Dual Simplex Volume Maximization for Simplex-Structured Matrix Factorization

Maryam Abdolali ¹ Giovanni Barbarino ² Nicolas Gillis ²

03 December 2024

¹K.N.Toosi University, Tehran, Iran

²Université de Mons, Belgium

Low-Rank Nonnegative Matrix Factorization

Given n data points m_j (j = 1, 2, ..., n), we would like to understand the underlying structure of this data through linear dimensionality reduction: find a set of r basis vectors u_k (1 ≤ k ≤ r) so that for some weights v_{kj}
 This is equivalent to the low-rank approximation of matrix M.

 $M = [m_1 \ m_2 \ \dots \ m_n] \approx [u_1 \ u_2 \ \dots \ u_r] [v_1 \ v_2 \ \dots \ v_n] = UV$

How to measure the error ||M − UV||?
 Ex. PCA/truncated SVD use ||X|| or ||X||²_F

 m_i

What constraints should the factors U ∈ Ω_U and V ∈ Ω_V satisfy?
 Ex. PCA has no constraints, k-means a single '1' per column of V.

- Given n data points m_j (j = 1, 2, ..., n), we would like to understand the underlying structure of this data through linear dimensionality reduction: find a set of r basis vectors u_k (1 ≤ k ≤ r) so that for some weights v_{kj}
- This is equivalent to the low-rank approximation of matrix M:

 $M = [m_1 m_2 \ldots m_n] \approx [u_1 u_2 \ldots u_r] [v_1 v_2 \ldots v_n] = UV$

- How to measure the error ||M UV||?
 Ex. PCA/truncated SVD use ||X|| or ||X||²_F.
- What constraints should the factors U ∈ Ω_U and V ∈ Ω_V satisfy?
 Ex. PCA has no constraints, k-means a single '1' per column of V.

- Given n data points m_j (j = 1, 2, ..., n), we would like to understand the underlying structure of this data through linear dimensionality reduction: find a set of r basis vectors u_k (1 ≤ k ≤ r) so that for some weights v_{kj}
- This is equivalent to the low-rank approximation of matrix M:

$$M = [m_1 m_2 \ldots m_n] \approx [u_1 u_2 \ldots u_r] [v_1 v_2 \ldots v_n] = UV$$

- How to measure the error ||M UV||?
 - **Ex.** PCA/truncated SVD use ||X|| or $||X||_F^2$.
- What constraints should the factors U ∈ Ω_U and V ∈ Ω_V satisfy?
 Ex. PCA has no constraints, k-means a single '1' per column of V.

- Given n data points m_j (j = 1, 2, ..., n), we would like to understand the underlying structure of this data through linear dimensionality reduction: find a set of r basis vectors u_k (1 ≤ k ≤ r) so that for some weights v_{kj}
- This is equivalent to the low-rank approximation of matrix M:

$$M = [m_1 m_2 \ldots m_n] \approx [u_1 u_2 \ldots u_r] [v_1 v_2 \ldots v_n] = UV$$

- How to measure the error ||M UV||?
 - **Ex.** PCA/truncated SVD use ||X|| or $||X||_F^2$.
- What constraints should the factors U ∈ Ω_U and V ∈ Ω_V satisfy?
 Ex. PCA has no constraints, k-means a single '1' per column of V.

- Given n data points m_j (j = 1, 2, ..., n), we would like to understand the underlying structure of this data through linear dimensionality reduction: find a set of r basis vectors u_k (1 ≤ k ≤ r) so that for some weights v_{kj}
- This is equivalent to the low-rank approximation of matrix M:

$$M = [m_1 m_2 \ldots m_n] \approx [u_1 u_2 \ldots u_r] [v_1 v_2 \ldots v_n] = UV$$

- How to measure the error ||M UV||?
 - **Ex.** PCA/truncated SVD use ||X|| or $||X||_F^2$.
- What constraints should the factors U ∈ Ω_U and V ∈ Ω_V satisfy?
 Ex. PCA has no constraints, k-means a single '1' per column of V.

Given a matrix $M \in \mathbb{R}^{p \times n}_+$ and a factorization rank $r \ll \min(p, n)$, find $U \in \mathbb{R}^{p \times r}_+$ and $V \in \mathbb{R}^{r \times n}_+$ such that

$$\min_{U \ge 0, V \ge 0} ||M - UV||_F^2 = \sum_{i,j} (M - UV)_{ij}^2$$
(NMF)

NMF is a linear dimensionality reduction technique for nonnegative data :

$$\underbrace{\mathcal{M}(:,i)}_{\geq 0} \approx \sum_{k=1}^{r} \underbrace{\mathcal{U}(:,k)}_{\geq 0} \underbrace{\mathcal{V}(k,i)}_{\geq 0} \quad \text{for all}$$

Why nonnegativity?

→ Interpretability: Nonnegativity constraints lead to easily interpretable factors (and a sparse and part-based representation)
 → Many applications. image processing, text mining, audio source separation, recommender systems, hyperspectral unmixing, community detection, clustering, etc.

Given a matrix $M \in \mathbb{R}^{p \times n}_+$ and a factorization rank $r \ll \min(p, n)$, find $U \in \mathbb{R}^{p \times r}_+$ and $V \in \mathbb{R}^{r \times n}_+$ such that

$$\min_{U \ge 0, V \ge 0} ||M - UV||_F^2 = \sum_{i,j} (M - UV)_{ij}^2$$
(NMF)

NMF is a linear dimensionality reduction technique for nonnegative data :

$$\underbrace{M(:,i)}_{\geq 0} \approx \sum_{k=1}^{r} \underbrace{U(:,k)}_{\geq 0} \underbrace{V(k,i)}_{\geq 0} \quad \text{for all } i$$

Why nonnegativity?

→ Interpretability: Nonnegativity constraints lead to easily interpretable factors (and a sparse and part-based representation)
 → Many applications. image processing, text mining, audio source separation recommender systems, hyperspectral unmixing, community detection, clustering, etc.

Given a matrix $M \in \mathbb{R}^{p \times n}_+$ and a factorization rank $r \ll \min(p, n)$, find $U \in \mathbb{R}^{p \times r}_+$ and $V \in \mathbb{R}^{r \times n}_+$ such that

$$\min_{U \ge 0, V \ge 0} ||M - UV||_F^2 = \sum_{i,j} (M - UV)_{ij}^2$$
(NMF)

NMF is a linear dimensionality reduction technique for nonnegative data :

$$\underbrace{M(:,i)}_{\geq 0} \approx \sum_{k=1}^{r} \underbrace{U(:,k)}_{\geq 0} \underbrace{V(k,i)}_{\geq 0} \quad \text{for all } i$$

Why nonnegativity?

 \rightarrow Interpretability: Nonnegativity constraints lead to easily interpretable factors (and a sparse and part-based representation)

 \rightarrow Many applications. image processing, text mining, audio source separation, recommender systems, hyperspectral unmixing, community detection, clustering, etc.

