = \epsilon_{i,j} c_{i,j} (x - x_i)^{m_{i,j}} + O(|x - x_i|^{m_{i,j}+1})$$

Given f(x) analytic on I real interval with zeros x_i , let

$$f(x) = \epsilon_i c_i (x - x_i)^{m_i} + O(|x - x_i|^{m_i + 1})$$
with $\epsilon_i = \pm 1$, $c_i > 0$

The **Sign Feature** of x_i is ϵ_i if the molteplicity m_i is odd and 0 if m_i is even

The local sum of sign features is constant for small enough perturbations

Given A(x) Hermitian analytic on I real interval with eigenvalues $\lambda_i(x)$ and finite eigenvalues x_j , notice that x_j are zeros of $det(A(x)) = \prod_i \lambda_i(x)$

$$\lambda_i(x) = \epsilon_{i,j} c_{i,j} (x - x_i)^{m_{i,j}} + O(|x - x_i|^{m_{i,j}+1})$$

The **Sign Feature** of x_j is the sum of its sign features with respect to the $\lambda_i(x)$



The local sum of sign features is constant for small enough Hermitian perturbations

Given f(x) analytic on I real interval with zeros x_i , let

$$f(x) = \epsilon_i c_i (x - x_i)^{m_i} + O(|x - x_i|^{m_i+1})$$

with $\epsilon_i = \pm 1$, $c_i > 0$

The **Sign Feature** of x_i is ϵ_i if the molteplicity m_i is odd and 0 if m_i is even

The local sum of sign features is constant for small enough perturbations

Given f(x) analytic on I real interval with zeros x_i , let

$$f(x) = \epsilon_i c_i (x - x_i)^{m_i} + O(|x - x_i|^{m_i+1})$$

with $\epsilon_i = \pm 1$, $c_i > 0$

The **Sign Feature** of x_i is ϵ_i if the molteplicity

 m_i is odd and 0 if m_i is even

The local sum of sign features is constant for small enough perturbations

Given A(x) Hermitian analytic on I real interval with eigenvalues $\lambda_i(x)$ and finite eigenvalues x_i , notice that x_i are zeros of $det(A(x)) = \prod_i \lambda_i(x)$

$$\lambda_i(x) = \epsilon_{i,j} c_{i,j} (x - x_i)^{m_{i,j}} + O(|x - x_i|^{m_{i,j}+1})$$

Given f(x) analytic on I real interval with zeros x_i , let

$$f(x) = \epsilon_i c_i (x - x_i)^{m_i} + O(|x - x_i|^{m_i+1})$$

with $\epsilon_i = \pm 1$, $c_i > 0$

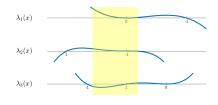
The **Sign Feature** of x_i is ϵ_i if the molteplicity m_i is odd and 0 if m_i is even

The local sum of sign features is constant for small enough perturbations

Given A(x) Hermitian analytic on I real interval with eigenvalues $\lambda_i(x)$ and finite eigenvalues x_j , notice that x_j are zeros of $det(A(x)) = \prod_i \lambda_i(x)$

$$\lambda_i(x) = \epsilon_{i,j} c_{i,j} (x - x_i)^{m_{i,j}} + O(|x - x_i|^{m_{i,j}+1})$$

The **Sign Feature** of x_j is the sum of its sign features with respect to the $\lambda_i(x)$



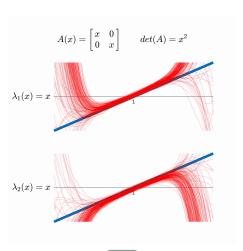
The local sum of sign features is constant for small enough Hermitian perturbations

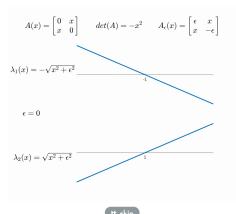
Stability of Finite Eigenvalues

A finite eigenvalue is stable iff locally the sum of the sign features is not $\boldsymbol{0}$

