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Low-Rank Nonnegative Matrix
Factorization



Dimensionality reduction and Constrained Low-Rank Matrix Approximations

• Given n data points mj (j = 1, 2, . . . , n), we would like to understand the
underlying structure of this data through linear dimensionality reduction:
find a set of r basis vectors uk (1 ≤ k ≤ r) so that for some weights vkj

• This is equivalent to the low-rank approximation of matrix M:

M = [m1 m2 . . . mn] ≈ [u1 u2 . . . ur ] [v1 v2 . . . vn] = UV

• How to measure the error ||M − UV ||?

Ex. PCA/truncated SVD use ||X || or ||X ||2F .

• What constraints should the factors U ∈ ΩU and V ∈ ΩV satisfy?

Ex. PCA has no constraints, k-means a single ’1’ per column of V .
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Nonnegative Matrix Factorization (NMF)

Given a matrix M ∈ Rp×n
+ and a factorization rank r � min(p, n), find

U ∈ Rp×r
+ and V ∈ Rr×n

+ such that

min
U≥0,V≥0

||M − UV ||2F =
∑
i,j

(M − UV )2ij (NMF)

NMF is a linear dimensionality reduction technique for nonnegative data :

M(:, i)︸ ︷︷ ︸
≥0

≈
r∑

k=1

U(:, k)︸ ︷︷ ︸
≥0

V (k, i)︸ ︷︷ ︸
≥0

for all i

Why nonnegativity?

→ Interpretability: Nonnegativity constraints lead to easily interpretable
factors (and a sparse and part-based representation)
→ Many applications. image processing, text mining, audio source separation,
recommender systems, hyperspectral unmixing, community detection,
clustering, etc.
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Application 1: topic recovery and document classification

• Mi,j are the frequencies of word i in document j

• The columns U:,k represent the topics in the documents

• Weights in V:,j allow to assign each document j to its corresponding topics

Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401,
788–791 (1999)
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Application 2: recommender systems

In some cases, some entries are missing/unknown

For example, we would like to predict how much someone is going to like a
movie based on its movie preferences (e.g., 1 to 5 stars) :

Users

Movies



2 3 2 ? ?

? 1 ? 3 2
1 ? 4 1 ?

5 4 ? 3 2
? 1 2 ? 4
1 ? 3 4 3


Movies ratings are modeled as linear combinations of ’feature’ movies (related
to the genres - child oriented, serious vs. escapist, thriller, romantic, etc.)

M(i , :)︸ ︷︷ ︸
movie i

≈
r∑

k=1

U(i , k)︸ ︷︷ ︸
weights

V (k, :)︸ ︷︷ ︸
genre k
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For example, using a rank-2 factorization on the Netflix dataset,
female vs. male and serious vs. escapist behaviors were extracted

Koren, Bell, Volinsky, Matrix Factorization Techniques for Recommender Systems, 2009
Winners of the Netflix prize 1,000,000$



Simplex-Structured Matrix Factorization



Geometric interpretation of exact NMF

Given M = UV , one can scale M and U such that they become column
stochastic implying that V is column stochastic:

M = UV ⇐⇒ M ′ = MDM = (UDU)(D−1U VDM) = U ′V ′

The columns of M ′ are convex combinations of the columns of U ′:

M ′:j =
k∑

i=1

U ′:i V
′
ij with

k∑
i=1

V ′ij = 1 ∀j , V ′ij ≥ 0 ∀ij

In other terms
conv(M ′) ⊆ conv(U ′) ⊆ ∆n,

where conv(X ) is the convex hull of the columns of X , and
∆n = {x ∈ Rn |x ≥ 0,

∑n
i=1 xi = 1 } is the unit simplex

Exact NMF ≡ Find r points whose convex hull is nested between two given
polytopes (Nested Polytope Problem)
Vavasis, S.A.: On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization
20(3), 1364–1377 (2009)
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Geometric interpretation of exact NMF
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from NMF to SSMF and back