Application 1: topic recovery and document classification

• $M_{i,j}$ are the frequencies of word *i* in document *j*

- The columns $U_{:,k}$ represent the topics in the documents
- Weights in V_{i,j} allow to assign each document j to its corresponding topics

Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

Application 1: topic recovery and document classification

Sets of words found simultaneously in different texts

- *M_{i,j}* are the frequencies of word *i* in document *j*
- The columns $U_{:,k}$ represent the topics in the documents

Weights in V_{i,j} allow to assign each document j to its corresponding topics

Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

Application 1: topic recovery and document classification

Sets of words found simultaneously in different texts

- *M_{i,j}* are the frequencies of word *i* in document *j*
- The columns $U_{:,k}$ represent the topics in the documents
- Weights in $V_{i,j}$ allow to assign each document j to its corresponding topics

Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

Application 2: recommender systems

In some cases, some entries are missing/unknown

For example, we would like to predict how much someone is going to like a movie based on its movie preferences (e.g., 1 to 5 stars) :

	Users					
Movies	2 ? 1 5 ?	3 1 ? 4 1	2 ? 4 ? 2	? 3 1 3 ?	? 2 ? 2 4 3	
	L ±		5	т	J _	

Movies ratings are modeled as linear combinations of 'feature' movies (related to the genres - child oriented, serious vs. escapist, thriller, romantic, etc.)

$$\underbrace{M(i,:)}_{\text{movie }i} \approx \sum_{k=1}^{r} \underbrace{U(i,k)}_{\text{weights}} \underbrace{V(k,:)}_{\text{genre }k}$$

Application 2: recommender systems

In some cases, some entries are missing/unknown

For example, we would like to predict how much someone is going to like a movie based on its movie preferences (e.g., 1 to 5 stars) :

 Users

 2
 3
 2
 ?
 ?

 ?
 1
 ?
 3
 2

 1
 ?
 4
 1
 ?

 5
 4
 ?
 3
 2

 ?
 1
 2
 ?
 4

 1
 ?
 3
 4
 3

Movies ratings are modeled as linear combinations of 'feature' movies (related to the genres - child oriented, serious vs. escapist, thriller, romantic, etc.)

$$\underbrace{M(i,:)}_{\text{movie }i} \approx \sum_{k=1}^{r} \underbrace{U(i,k)}_{\text{weights}} \underbrace{V(k,:)}_{\text{gence }k}$$

For example, using a rank-2 factorization on the Netflix dataset, female vs. male and serious vs. escapist behaviors were extracted

Koren, Bell, Volinsky, *Matrix Factorization Techniques for Recommender Systems, 2009* Winners of the Netflix prize 1,000,000\$

Simplex-Structured Matrix Factorization

$$M = UV \iff M' = MD_M = (UD_U)(D_U^{-1}VD_M) = U'V'$$

The columns of M' are convex combinations of the columns of U':

$$M'_{ij} = \sum_{i=1}^k U'_{ii} V'_{ij}$$
 with $\sum_{i=1}^k V'_{ij} = 1 \ \forall j, \ V'_{ij} \ge 0 \ \forall ij$

In other terms

 $\operatorname{conv}(M') \subseteq \operatorname{conv}(U') \subseteq \Delta^n,$

where $\operatorname{conv}(X)$ is the convex hull of the columns of X, and $\Delta^n = \{x \in \mathbb{R}^n \mid x \ge 0, \sum_{i=1}^n x_i = 1\}$ is the unit simplex

Exact NMF \equiv Find *r* points whose convex hull is nested between two given polytopes (Nested Polytope Problem)

$$M = UV \iff M' = MD_M = (UD_U)(D_U^{-1}VD_M) = U'V'$$

The columns of M' are convex combinations of the columns of U':

$$\mathcal{M}'_{ij} = \sum_{i=1}^k \mathcal{U}'_{ii} \, \mathcal{V}'_{ij} \quad ext{ with } \quad \sum_{i=1}^k \mathcal{V}'_{ij} = 1 \ orall j, \ \mathcal{V}'_{ij} \geq 0 \, orall j$$

In other terms

 ${\sf conv}(M') \ \subseteq \ {\sf conv}(U') \ \subseteq \ \Delta^n,$

where conv(X) is the convex hull of the columns of X, and $\Delta^n = \{x \in \mathbb{R}^n \mid x \ge 0, \sum_{i=1}^n x_i = 1\}$ is the unit simplex

Exact NMF \equiv Find *r* points whose convex hull is nested between two given polytopes (Nested Polytope Problem)

$$M = UV \iff M' = MD_M = (UD_U)(D_U^{-1}VD_M) = U'V'$$

The columns of M' are convex combinations of the columns of U':

$$M'_{:j} = \sum_{i=1}^k U'_{:i} V'_{ij}$$
 with $\sum_{i=1}^k V'_{ij} = 1 \ \forall j, \ V'_{ij} \ge 0 \ \forall ij$

In other terms

 $\operatorname{conv}(M') \subseteq \operatorname{conv}(U') \subseteq \Delta^n,$

where conv(X) is the convex hull of the columns of X, and $\Delta^n = \{x \in \mathbb{R}^n | x \ge 0, \sum_{i=1}^n x_i = 1\}$ is the unit simplex

Exact NMF \equiv Find *r* points whose convex hull is nested between two given polytopes (Nested Polytope Problem)

$$M = UV \iff M' = MD_M = (UD_U)(D_U^{-1}VD_M) = U'V'$$

The columns of M' are convex combinations of the columns of U':

$$M'_{:j} = \sum_{i=1}^k U'_{:i} V'_{ij}$$
 with $\sum_{i=1}^k V'_{ij} = 1 \ \forall j, \ V'_{ij} \ge 0 \ \forall ij$

In other terms

 $\operatorname{conv}(M') \subseteq \operatorname{conv}(U') \subseteq \Delta^n,$

where conv(X) is the convex hull of the columns of X, and $\Delta^n = \{x \in \mathbb{R}^n | x \ge 0, \sum_{i=1}^n x_i = 1\}$ is the unit simplex

Exact NMF \equiv Find *r* points whose convex hull is nested between two given polytopes (Nested Polytope Problem)

$$(\mathsf{NMF}) \qquad M = UV \iff \mathsf{conv}(M') \subseteq \mathsf{conv}(U') \subseteq \Delta^n \qquad (NPP)$$

Exact NMF \equiv Find *r* points whose convex hull is nested between two given polytopes (Nested Polytope Problem)

Vavasis, S.A.: On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization 20(3), 1364-1377 (2009)

Simplex-Structured Matrix Factorization requires V nonnegative and column stochastic: the columns of M are approximated as convex combinations of the basis vectors in U

 $\min_{U,V \ge 0} ||M - UV||_F^2 : V(:,j) \in \Delta := \{x \ge 0 : e^T x = 1\} \quad \forall j \quad (SSMF)$

Notice that we do not require M, U nonnegative or stochastic

Equivalently

Simplex-Structured Matrix Factorization requires V nonnegative and column stochastic: the columns of M are approximated as convex combinations of the basis vectors in U

 $\min_{U,V \ge 0} ||M - UV||_F^2 : V(:,j) \in \Delta := \{x \ge 0 : e^T x = 1\} \quad \forall j \quad (SSMF)$

Notice that we do not require M, U nonnegative or stochastic

Equivalently

Simplex-Structured Matrix Factorization requires V nonnegative and column stochastic: the columns of M are approximated as convex combinations of the basis vectors in U

 $\min_{U,V \ge 0} ||M - UV||_F^2 : V(:,j) \in \Delta := \{x \ge 0 : e^T x = 1\} \quad \forall j \quad (SSMF)$