Stability of Finite Eigenvalues

A finite eigenvalue is stable iff locally the sum of the sign features is not 0





≫ skip

Stability of Finite Eigenvalues

A finite eigenvalue is stable iff locally the sum of the sign features is not $\boldsymbol{0}$

Palindromic Matrix Polynomials

$$P(z) = \sum_{i=0}^{g} P_i z^i$$
 $P_{g-j} = P_j^H$ \Longrightarrow $R(z) = z^{g/2} P(z)$ PH

Let $\lambda_j(z)$ be the non-identically-zero eigenvalues of R(z) in Puiseux series, and $z_k = e^{i\theta_k}$ the common finite eigenvalues of P(z) and R(z) on S^1

Then we can define the sign features of z_k as the sign features of θ_k with respect to $\lambda_i(e^{i\theta})$

Notice that changing the point where we rectify S^1 does not modify the local sum of sign features, up to the sign

The local sum of sign features is still constant for small enough palindromic perturbations

If $z_k=e^{i\theta_k}$ is a simple finite eigenvalue with eigenvector v, and $\det(R(z))\not\equiv 0$, then its sign feature is equal to

$$\operatorname{sgn}\left[v^*\frac{dR(e^{i\theta})}{d\theta}v\right]_{\theta=\theta_k}=\operatorname{sgn}\left[i\frac{z_k}{z_k^{g/2}}\left[v^*\frac{dP(z)}{dz}v\right]_{z=z_k}\right]$$

Palindromic Matrix Polynomials

$$P(z) = \sum_{i=0}^{g} P_i z^i$$
 $P_{g-j} = P_j^H$ \Longrightarrow $R(z) = z^{g/2} P(z)$ PH

Let $\lambda_j(z)$ be the non-identically-zero eigenvalues of R(z) in Puiseux series, and $z_k = e^{i\theta_k}$ the common finite eigenvalues of P(z) and R(z) on S^1

Then we can define the sign features of z_k as the sign features of θ_k with respect to $\lambda_i(e^{i\theta})$

Notice that changing the point where we rectify S^1 does not modify the local sum of sign features, up to the sign

The local sum of sign features is still constant for small enough palindromic perturbations

If $z_k=e^{i\theta_k}$ is a simple finite eigenvalue with eigenvector v, and $\det(R(z))\not\equiv 0$, then its sign feature is equal to

$$\operatorname{sgn}\left[v^*\frac{dR(e^{i\theta})}{d\theta}v\right]_{\theta=\theta_k}=\operatorname{sgn}\left[i\frac{z_k}{z_k^{g/2}}\left[v^*\frac{dP(z)}{dz}v\right]_{z=z_k}\right]$$

Palindromic Matrix Polynomials

$$P(z) = \sum_{i=0}^{g} P_i z^i$$
 $P_{g-j} = P_j^H$ \Longrightarrow $R(z) = z^{g/2} P(z)$ PH

Let $\lambda_j(z)$ be the non-identically-zero eigenvalues of R(z) in Puiseux series, and $z_k = e^{i\theta_k}$ the common finite eigenvalues of P(z) and R(z) on S^1

Then we can define the sign features of z_k as the sign features of θ_k with respect to $\lambda_i(e^{i\theta})$

Notice that changing the point where we rectify S^1 does not modify the local sum of sign features, up to the sign

The local sum of sign features is still constant for small enough palindromic perturbations

If $z_k = e^{i\theta_k}$ is a simple finite eigenvalue with eigenvector v, and $\det(R(z)) \not\equiv 0$, then its sign feature is equal to

$$\operatorname{sgn}\left[v^*\frac{dR(e^{i\theta})}{d\theta}v\right]_{\theta=\theta_k}=\operatorname{sgn}\left[i\frac{z_k}{z_k^{g/2}}\left[v^*\frac{dP(z)}{dz}v\right]_{z=z_k}\right]$$

Conclusions and Future Works

Example 1:

$$P(z) = egin{pmatrix} z+1 & i(z-1) \ i(z-1) & 0 \end{pmatrix}$$
 $P_{\epsilon}(z) = egin{pmatrix} 0 & 0 \ 0 & \epsilon^2(z+1) \end{pmatrix}$

eigenvalues

$$\lambda = \frac{(1 \pm i\epsilon)^2}{1 + \epsilon^2}$$

with sign features ± 1 , so they must be instable.