Simplex-Structured Matrix Factorization requires V nonnegative and column
stochastic: the columns of M are approximated as convex combinations of the
basis vectors in U

min
U,V≥0

||M − UV ||2F : V (:, j) ∈ ∆ := {x ≥ 0 : eT x = 1} ∀j (SSMF)

Notice that we do not require M,U nonnegative or stochastic

Equivalently
conv(M) ⊆̃ conv(U)
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Solution to SSMF

Conv(M) ⊆ Conv(U) U ∈ Rm×r

Exists? Yes for r ≥ dimaff(M) + 1 ...

but it is far from being Unique
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Solution to SSMF

Conv(M) ⊆ Conv(U) U ∈ Rm×r

Exists? Yes for r ≥ dimaff(M) + 1 ...

but it is far from being Unique

This is a problem for the Interpretability of the solution and the Stability of the algorithms



Application: Blind hyperspectral unmixing

Figure 1: Urban hyperspectral image, 162 spectral bands and 307-by-307 pixels.

Problem. Identify the materials and classify the pixels
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Application: Blind hyperspectral unmixing



Urban hyperspectral image

Figure 1: Decomposition of the Urban dataset

Zhu, F.: Hyperspectral unmixing: ground truth labeling, datasets, benchmark performances and survey.
(2017) Arxiv
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Separability and
Successive Projections Algorithm



Separability Assumption

Separability of M: for an r -index set K and a V column stochastic, M = M(:,K)︸ ︷︷ ︸
U

V

Arora, Ge, Kannan, Moitra, Computing a Nonnegative Matrix Factorization – Provably, STOC 2012

If U is full rank, then the separability of M = UV can
be expressed as either

• U is a subset of the columns of M

• V ∈ Rr×n
+ has Ir as submatrix (up to permutation)

• conv(U) = conv(M), so
M = ŨṼ =⇒ conv(U) ⊆ conv(Ũ)
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Successive Projection Algorithm (SPA)

Given M = UV separable, U full column rank equal to r , repeat for r times:

1: Find j∗ = argmaxj ||M(:, j)|| and add it to K

2: M ←
(
I − uuT

)
M where u = M(:, j∗)/||M(:, j∗)||

The solution will be U = M(:,K) and V = U†M

Araújo, U., Saldanha, B., Galvão, R., Yoneyama, T., Chame, H., Visani, V.: The successive projections algorithm for
variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems 57 (2001)
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Successive Projection Algorithm (SPA)

Perturbation robustness: suppose M = UV + N with UV separable, U full rank and each
column of N with norm at most ε

• If ε ≤ O(σr (U)/K(U)2) then SPA extract a matrix Ũ such that

max
1≤k≤r

‖U(:, k)− Ũ(:, k)‖ ≤ O
(
εK(U)2

)
(sharp for r ≥ 3)

Gillis, N., Vavasis, S.A.: Fast and robust recursive algorithms for separable nonnegative matrix factorization. IEEE
Transactions on Pattern Analysis and Machine Intelligence 36(4), 698–714 (2013)

Barbarino G, Gillis N.: On the Robustness of the Successive Projection Algorithm, (2024) Arxiv

Variants to improve robustness to perturbations and outliers:

• SPA2: Apply SPA to M to obtain U1 and apply SPA to U†1M = (U†1U)V + U†1N

ε ≤ O(σr (U)/K(U)2) =⇒ max
1≤k≤r

‖U(:, k)− Ũ(:, k)‖ ≤ O (εK(U)) (sharp)

• MVE: Minimum Volume Ellipsoid A � 0 s.t. m>j Amj ≤ 1 ∀j and use (A−1/2)†

ε ≤ O(σr (U)/(r
√
r)) =⇒ max

1≤k≤r
‖U(:, k)− Ũ(:, k)‖ ≤ O (εK(U)) (sharp)

• Randomized/Smoothed variants (RandNMF, VCA): instead of looking for
argmaxj ||M(:, j)|| take a random u ∈ Rn and choose as vertex the average of the p

columns of M corresponding to the p greatest entries of u>M
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‖U(:, k)− Ũ(:, k)‖ ≤ O
(
εK(U)2

)
(sharp for r ≥ 3)

Variants to improve robustness to perturbations and outliers:

• SPA2: Apply SPA to M to obtain U1 and apply SPA to U†1M = (U†1U)V + U†1N

ε ≤ O(σr (U)/K(U)2) =⇒ max
1≤k≤r
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Rank Deficient case: SNPA

What if M = UV is separable but U is rank deficient?