Notice that we do not require M, U nonnegative or stochastic

Equivalently

Simplex-Structured Matrix Factorization requires V nonnegative and column stochastic: the columns of M are approximated as convex combinations of the basis vectors in U

 $\min_{U,V \ge 0} ||M - UV||_F^2 : V(:,j) \in \Delta := \{x \ge 0 : e^T x = 1\} \quad \forall j \quad (SSMF)$

Notice that we do not require M, U nonnegative or stochastic

Equivalently

Solution to SSMF

$Conv(M) \subseteq Conv(U) \qquad U \in \mathbb{R}^{m \times r}$

Exists? Yes for $r \ge \text{dimaff}(M) + 1 \dots$

but it is far from being Unique

Solution to SSMF

$$Conv(M) \subseteq Conv(U)$$
 $U \in \mathbb{R}^{m \times r}$

Exists? Yes for $r \ge \text{dimaff}(M) + 1 \dots$

but it is far from being Unique

Solution to SSMF

$$Conv(M) \subseteq Conv(U) \qquad U \in \mathbb{R}^{m imes r}$$

Exists? Yes for $r \ge \text{dimaff}(M) + 1 \dots$

This is a problem for the Interpretability of the solution and the Stability of the algorithms

Application: Blind hyperspectral unmixing

Figure 1: Urban hyperspectral image, 162 spectral bands and 307-by-307 pixels.

Problem. Identify the materials and classify the pixels

Application: Blind hyperspectral unmixing

Figure 1: Urban hyperspectral image, 162 spectral bands and 307-by-307 pixels. Problem. Identify the materials and classify the pixels

Application: Blind hyperspectral unmixing

 $\approx \sum_{k=1}$

spectral signature of *j*th pixel

Figure 1: Decomposition of the Urban dataset

spectral signature of *j*th pixel

spectral signature

Figure 1: Decomposition of the Urban dataset

spectral signature of *j*th pixel

spectral signature of kth endmember

abundance of kth endmember in *j*th pixel

Figure 1: Decomposition of the Urban dataset

Separability and Successive Projections Algorithm

Separability of *M*: for an *r*-index set *K* and a *V* column stochastic, $M = \underbrace{M(:,K)}_{U} V$ $M \qquad U \qquad V$

Arora, Ge, Kannan, Moitra, Computing a Nonnegative Matrix Factorization - Provably, STOC 2012

- U is a subset of the columns of M
- $V \in \mathbb{R}^{r imes n}_+$ has I_r as submatrix (up to permutation)
- $\operatorname{conv}(U) = \operatorname{conv}(M)$, so $M = \widetilde{U}\widetilde{V} \implies \operatorname{conv}(U) \subseteq \operatorname{conv}(\widetilde{U})$

Separability of *M*: for an *r*-index set *K* and a *V* column stochastic, $M = \underbrace{M(:, K)}_{U} V$ $M \qquad U \qquad V$

Arora, Ge, Kannan, Moitra, Computing a Nonnegative Matrix Factorization - Provably, STOC 2012

- U is a subset of the columns of M
- $V \in \mathbb{R}^{r imes n}_+$ has I_r as submatrix (up to permutation)
- $\operatorname{conv}(U) = \operatorname{conv}(M)$, so $M = \widetilde{U}\widetilde{V} \implies \operatorname{conv}(U) \subseteq \operatorname{conv}(\widetilde{U})$

Arora, Ge, Kannan, Moitra, Computing a Nonnegative Matrix Factorization - Provably, STOC 2012

- U is a subset of the columns of M
- $V \in \mathbb{R}^{r imes n}_+$ has I_r as submatrix (up to permutation)
- $\operatorname{conv}(U) = \operatorname{conv}(M)$, so $M = \widetilde{U}\widetilde{V} \implies \operatorname{conv}(U) \subseteq \operatorname{conv}(\widetilde{U})$

Arora, Ge, Kannan, Moitra, Computing a Nonnegative Matrix Factorization - Provably, STOC 2012

- U is a subset of the columns of M
- $V \in \mathbb{R}^{r \times n}_+$ has I_r as submatrix (up to permutation)
- $\operatorname{conv}(U) = \operatorname{conv}(M)$, so $M = \widetilde{U}\widetilde{V} \implies \operatorname{conv}(U) \subseteq \operatorname{conv}(\widetilde{U})$

Given M = UV separable, U full column rank equal to r, repeat for r times:

- 1: Find $j^* = \operatorname{argmax}_i ||M(:,j)||$ and add it to \mathcal{K}
- 2: $M \leftarrow (I uu^T) M$ where $u = M(:,j^*)/||M(:,j^*)||$

The solution will be $U = M(:, \mathcal{K})$ and $V = U^{\dagger}M$

Given M = UV separable, U full column rank equal to r, repeat for r times:

- 1: Find $j^* = \operatorname{argmax}_i ||M(:,j)||$ and add it to \mathcal{K}
- 2: $M \leftarrow (I uu^T) M$ where $u = M(:, j^*)/||M(:, j^*)||$

The solution will be $U = M(:, \mathcal{K})$ and $V = U^{\dagger}M$

Given M = UV separable, U full column rank equal to r, repeat for r times:

- 1: Find $j^* = \operatorname{argmax}_i ||M(:,j)||$ and add it to \mathcal{K}
- 2: $M \leftarrow (I uu^T) M$ where $u = M(:, j^*)/||M(:, j^*)||$

The solution will be $U = M(:, \mathcal{K})$ and $V = U^{\dagger}M$

Given M = UV separable, U full column rank equal to r, repeat for r times:

- 1: Find $j^* = \operatorname{argmax}_i ||M(:,j)||$ and add it to \mathcal{K}
- 2: $M \leftarrow (I uu^T) M$ where $u = M(:,j^*)/||M(:,j^*)||$

The solution will be $U = M(:, \mathcal{K})$ and $V = U^{\dagger}M$

Given M = UV separable, U full column rank equal to r, repeat for r times:

- 1: Find $j^* = \operatorname{argmax}_i ||M(:,j)||$ and add it to \mathcal{K}
- 2: $M \leftarrow (I uu^T) M$ where $u = M(:,j^*)/||M(:,j^*)||$

The solution will be $U = M(:, \mathcal{K})$ and $V = U^{\dagger}M$

Given M = UV separable, U full column rank equal to r, repeat for r times:

1: Find $j^* = \operatorname{argmax}_i ||M(:,j)||$ and add it to \mathcal{K}

2:
$$M \leftarrow (I - uu^T) M$$
 where $u = M(:,j^*)/||M(:,j^*)||$

The solution will be $U = M(:, \mathcal{K})$ and $V = U^{\dagger}M$

Given M = UV separable, U full column rank equal to r, repeat for r times:

- 1: Find $j^* = \operatorname{argmax}_i ||M(:,j)||$ and add it to \mathcal{K}
- 2: $M \leftarrow (I uu^T) M$ where $u = M(:,j^*)/||M(:,j^*)||$

The solution will be $U = M(:, \mathcal{K})$ and $V = U^{\dagger}M$

Given M = UV separable, U full column rank equal to r, repeat for r times:

- 1: Find $j^* = \operatorname{argmax}_i ||M(:,j)||$ and add it to \mathcal{K}
- 2: $M \leftarrow (I uu^T) M$ where $u = M(:,j^*)/||M(:,j^*)||$