The matrix $P(z) + P_{\epsilon}(z)$ has close finite

In fact, the matrix $P(z) - P_{\epsilon}(z)$ has finite

eigenvalues
$$\lambda = \frac{1 \pm \epsilon}{1 \mp \epsilon}$$

that do not belong to S^1

$$Q(z) = \begin{pmatrix} \gamma(z+1) & \gamma(z+1) \\ \gamma(z+1) & i(z-1) \end{pmatrix} = Bz + i(z+1)$$

$$\lambda = \frac{(1 \pm i\gamma)}{1 + \gamma^2}$$

Conclusions and Future Works

Example 1:

$$P(z) = \begin{pmatrix} z+1 & i(z-1) \\ i(z-1) & 0 \end{pmatrix}$$

$$P_{\epsilon}(z) = \begin{pmatrix} 0 & 0 \\ 0 & \epsilon^{2}(z+1) \end{pmatrix}$$

The matrix $P(z) + P_{\epsilon}(z)$ has close finite eigenvalues

$$\lambda = \frac{(1 \pm i\epsilon)^2}{1 + \epsilon^2}$$

stable.

that do not belong to S^1

with sign features
$$\pm 1,$$
 so they m stable.

with sign features ± 1 , so they must be in-

$$1+\gamma^2$$
 that may be close, but have the same sign

feature
$$-1$$
. For any matrix $\|A\| < 1$, the palindromic polynomial $Q_A(z) = Q(z) + Az + A^H$ still

coefficient

Example 2:

has finite eigenvalues

possesses two finite eigenvalues on
$$S^1$$
: Using $z\in S^1/\{-1\}\iff w=\frac{1-z}{i(1+z)}\in\mathbb{R}$, we find that $Q_A(z)$ presents unimodular finite

we find that
$$Q_A(z)$$
 presents unimodular finite eigenvalues iff
$$i(B-B^H+A-A^H)w+(B+B^H+A+A^H)$$
 has real finite eigenvalues, but this is a Her-

mitian pencil with positive definite leading

 $Q(z) = \begin{pmatrix} i(z-1) & \gamma(z+1) \\ \gamma(z+1) & i(z-1) \end{pmatrix} = Bz + B^{H}$

 $\lambda = \frac{(1 \pm i\gamma)^2}{1 + i\gamma^2}$

with sign features
$$\pm 1$$
, so they must be instable. In fact, the matrix $P(z)-P_\epsilon(z)$ has finite eigenvalues
$$\lambda=\frac{1\pm\epsilon}{1\pm\epsilon}$$

Thank You!

- Mackey D.S., Mackey N., Mehl C., and V. Mehrmann. Structured polynomial eigenvalue problems: Good vibrations from good linearizations. SIAM Journal on Matrix Analysis and Applications, 28:1029–1051, 2006.
- Rellich F. Perturbation Theory of Eigenvalue Problems. 1969.
- Barbarino G. and Noferini V. On the rellich eigendecomposition of para-hermitian matrices and the sign characteristics of *-palindromic matrix polynomials. Linear Algebra and its Applications, 672:1–27, 2023.
- Wimmer H.K. Rellich's perturbation theorem on hermitian matrices of holomorphic functions. Journal of Mathematical Analysis and Applications, 144(1):52–54, 1986.
- Weiss S., Proudler I. K., Barbarino G., Pestana J., and McWhirter J. Existence and uniqueness of the analytic singular value decomposition. 2023.
- Weiss S., Proudler I. K., and Pestana J. On the existence and uniqueness of the eigenvalue decomposition of a parahermitian matrix. IEEE Transactions on Signal Processing. 66(10):2659–2672. 2018.
 - Mehrmann V., Noferini V., Tisseur F., and Xu H. On the sign characteristics of hermitian matrix polynomials. Linear Algebra and its Applications, 511(15):328–364. 2016.