SNPA: Successive Nonnegative Projection Algorithm

Modify the projection step as

1: Project the original M on conv(M(:,K)) to
obtain Mp

2: Find j∗ = argmaxj ||M(:, j)−Mp(:, j)|| and add it
to K

When Mp = 0, return U = M(:,K)

X Can handle the deficient rank case rk(U) < r

× The bound on the error is O(εK̃(U)3)

X If U is full rank, the error is the same as SPA and
empirically it is more robust

Gillis, N.: Successive nonnegative projection algorithm for robust nonnegative blind source separation. SIAM Journal

on Imaging Sciences 7(2), 1420–1450 (2014)
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SSC and Minimum Volume



Sufficiently Scattered Condition

Separability leads to fast and robust algorithms, but it is a strong assumption

A column stochastic matrix V is sufficiently scattered if

SSC1: C := {x | 1 = e>x ≥
√
r − 1‖x‖} ⊆ conv(V )

SSC2: if Q is orthogonal and conv(V ) ⊆ conv(Q) then
Q is a permutation matrix

Tl;dr: C ⊆ conv(V )

Notice: Separability =⇒ V contains I as submatrix =⇒ C ⊆ ∆ = conv(V ) =⇒ SSC

Theorem
If M = UV with V SSC, U full rank exists, then it is the unique solution to

min
U∈Rm×r

Vol(U) : Conv(M) ⊆ Conv(U)

Notice2: SSC1 ensures the minimality, SSC2 ensures the uniqueness

Fu, X., Ma, W.K., Huang, K., Sidiropoulos, N.D.: Blind separation of quasi-stationary sources: exploiting convex

geometry in covariance domain. IEEE Transactions on Signal Processing 63(9), 2306–2320 (2015)



Sufficiently Scattered Condition

Separability leads to fast and robust algorithms, but it is a strong assumption

A column stochastic matrix V is sufficiently scattered if

SSC1: C := {x | 1 = e>x ≥
√
r − 1‖x‖} ⊆ conv(V )

SSC2: if Q is orthogonal and conv(V ) ⊆ conv(Q) then
Q is a permutation matrix

Tl;dr: C ⊆ conv(V )

Notice: Separability =⇒ V contains I as submatrix =⇒ C ⊆ ∆ = conv(V ) =⇒ SSC

Theorem
If M = UV with V SSC, U full rank exists, then it is the unique solution to

min
U∈Rm×r

Vol(U) : Conv(M) ⊆ Conv(U)

Notice2: SSC1 ensures the minimality, SSC2 ensures the uniqueness

Fu, X., Ma, W.K., Huang, K., Sidiropoulos, N.D.: Blind separation of quasi-stationary sources: exploiting convex

geometry in covariance domain. IEEE Transactions on Signal Processing 63(9), 2306–2320 (2015)



Sufficiently Scattered Condition

Separability leads to fast and robust algorithms, but it is a strong assumption

A column stochastic matrix V is sufficiently scattered if

SSC1: C := {x | 1 = e>x ≥
√
r − 1‖x‖} ⊆ conv(V )

SSC2: if Q is orthogonal and conv(V ) ⊆ conv(Q) then
Q is a permutation matrix

Tl;dr: C ⊆ conv(V )

Notice: Separability =⇒ V contains I as submatrix =⇒ C ⊆ ∆ = conv(V ) =⇒ SSC

Theorem
If M = UV with V SSC, U full rank exists, then it is the unique solution to

min
U∈Rm×r

Vol(U) : Conv(M) ⊆ Conv(U)