The solution will be $U = M(:, \mathcal{K})$ and $V = U^{\dagger}M$

Given M = UV separable, U full column rank equal to r, repeat for r times:

- 1: Find $j^* = \operatorname{argmax}_i ||M(:,j)||$ and add it to \mathcal{K}
- 2: $M \leftarrow (I uu^T) M$ where $u = M(:, j^*)/||M(:, j^*)||$

The solution will be $U = M(:, \mathcal{K})$ and $V = U^{\dagger}M$

Given M = UV separable, U full column rank equal to r, repeat for r times:

- 1: Find $j^* = \operatorname{argmax}_i ||M(:,j)||$ and add it to \mathcal{K}
- 2: $M \leftarrow (I uu^T) M$ where $u = M(:, j^*)/||M(:, j^*)||$

The solution will be $U = M(:, \mathcal{K})$ and $V = U^{\dagger}M$

Perturbation robustness: suppose M = UV + N with UV separable, U full rank and each column of N with norm at most ε

• If $\varepsilon \leq \mathcal{O}(\sigma_r(U)/\mathcal{K}(U)^2)$ then SPA extract a matrix \widetilde{U} such that

$$\max_{1 \le k \le r} \|U(:,k) - \widetilde{U}(:,k)\| \le \mathcal{O}\left(\varepsilon \mathcal{K}(U)^2\right) \quad \text{(sharp for } r \ge 3\text{)}$$

Gillis, N., Vavasis, S.A.: Fast and robust recursive algorithms for separable nonnegative matrix factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(4), 698–714 (2013)

Barbarino G, Gillis N.: On the Robustness of the Successive Projection Algorithm, (2024) Arxiv

Variants to improve robustness to perturbations and outliers:

• SPA²: Apply SPA to M to obtain U_1 and apply SPA to $U_1^{\dagger}M = (U_1^{\dagger}U)V + U_1^{\dagger}N$

$$\varepsilon \leq \mathcal{O}(\sigma_r(U)/\mathcal{K}(U)^2) \implies \max_{1 \leq k \leq r} \|U(:,k) - \widetilde{U}(:,k)\| \leq \mathcal{O}(\varepsilon \mathcal{K}(U)) \quad (\text{sharp})$$

• MVE: Minimum Volume Ellipsoid $A \succ 0$ s.t. $m_j^{\top} A m_j \leq 1 \; \forall j$ and use $(A^{-1/2})^{\dagger}$

$$\varepsilon \leq \mathcal{O}(\sigma_r(U)/(r\sqrt{r})) \implies \max_{1 \leq k \leq r} \|U(:,k) - \widetilde{U}(:,k)\| \leq \mathcal{O}(\varepsilon \mathcal{K}(U)) \quad (\text{sharp})$$

· Pandomized (Smoothed variants (PandNME, VCA); instead of looking for

Perturbation robustness: suppose M = UV + N with UV separable, U full rank and each column of N with norm at most ε

• If $\varepsilon \leq \mathcal{O}(\sigma_r(U)/\mathcal{K}(U)^2)$ then SPA extract a matrix \widetilde{U} such that

$$\max_{1 \le k \le r} \|U(:,k) - \widetilde{U}(:,k)\| \le \mathcal{O}\left(\varepsilon \mathcal{K}(U)^2\right) \quad \text{(sharp for } r \ge 3\text{)}$$

Variants to improve robustness to perturbations and outliers:

• SPA²: Apply SPA to *M* to obtain U_1 and apply SPA to $U_1^{\dagger}M = (U_1^{\dagger}U)V + U_1^{\dagger}N$

$$\varepsilon \leq \mathcal{O}(\sigma_r(U)/\mathcal{K}(U)^2) \implies \max_{1 \leq k \leq r} \|U(:,k) - \widetilde{U}(:,k)\| \leq \mathcal{O}(\varepsilon \mathcal{K}(U)) \quad (\mathsf{sharp})$$

Gillis, N., Ma, W.K.: Enhancing pure-pixel identification performance via preconditioning. SIAM Journal on Imaging Sciences 8(2), 1161–1186 (2015)

• MVE: Minimum Volume Ellipsoid $A \succ 0$ s.t. $m_j^\top A m_j \leq 1 \ \forall j$ and use $(A^{-1/2})^\dagger$

$$\varepsilon \leq \mathcal{O}(\sigma_r(U)/(r\sqrt{r})) \implies \max_{1 \leq k \leq r} \|U(:,k) - \widetilde{U}(:,k)\| \leq \mathcal{O}\left(\varepsilon \mathcal{K}(U)\right) \quad (\text{sharp})$$

• Randomized/Smoothed variants (RandNMF, VCA): instead of looking for $\arg\max_j ||M(:,j)||$ take a random $u \in \mathbb{R}^n$ and choose as vertex the average of the p

Perturbation robustness: suppose M = UV + N with UV separable, U full rank and each column of N with norm at most ε

• If $\varepsilon \leq \mathcal{O}(\sigma_r(U)/\mathcal{K}(U)^2)$ then SPA extract a matrix \widetilde{U} such that

$$\max_{1 \le k \le r} \|U(:,k) - \widetilde{U}(:,k)\| \le \mathcal{O}\left(\varepsilon \mathcal{K}(U)^2\right) \quad \text{(sharp for } r \ge 3\text{)}$$

Variants to improve robustness to perturbations and outliers:

• SPA²: Apply SPA to M to obtain U_1 and apply SPA to $U_1^{\dagger}M = (U_1^{\dagger}U)V + U_1^{\dagger}N$

$$\varepsilon \leq \mathcal{O}(\sigma_r(U)/\mathcal{K}(U)^2) \implies \max_{1 \leq k \leq r} \|U(:,k) - \widetilde{U}(:,k)\| \leq \mathcal{O}\left(\varepsilon \mathcal{K}(U)\right) \quad (\mathsf{sharp})$$

• MVE: Minimum Volume Ellipsoid $A \succ 0$ s.t. $m_j^{\top} A m_j \leq 1 \ \forall j$ and use $(A^{-1/2})^{\dagger}$

$$arepsilon \leq \mathcal{O}(\sigma_r(U)/(r\sqrt{r})) \implies \max_{1 \leq k \leq r} \|U(:,k) - \widetilde{U}(:,k)\| \leq \mathcal{O}\left(arepsilon\mathcal{K}(U)
ight) \quad ext{(sharp)}$$

Gillis, N., Vavasis, S.A.: Semidefinite programming based preconditioning for more robust near-separable nonnegative matrix factorization. SIAM Journal on Optimization 25(1), 677–698 (2015)

 Randomized/Smoothed variants (RandNMF, VCA): instead of looking for argmax_j||M(:,j)|| take a random u ∈ ℝⁿ and choose as vertex the average of the p columns of M corresponding to the p greatest entries of u^TM

Perturbation robustness: suppose M = UV + N with UV separable, U full rank and each column of N with norm at most ε

• If $\varepsilon \leq \mathcal{O}(\sigma_r(U)/\mathcal{K}(U)^2)$ then SPA extract a matrix \widetilde{U} such that

$$\max_{1 \le k \le r} \|U(:,k) - \widetilde{U}(:,k)\| \le \mathcal{O}\left(\varepsilon \mathcal{K}(U)^2\right) \quad \text{(sharp for } r \ge 3\text{)}$$

Variants to improve robustness to perturbations and outliers:

• SPA²: Apply SPA to *M* to obtain U_1 and apply SPA to $U_1^{\dagger}M = (U_1^{\dagger}U)V + U_1^{\dagger}N$

$$\varepsilon \leq \mathcal{O}(\sigma_r(U)/\mathcal{K}(U)^2) \implies \max_{1 \leq k \leq r} \|U(:,k) - \widetilde{U}(:,k)\| \leq \mathcal{O}\left(\varepsilon \mathcal{K}(U)\right) \quad (\text{sharp})$$

• MVE: Minimum Volume Ellipsoid $A \succ 0$ s.t. $m_j^{\top} A m_j \leq 1 \; \forall j$ and use $(A^{-1/2})^{\dagger}$

$$\varepsilon \leq \mathcal{O}(\sigma_r(U)/(r\sqrt{r})) \implies \max_{1 \leq k \leq r} \|U(:,k) - \widetilde{U}(:,k)\| \leq \mathcal{O}(\varepsilon \mathcal{K}(U)) \quad (\text{sharp})$$

 Randomized/Smoothed variants (RandNMF, VCA): instead of looking for argmax_j||M(:,j)|| take a random u ∈ ℝⁿ and choose as vertex the average of the p columns of M corresponding to the p greatest entries of u^TM

Vu Thanh, O., Nadisic, N., Gillis, N.: Randomized successive projection algorithm, GRETSI (2022).

Nadisic, N., Gillis, N., Kervazo, C.: Smoothed separable nonnegative matrix factorization. Linear Algebra and its Applications 676, 174–204 (2023).

SNPA: Successive Nonnegative Projection Algorithm

Modify the projection step as

1: Project the original M on $conv(M(:, \mathcal{K}))$ to obtain M_p

2: Find $j^* = \operatorname{argmax}_j ||M(:,j) - M_{\scriptscriptstyle P}(:,j)||$ and add it to $\mathcal K$

When $M_{\rho} = 0$, return $U = M(:, \mathcal{K})$

- \checkmark Can handle the deficient rank case rk(U) < r
- imes The bound on the error is $\mathcal{O}(arepsilon\widetilde{\mathcal{K}}(U)^3)$
- ✓ If U is full rank, the error is the same as SPA and empirically it is more robust

SNPA: Successive Nonnegative Projection Algorithm

Modify the projection step as

1: Project the original M on $conv(M(:, \mathcal{K}))$ to obtain M_p

2: Find $j^* = \operatorname{argmax}_j ||M(:,j) - M_p(:,j)||$ and add it to \mathcal{K}

When $M_p = 0$, return $U = M(:, \mathcal{K})$

- \checkmark Can handle the deficient rank case rk(U) < r
- imes The bound on the error is $\mathcal{O}(arepsilon\widetilde{\mathcal{K}}(U)^3)$
- ✓ If U is full rank, the error is the same as SPA and empirically it is more robust

Gillis, N.: Successive nonnegative projection algorithm for robust nonnegative blind source separation. SIAM Journal on Imaging Sciences 7(2), 1420-1450 (2014)

SNPA: Successive Nonnegative Projection Algorithm

Modify the projection step as

1: Project the original M on $conv(M(:, \mathcal{K}))$ to obtain M_p

2: Find $j^* = \operatorname{argmax}_j ||M(:,j) - M_p(:,j)||$ and add it to \mathcal{K}

When $M_p = 0$, return $U = M(:, \mathcal{K})$

- \checkmark Can handle the deficient rank case rk(U) < r
- imes The bound on the error is $\mathcal{O}(arepsilon\widetilde{\mathcal{K}}(U)^3)$
- ✓ If U is full rank, the error is the same as SPA and empirically it is more robust

SNPA: Successive Nonnegative Projection Algorithm

Modify the projection step as

1: Project the original M on $conv(M(:, \mathcal{K}))$ to obtain M_p

2: Find $j^* = \operatorname{argmax}_j ||M(:,j) - M_p(:,j)||$ and add it to \mathcal{K}

When $M_p = 0$, return $U = M(:, \mathcal{K})$

- \checkmark Can handle the deficient rank case rk(U) < r
- imes The bound on the error is $\mathcal{O}(arepsilon\widetilde{\mathcal{K}}(U)^3)$
- ✓ If U is full rank, the error is the same as SPA and empirically it is more robust

SNPA: Successive Nonnegative Projection Algorithm

Modify the projection step as

1: Project the original M on $conv(M(:, \mathcal{K}))$ to obtain M_p

2: Find $j^* = \operatorname{argmax}_j ||M(:,j) - M_p(:,j)||$ and add it to \mathcal{K}

When $M_p = 0$, return $U = M(:, \mathcal{K})$

- ✓ Can handle the deficient rank case rk(U) < r
- × The bound on the error is $\mathcal{O}(\varepsilon \widetilde{\mathcal{K}}(U)^3)$
- ✓ If U is full rank, the error is the same as SPA and empirically it is more robust

Gillis, N.: Successive nonnegative projection algorithm for robust nonnegative blind source separation. SIAM Journal on Imaging Sciences 7(2), 1420–1450 (2014)

SSC and Minimum Volume

Separability leads to fast and robust algorithms, but it is a strong assumption

A column stochastic matrix V is sufficiently scattered if

SSC1: $\mathcal{C} := \{x \mid 1 = e^\top x \ge \sqrt{r-1} \|x\|\} \subseteq \operatorname{conv}(V)$

SSC2: if Q is orthogonal and $conv(V) \subseteq conv(Q)$ then Q is a permutation matrix

 $\mathsf{TI};\mathsf{dr}:\qquad\qquad \mathcal{C}\subseteq\mathsf{conv}(V)$

Notice: Separability $\implies V$ contains I as submatrix $\implies C \subseteq \Delta = \operatorname{conv}(V) \implies SSC$

If M = UV with V SSC, U full rank exists, then it is the unique solution to $\min_{U \in \mathbb{R}^{m \times r}} Vol(U) : Conv(M) \subseteq Conv(U)$

Notice2: SSC1 ensures the minimality, SSC2 ensures the uniqueness

Separability leads to fast and robust algorithms, but it is a strong assumption

A column stochastic matrix V is sufficiently scattered if

SSC1:
$$C := \{x \mid 1 = e^{\top}x \ge \sqrt{r-1} \|x\|\} \subseteq \operatorname{conv}(V)$$

SSC2: if Q is orthogonal and $conv(V) \subseteq conv(Q)$ then Q is a permutation matrix

 $\mathsf{TI};\mathsf{dr}:\qquad\qquad \mathcal{C}\subseteq\mathsf{conv}(V)$

Notice: Separability $\implies V$ contains I as submatrix $\implies C \subseteq \Delta = \operatorname{conv}(V) \implies SSC$

Theorem

If M = UV with V SSC, U full rank exists, then it is the **unique solution** to $\min_{U \in \mathbb{R}^{m \times r}} Vol(U) : Conv(M) \subseteq Conv(U)$

Notice2: SSC1 ensures the minimality, SSC2 ensures the uniqueness

Separability leads to fast and robust algorithms, but it is a strong assumption

A column stochastic matrix V is sufficiently scattered if

SSC1:
$$C := \{x \mid 1 = e^{\top}x \ge \sqrt{r-1} \|x\|\} \subseteq \operatorname{conv}(V)$$