Notice2: SSC1 ensures the minimality, SSC2 ensures the uniqueness

Fu, X., Ma, W.K., Huang, K., Sidiropoulos, N.D.: Blind separation of quasi-stationary sources: exploiting convex

geometry in covariance domain. IEEE Transactions on Signal Processing 63(9), 2306–2320 (2015)



Sufficiently Scattered Condition

Separability leads to fast and robust algorithms, but it is a strong assumption

A column stochastic matrix V is sufficiently scattered if

SSC1: C := {x | 1 = e>x ≥
√
r − 1‖x‖} ⊆ conv(V )

SSC2: if Q is orthogonal and conv(V ) ⊆ conv(Q) then
Q is a permutation matrix

Tl;dr: C ⊆ conv(V )

Notice: Separability =⇒ V contains I as submatrix =⇒ C ⊆ ∆ = conv(V ) =⇒ SSC

Theorem
If M = UV with V SSC, U full rank exists, then it is the unique solution to

min
U∈Rm×r

Vol(U) : Conv(M) ⊆ Conv(U)

Notice2: SSC1 ensures the minimality, SSC2 ensures the uniqueness

Fu, X., Ma, W.K., Huang, K., Sidiropoulos, N.D.: Blind separation of quasi-stationary sources: exploiting convex

geometry in covariance domain. IEEE Transactions on Signal Processing 63(9), 2306–2320 (2015)



Sufficiently Scattered Condition

Separability leads to fast and robust algorithms, but it is a strong assumption

A column stochastic matrix V is sufficiently scattered if

SSC1: C := {x | 1 = e>x ≥
√
r − 1‖x‖} ⊆ conv(V )

SSC2: if Q is orthogonal and conv(V ) ⊆ conv(Q) then
Q is a permutation matrix

Tl;dr: C ⊆ conv(V )

Notice: Separability =⇒ V contains I as submatrix =⇒ C ⊆ ∆ = conv(V ) =⇒ SSC

Theorem
If M = UV with V SSC, U full rank exists, then it is the unique solution to

min
U∈Rm×r

Vol(U) : Conv(M) ⊆ Conv(U)

Notice2: SSC1 ensures the minimality, SSC2 ensures the uniqueness

Fu, X., Ma, W.K., Huang, K., Sidiropoulos, N.D.: Blind separation of quasi-stationary sources: exploiting convex

geometry in covariance domain. IEEE Transactions on Signal Processing 63(9), 2306–2320 (2015)



Sufficiently Scattered Condition

Separability leads to fast and robust algorithms, but it is a strong assumption

A column stochastic matrix V is sufficiently scattered if

SSC1: C := {x | 1 = e>x ≥
√
r − 1‖x‖} ⊆ conv(V )

SSC2: if Q is orthogonal and conv(V ) ⊆ conv(Q) then
Q is a permutation matrix

Tl;dr: C ⊆ conv(V )

Notice: Separability =⇒ V contains I as submatrix =⇒ C ⊆ ∆ = conv(V ) =⇒ SSC

Theorem
If M = UV with V SSC, U full rank exists, then it is the unique solution to

min
U∈Rm×r

Vol(U) : Conv(M) ⊆ Conv(U)

Notice2: SSC1 ensures the minimality, SSC2 ensures the uniqueness

Fu, X., Ma, W.K., Huang, K., Sidiropoulos, N.D.: Blind separation of quasi-stationary sources: exploiting convex

geometry in covariance domain. IEEE Transactions on Signal Processing 63(9), 2306–2320 (2015)



Simplex Volume Minimization

Exact Case:
minU∈Rm×r Vol(U) : Conv(M) ⊆ Conv(U)

Inexact Case:

minU,V ‖M − UV ‖2F + λ log det(U>U) : V column stochastic

Alternating Method: Given (Ũ, Ṽ ) initial approximation,

Update of U Update of V

log det(A) ≤ 〈B−1,A〉+ log det(B)− r

with = iff B = A � 0

‖M − UṼ ‖2F + λ log det(U>U) ≤
〈UU>,E〉 − 〈U,C〉+ b

where E = λ(Ũ>Ũ)−1 + Ṽ Ṽ>,
C = 2MṼ T and b do not depend on U

min
U

∑
i

u>i Eui − c>i ui

are m quadratic and strongly convex
optimization problems on the rows of U

‖M − ŨV ‖2F + λ log det(Ũ>Ũ) =

〈VV>,E〉 − 〈V ,C〉+ b

where E = W̃>W̃ , C = 2ŨTM and b do
not depend on V

min
V

∑
i

v>i Evi − c>i vi : V col. stoc.

are n quadratic and strongly convex
optimization problems on the columns of V ,
over convex domains (unit simplices)
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International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3402–3406 (2019)
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Facet Identification



Facet Based Algorithms

PCA Preprocessing: Given M̃ = ŨV ∈ Rm×n and U of rank r we can always reduce to

Q(M̃ − ze>) = Q(Ũ − ze>)V ∈ R(r−1)×n

In other words, we have to find a simplex: r vertices in r − 1 dimensions

Conv(U) = ∩r
i=1Si where Si := {x : θTi x ≤ 1}

Conv(M) ⊆ Conv(U) ⇐⇒ Θ =
(
θ1 . . . θr

)
Θ>M ≤ 1

MVIE Maximum Volume Inscribed Ellipsoid
Enumerates the facets of Conv(M), very
expensive

GFPI Greedy Facet-based Polytope Identification
Mixed integer programming, also expensive

In order to deal with facets GFPI works in the Polar Space
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Mixed integer programming, also expensive
Abdolali, M., Gillis, N.: Simplex-structured matrix factorization:

Sparsity-based identifiability and provably correct algorithms.

SIAM Journal on Mathematics of Data Science 3(2), 593–623

(2021)
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Polarity

S ⊆ Rr−1 S∗ := {θ : θT x ≤ 1 ∀x ∈ S}

• Swaps points and hyperplanes

{x : θT x = 1} θ

• Sends simplexes into simplexes

• It is an involution for convex sets

• Reverses Containments

Conv(M) ⊆ Conv(U) ⇐⇒ Conv(U)∗ ⊆ Conv(M)∗

⇐⇒ Θ>M ≤ 1 where Conv(U)∗ = Conv(Θ)

We can thus seek the simplex Θ with maximum
volume inside Conv(M)∗ as in

max
θ∈Rr−1×r

Vol(Θ) : ΘTM ≤ 1 (MaxVol)
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Identifiability and η-Expansion

Theorem (M.A., G.B., N.G., 2023)

Let M = UV ∈ Rr−1×n SSC and for any u ∈ Rr−1 define

V(u) := max
Θ∈Rr−1×r

Vol(Θ) : ΘT (M − ueT ) ≤ 1

Then V(u) is convex in u with unique minimum for u = Ue/r and Θ polar of U
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Theorem (M.A., G.B., N.G., 2023)

Let M = UV ∈ Rr−1×n be η-expanded and suppose u = Uv , v ∈ H. Then

max
Θ∈Rr−1×r

Vol(Θ) : ΘT (X − ueT ) ≤ 1

is solved uniquely by Θ polar of U
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Theorem (M.A., G.B., N.G., 2023)

Let M = UV ∈ Rr−1×n SSC and for any u ∈ Rr−1 define

V(u) := max
Θ∈Rr−1×r

Vol(Θ) : ΘT (M − ueT ) ≤ 1

Then V(u) is convex in u with unique minimum for u = Ue/r and Θ polar of U

Conjecture (M.A., G.B., N.G., 2023)

Let M = UV ∈ Rr−1×n be η-expanded and suppose u = Uv , v ∈ N. Then

max
Θ∈Rr−1×r

Vol(Θ) : ΘT (M − ueT ) ≤ 1

is solved uniquely by Θ polar of U



Maximum Volume in Dual

Algorithm Maximum Volume in the Dual (MV-Dual)

Input: Data matrix M̃ ∈ Rm×n and a factorization rank r

Output: A matrix Ũ ∈ Rm×r and a vector z such that M̃ ≈ z + ŨV where V is
column stochastic

1: Use PCA to reduce M̃ = z + QM with M ∈ Rr−1×n

2: Initialize u1 = Me/n, p = 1 and Θ ∈ N (0, 1)r−1×r

3: while not converged: p = 1 or ‖up−up−1‖2
‖up−1‖2

> 0.01 do
4: Solve

arg max
Θ∈Rr−1×r

Vol(Θ) : ΘT (X − vpe
T ) ≤ 1

via alternating optimization on the columns of Θ

5: Recover U by computing the polar of Conv (Θ)

6: Let up+1 ← Ue/r , and p = p + 1
7: end while
8: Compute Ũ = QU

Cost : PCA O(mnr) plus Maximization problem solver for a single column
O(nr2) times the number of iterations



Maximum Volume in Dual

Algorithm Maximum Volume in the Dual (MV-Dual)

Input: Data matrix M̃ ∈ Rm×n and a factorization rank r
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Algorithm Maximum Volume in the Dual (MV-Dual)
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3: while not converged: p = 1 or ‖up−up−1‖2
‖up−1‖2

> 0.01 do
4: Solve

arg max
Θ∈Rr−1×r ,∆∈Rr×n

Vol(Θ)2 − λ‖∆‖2F : ΘT (X − vpe
T ) ≤ 1 + ∆T

via alternating optimization on the columns of Θ,∆

5: Recover U by computing the polar of Conv (Θ)

6: Let up+1 ← Ue/r , and p = p + 1
7: end while
8: Compute Ũ = QU

Cost : PCA O(mnr) plus Maximization problem solver for a single column
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Experiments



Exact Case

U∗,V ∗ ground truth ERR = ‖U∗−U‖F
‖U∗‖F
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Noisy Case

U∗,V ∗ ground truth ERR = ‖U∗−U‖F
‖U∗‖F
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Noisy Case

U∗,V ∗ ground truth ERR = ‖U∗−U‖F
‖U∗‖F
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MVDual GFPI min vol min vol min vol SNPA MVIE HyperCSI MVES
SNR λ = 0.1 λ = 1 λ = 5
30 0.56±0.11 7.76±3.51 0.12±0.01 0.13±0.01 0.14±0.02 0.01±0.001 5.28±0.23 0.01±0.004 0.30±0.04
40 0.45±0.06 4.18±1.12 0.10±0.01 0.11±0.01 0.13±0.01 0.01±0.00 4.96±0.12 0.005±0.004 0.30±0.05
60 0.42±0.06 1.47±0.45 0.07±0.01 0.08±0.01 0.09±0.01 0.01±0.00 3.78±0.12 0.001±0.00 0.26±0.07



Unmixing Hyperspectral Imaging

MRSA(x , y) = 100
π

cos−1
(

(x−x̄e)>(y−ȳ e)
‖x−x̄e‖2‖y−ȳ e‖2

)
ERR =

∑
k MRSA(U∗k ,Uk)
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Projection of data points
and the symplex computed by MV-Dual

Abundance maps estimated by MV-Dual
From left to right: road, tree, soil, water

SNPA Min-Vol HyperCSI GFPI MV-Dual
MRSA 22.27 6.03 17.04 4.82 3.74
Time (s) 0.60 1.45 0.88 100∗ 43.51

Comparing the performances of MV-Dual with the state-of-the-art SSMF
algorithms on Jasper-Ridge data set. Numbers marked with * indicate that the

corresponding algorithms did not converge within 100 seconds.



Thank You!
Abdolali M., Barbarino G., and Gillis N. Dual simplex volume
maximization for simplex-structured matrix factorization. SIAM Journal
of Scientific Imaging, 2024.

Nicolas Gillis. Nonnegative matrix factorization. SIAM, Philadelphia,
2020.


	Low-Rank Nonnegative Matrix Factorization
	Simplex-Structured Matrix Factorization
	Separability and  Successive Projections Algorithm 
	SSC and Minimum Volume
	Facet Identification
	Experiments