SSC2: if Q is orthogonal and $conv(V) \subseteq conv(Q)$ then Q is a permutation matrix

Tl;dr: $C \subseteq \operatorname{conv}(V)$

Notice: Separability $\implies V$ contains I as submatrix $\implies C \subseteq \Delta = \operatorname{conv}(V) \implies SSC$

Theorem

If M = UV with V SSC, U full rank exists, then it is the **unique solution** to $\min_{U \in \mathbb{R}^{m \times r}} Vol(U) : Conv(M) \subseteq Conv(U)$

Notice2: SSC1 ensures the minimality, SSC2 ensures the uniqueness

Separability leads to fast and robust algorithms, but it is a strong assumption

A column stochastic matrix V is sufficiently scattered if

SSC1:
$$C := \{x \mid 1 = e^{\top}x \ge \sqrt{r-1} \|x\|\} \subseteq \operatorname{conv}(V)$$

SSC2: if Q is orthogonal and $conv(V) \subseteq conv(Q)$ then Q is a permutation matrix

Tl;dr: $C \subseteq \operatorname{conv}(V)$

Notice: Separability $\implies V$ contains I as submatrix $\implies C \subseteq \Delta = \operatorname{conv}(V) \implies SSC$

Theorem

If M = UV with V SSC, U full rank exists, then it is the **unique solution** to $\min_{U \in \mathbb{R}^{m \times r}} Vol(U) : Conv(M) \subseteq Conv(U)$

Notice2: SSC1 ensures the minimality, SSC2 ensures the uniqueness

Separability leads to fast and robust algorithms, but it is a strong assumption

A column stochastic matrix V is sufficiently scattered if

SSC1:
$$C := \{x \mid 1 = e^{\top}x \ge \sqrt{r-1} \|x\|\} \subseteq \operatorname{conv}(V)$$

SSC2: if Q is orthogonal and $conv(V) \subseteq conv(Q)$ then Q is a permutation matrix

Tl;dr: $\mathcal{C} \subseteq \operatorname{conv}(V)$

Notice: Separability $\implies V$ contains I as submatrix $\implies C \subseteq \Delta = \operatorname{conv}(V) \implies SSC$

Theorem

If M = UV with V SSC, U full rank exists, then it is the **unique solution** to $\min_{U \in \mathbb{R}^{m \times r}} Vol(U) : Conv(M) \subseteq Conv(U)$

Notice2: SSC1 ensures the minimality, SSC2 ensures the uniqueness

Separability leads to fast and robust algorithms, but it is a strong assumption

A column stochastic matrix V is sufficiently scattered if

SSC1:
$$C := \{x \mid 1 = e^{\top}x \ge \sqrt{r-1} \|x\|\} \subseteq \operatorname{conv}(V)$$

SSC2: if Q is orthogonal and $conv(V) \subseteq conv(Q)$ then Q is a permutation matrix

Tl;dr: $C \subseteq \operatorname{conv}(V)$

Notice: Separability $\implies V$ contains I as submatrix $\implies C \subseteq \Delta = \operatorname{conv}(V) \implies SSC$

Theorem

If M = UV with V SSC, U full rank exists, then it is the **unique solution** to $\min_{U \in \mathbb{R}^{m \times r}} Vol(U) : Conv(M) \subseteq Conv(U)$

Notice2: SSC1 ensures the minimality, SSC2 ensures the uniqueness

Exact Case:

$\min_{U \in \mathbb{R}^{m \times r}} Vol(U) : Conv(M) \subseteq Conv(U)$

Inexact Case:

 $\min_{U,V} \|M - UV\|_F^2 + \lambda \log \det(U^\top U) : V$ column stochastic

Alternating Method: Given $(\widetilde{U},\widetilde{V})$ initial approximation,

Update of U

 $\log \det(A) \le \langle B^{-1}, A \rangle + \log \det(B) - r$ with = iff $B = A \succ 0$

$$\begin{split} \|M - U\widetilde{V}\|_{F}^{2} + \lambda \log \det(U^{\top}U) \leq \\ \langle UU^{\top}, E \rangle - \langle U, C \rangle + b \\ \text{where } E = \lambda (\widetilde{U}^{\top}\widetilde{U})^{-1} + \widetilde{V}\widetilde{V}^{\top}, \\ C = 2M\widetilde{V}^{T} \text{ and } b \text{ do not depend on } U \end{split}$$

$$\min_{U} \sum_{i} u_i^\top E u_i - c_i^\top u_i$$

are m quadratic and strongly convex optimization problems on the rows of U

$$\begin{split} \|M - \widetilde{U}V\|_{F}^{2} + \lambda \log \det(\widetilde{U}^{\top}\widetilde{U}) = \\ \langle VV^{\top}, E \rangle - \langle V, C \rangle + b \end{split}$$
where $E = \widetilde{W}^{\top}\widetilde{W}, \ C = 2\widetilde{U}^{\top}M$ and b do not depend on V

$$\min_{V} \sum_{i} v_{i}^{+} Ev_{i} - c_{i}^{+} v_{i} : V \text{ col. stoc.}$$

are *n* quadratic and strongly convex
optimization problems on the columns of *V*,
over convex domains (unit simplices)

Exact Case:

$$\min_{U \in \mathbb{R}^{m \times r}} Vol(U) : Conv(M) \subseteq Conv(U)$$

Inexact Case:

$$\min_{U,V} \|M - UV\|_F^2 + \lambda \log \det(U^\top U)$$
 : V column stochastic

Leplat, V., Ang, A.M., Gillis, N.: Minimum-volume rank-deficient nonnegative matrix factoriza- tions. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3402–3406 (2019)

Alternating Method: Given (U, V) initial approximation,

Update of U

$$\log \det(A) \le \langle B^{-1}, A \rangle + \log \det(B) - r$$

with = iff $B = A \succ 0$

$$\begin{split} \|M - U\widetilde{V}\|_{F}^{2} + \lambda \log \det(U^{\top}U) \leq \\ \langle UU^{\top}, E \rangle - \langle U, C \rangle + b \\ \end{split}$$
 where $E = \lambda (\widetilde{U}^{\top}\widetilde{U})^{-1} + \widetilde{V}\widetilde{V}^{\top}$, $C = 2M\widetilde{V}^{\top}$ and b do not depend on U

$$\min_{U} \sum_{i} u_i^\top E u_i - c_i^\top u_i$$

are *m* quadratic and strongly convex

$$\begin{split} \|M - \widetilde{U}V\|_{F}^{2} + \lambda \log \det(\widetilde{U}^{\top}\widetilde{U}) &= \\ \langle VV^{\top}, E \rangle - \langle V, C \rangle + b \\ \text{where } E &= \widetilde{W}^{\top}\widetilde{W}, \ C &= 2\widetilde{U}^{\top}M \text{ and } b \text{ do} \\ \text{not depend on } V \end{split}$$

$$\min_{V} \sum_{i} v_{i}^{\top} E v_{i} - c_{i}^{\top} v_{i} : V \text{ col. stoc.}$$

ore *n* quadratic and strongly convex
optimization problems on the columns of *V*,

Exact Case:

$$\min_{U \in \mathbb{R}^{m \times r}} Vol(U) : Conv(M) \subseteq Conv(U)$$

Inexact Case:

 $\min_{U,V} \|M - UV\|_F^2 + \lambda \log \det(U^\top U) : V$ column stochastic

Alternating Method: Given $(\widetilde{U}, \widetilde{V})$ initial approximation,

Update of U

 $\log \det(A) \le \langle B^{-1}, A \rangle + \log \det(B) - r$ with = iff $B = A \succ 0$

$$\begin{split} \|M - U\widetilde{V}\|_{F}^{2} + \lambda \log \det(U^{\top}U) \leq \\ \langle UU^{\top}, E \rangle - \langle U, C \rangle + b \\ \end{split}$$
where $E = \lambda (\widetilde{U}^{\top}\widetilde{U})^{-1} + \widetilde{V}\widetilde{V}^{\top}$, $C = 2M\widetilde{V}^{\top}$ and b do not depend on U

$$\min_{U} \sum_{i} u_i^\top E u_i - c_i^\top u_i$$

are m quadratic and strongly convex optimization problems on the rows of U

$$\begin{split} \|M - \widetilde{U}V\|_{F}^{2} + \lambda \log \det(\widetilde{U}^{\top}\widetilde{U}) = \\ \langle VV^{\top}, E \rangle - \langle V, C \rangle + b \\ \text{where } E = \widetilde{W}^{\top}\widetilde{W}, \ C = 2\widetilde{U}^{\top}M \text{ and } b \text{ do} \\ \text{not depend on } V \end{split}$$

$$\min_{V} \sum_{i=1}^{i} v_i^\top E v_i - c_i^\top v_i : V \text{ col. stoc.}$$

are *n* quadratic and strongly convex optimization problems on the columns of *V*, over convex domains (unit simplices)

Update of V

Exact Case:

$$\min_{U \in \mathbb{R}^{m \times r}} Vol(U) : Conv(M) \subseteq Conv(U)$$

Inexact Case:

١

 $\min_{U,V} \|M - UV\|_F^2 + \lambda \log \det(U^\top U) : V$ column stochastic

Alternating Method: Given $(\widetilde{U}, \widetilde{V})$ initial approximation,

Update of U

$$\log \det(A) \le \langle B^{-1}, A \rangle + \log \det(B) - r$$

with = iff $B = A \succ 0$

$$\begin{split} \|M - U\widetilde{V}\|_{F}^{2} + \lambda \log \det(U^{\top}U) \leq \\ \langle UU^{\top}, E \rangle - \langle U, C \rangle + b \end{split}$$

where $E = \lambda (\widetilde{U}^{\top}\widetilde{U})^{-1} + \widetilde{V}\widetilde{V}^{\top}$,
 $C = 2M\widetilde{V}^{T}$ and b do not depend on U

$$\min_{U}\sum u_i^{\top}Eu_i-c_i^{\top}u_i$$

are m quadratic and strongly convex optimization problems on the rows of U

$$\begin{split} \|M - \widetilde{U}V\|_{F}^{2} + \lambda \log \det(\widetilde{U}^{\top}\widetilde{U}) = \\ \langle VV^{\top}, E \rangle - \langle V, C \rangle + b \\ \text{where } E = \widetilde{W}^{\top}\widetilde{W}, \ C = 2\widetilde{U}^{\top}M \text{ and } b \text{ do} \\ \text{not depend on } V \end{split}$$

$$\min_{V} \sum_{i} v_i^\top E v_i - c_i^\top v_i : V \text{ col. stoc.}$$

are *n* quadratic and strongly convex optimization problems on the columns of *V*, over convex domains (unit simplices)

Update of V

Exact Case:

$$\min_{U \in \mathbb{R}^{m \times r}} Vol(U) : Conv(M) \subseteq Conv(U)$$

Inexact Case:

 $\min_{U,V} \|M - UV\|_F^2 + \lambda \log \det(U^\top U) : V$ column stochastic

Alternating Method: Given $(\widetilde{U}, \widetilde{V})$ initial approximation,

Update of U

$$\log \det(A) \le \langle B^{-1}, A \rangle + \log \det(B) - r$$

with = iff $B = A \succ 0$

$$\begin{split} \|M - U\widetilde{V}\|_{F}^{2} + \lambda \log \det(U^{\top}U) \leq \\ \langle UU^{\top}, E \rangle - \langle U, C \rangle + b \end{split}$$

where $E = \lambda (\widetilde{U}^{\top}\widetilde{U})^{-1} + \widetilde{V}\widetilde{V}^{\top}$,
 $C = 2M\widetilde{V}^{T}$ and b do not depend on U

$$\min_{U}\sum_{i}u_{i}^{\top}Eu_{i}-c_{i}^{\top}u_{i}$$

are m quadratic and strongly convex optimization problems on the rows of U

$$\begin{split} \|M - \widetilde{U}V\|_{F}^{2} + \lambda \log \det(\widetilde{U}^{\top}\widetilde{U}) = \\ \langle VV^{\top}, E \rangle - \langle V, C \rangle + b \\ \end{split}$$
where $E = \widetilde{W}^{\top}\widetilde{W}, \ C = 2\widetilde{U}^{\top}M$ and b do not depend on V

$$\min_{V} \sum_{i} v_i^\top E v_i - c_i^\top v_i : V \text{ col. stoc.}$$

are *n* quadratic and strongly convex optimization problems on the columns of *V*, over convex domains (unit simplices)

Update of V
Simplex Volume Minimization

Exact Case:

$$\min_{U \in \mathbb{R}^{m \times r}} Vol(U) : Conv(M) \subseteq Conv(U)$$

Inexact Case:

 $\min_{U,V} \|M - UV\|_F^2 + \lambda \log \det(U^\top U) : V$ column stochastic

Alternating Method: Given $(\widetilde{U}, \widetilde{V})$ initial approximation,

Update of U

 $\log \det(A) \le \langle B^{-1}, A \rangle + \log \det(B) - r$ with = iff $B = A \succ 0$

$$\begin{split} \|M - U\widetilde{V}\|_{F}^{2} + \lambda \log \det(U^{\top}U) \leq \\ \langle UU^{\top}, E \rangle - \langle U, C \rangle + b \end{split}$$

where $E = \lambda (\widetilde{U}^{\top}\widetilde{U})^{-1} + \widetilde{V}\widetilde{V}^{\top}$,
 $C = 2M\widetilde{V}^{T}$ and b do not depend on U

$$\min_{U}\sum_{i}u_{i}^{\top}Eu_{i}-c_{i}^{\top}u_{i}$$

are m quadratic and strongly convex optimization problems on the rows of U

$$\begin{split} \|M - \widetilde{U}V\|_{F}^{2} + \lambda \log \det(\widetilde{U}^{\top}\widetilde{U}) = \\ \langle VV^{\top}, E \rangle - \langle V, C \rangle + b \\ \end{split}$$
 where $E = \widetilde{W}^{\top}\widetilde{W}, \ C = 2\widetilde{U}^{\top}M$ and b do not depend on V

Update of V

Simplex Volume Minimization

Exact Case:

$$\min_{U \in \mathbb{R}^{m \times r}} Vol(U) : Conv(M) \subseteq Conv(U)$$

Inexact Case:

 $\min_{U,V} \|M - UV\|_F^2 + \lambda \log \det(U^\top U) : V$ column stochastic

Alternating Method: Given $(\widetilde{U}, \widetilde{V})$ initial approximation,

Update of U

$$\log \det(A) \le \langle B^{-1}, A \rangle + \log \det(B) - r$$

with = iff $B = A \succ 0$

$$\begin{split} \|M - U\widetilde{V}\|_{F}^{2} + \lambda \log \det(U^{\top}U) \leq \\ \langle UU^{\top}, E \rangle - \langle U, C \rangle + b \end{split}$$

where $E = \lambda (\widetilde{U}^{\top}\widetilde{U})^{-1} + \widetilde{V}\widetilde{V}^{\top}$,
 $C = 2M\widetilde{V}^{\top}$ and b do not depend on U

$$\min_{U}\sum_{i}u_{i}^{\top}Eu_{i}-c_{i}^{\top}u_{i}$$

are m quadratic and strongly convex optimization problems on the rows of U

$$\begin{split} \|M - \widetilde{U}V\|_{F}^{2} + \lambda \log \det(\widetilde{U}^{\top}\widetilde{U}) = \\ \langle VV^{\top}, E \rangle - \langle V, C \rangle + b \\ \end{split}$$

where $E = \widetilde{W}^{\top}\widetilde{W}, \ C = 2\widetilde{U}^{\top}M$ and b do
not depend on V

$$\min_{V} \sum_{i} v_i^\top E v_i - c_i^\top v_i : V \text{ col. stoc.}$$

are n quadratic and strongly convex optimization problems on the columns of V, over convex domains (unit simplices)

Update of V

Facet Identification

PCA Preprocessing: Given $\widetilde{M} = \widetilde{U}V \in \mathbb{R}^{m \times n}$ and U of rank r we can always reduce to $Q(\widetilde{M} - ze^{\top}) = Q(\widetilde{U} - ze^{\top})V \in \mathbb{R}^{(r-1) \times n}$

In other words, we have to find a simplex: r vertices in r-1 dimensions

$$Conv(U) = \bigcap_{i=1}^{r} S_i \quad \text{where} \quad S_i := \{x : \theta_i^\top x \le 1\}$$
$$Conv(M) \subseteq Conv(U) \quad \iff \quad \Theta = \left(\theta_1 \ \dots \ \theta_r\right) \qquad \Theta^\top M \le 1$$

MVIE Maximum Volume Inscribed Ellipsoid Enumerates the facets of Conv(M), very expensive

GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive

PCA Preprocessing: Given $\widetilde{M} = \widetilde{U}V \in \mathbb{R}^{m \times n}$ and U of rank r we can always reduce to $Q(\widetilde{M} - ze^{\top}) = Q(\widetilde{U} - ze^{\top})V \in \mathbb{R}^{(r-1) \times n}$

In other words, we have to find a simplex: r vertices in r-1 dimensions

 $Conv(U) = \bigcap_{i=1}^{r} S_i \quad \text{where} \quad S_i := \{x : \theta_i^T x \le 1\}$ $Conv(M) \subseteq Conv(U) \quad \iff \quad \Theta = (\theta_1 \ \dots \ \theta_r) \qquad \Theta^\top M \le 1$

MVIE Maximum Volume Inscribed Ellipsoid Enumerates the facets of Conv(M), very expensive

GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive

PCA Preprocessing: Given $\widetilde{M} = \widetilde{U}V \in \mathbb{R}^{m \times n}$ and U of rank r we can always reduce to $Q(\widetilde{M} - ze^{\top}) = Q(\widetilde{U} - ze^{\top})V \in \mathbb{R}^{(r-1) \times n}$

In other words, we have to find a simplex: r vertices in r-1 dimensions

$$Conv(U) = \cap_{i=1}^{r} S_{i}$$
 where $S_{i} := \{x : \theta_{i}^{T} x \leq 1\}$
 $Conv(M) \subseteq Conv(U) \iff \Theta = (\theta_{1} \dots \theta_{r}) \qquad \Theta^{\top} M \leq 1$

MVIE Maximum Volume Inscribed Ellipsoid Enumerates the facets of Conv(M), very expensive

GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive

PCA Preprocessing: Given $\widetilde{M} = \widetilde{U}V \in \mathbb{R}^{m \times n}$ and U of rank r we can always reduce to $Q(\widetilde{M} - ze^{\top}) = Q(\widetilde{U} - ze^{\top})V \in \mathbb{R}^{(r-1) \times n}$

In other words, we have to find a simplex: r vertices in r-1 dimensions

$$Conv(U) = \bigcap_{i=1}^{r} S_i \quad \text{where} \quad S_i := \{x : \theta_i^T x \le 1\}$$
$$Conv(M) \subseteq Conv(U) \quad \iff \quad \Theta = (\theta_1 \ \dots \ \theta_r) \qquad \Theta^\top M \le 1$$

MVIE Maximum Volume Inscribed Ellipsoid Enumerates the facets of Conv(M), very expensive

Lin, C.H., Wu, R., Ma, W.K., Chi, C.Y., Wang, Y.: Maximum volume inscribed ellipsoid: A new simplex- structured matrix factorization framework via facet enumeration and convex optimization. SIAM Journal on Imaging Sciences 11 (2018)

GFP1 Greedy Facet-based Polytope Identification Mixed integer programming, also expensive

PCA Preprocessing: Given $\widetilde{M} = \widetilde{U}V \in \mathbb{R}^{m \times n}$ and U of rank r we can always reduce to $Q(\widetilde{M} - ze^{\top}) = Q(\widetilde{U} - ze^{\top})V \in \mathbb{R}^{(r-1) \times n}$

In other words, we have to find a simplex: r vertices in r-1 dimensions

$$Conv(U) = \bigcap_{i=1}^{r} S_i \quad \text{where} \quad S_i := \{x : \theta_i^{\top} x \le 1\}$$
$$Conv(M) \subseteq Conv(U) \quad \iff \quad \Theta = (\theta_1 \ \dots \ \theta_r) \qquad \Theta^{\top} M \le 1$$

MVIE Maximum Volume Inscribed Ellipsoid Enumerates the facets of Conv(M), very expensive

GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive Abdolali, M., Gillis, N.: Simplex-structured matrix factorization: Sparsity-based identifiability and provably correct algorithms. SIAM Journal on Mathematics of Data Science 3(2), 593–623 (2021)

PCA Preprocessing: Given $\widetilde{M} = \widetilde{U}V \in \mathbb{R}^{m \times n}$ and U of rank r we can always reduce to $Q(\widetilde{M} - ze^{\top}) = Q(\widetilde{U} - ze^{\top})V \in \mathbb{R}^{(r-1) \times n}$

In other words, we have to find a simplex: r vertices in r-1 dimensions

$$Conv(U) = \cap_{i=1}^{r} S_{i}$$
 where $S_{i} := \{x : \theta_{i}^{T} x \leq 1\}$
 $Conv(M) \subseteq Conv(U) \iff \Theta = (\theta_{1} \dots \theta_{r}) \qquad \Theta^{\top} M \leq 1$

- MVIE Maximum Volume Inscribed Ellipsoid Enumerates the facets of Conv(M), very expensive
- GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive

$\mathcal{S} \subseteq \mathbb{R}^{r-1}$ $\mathcal{S}^* := \{\theta : \theta^T x \le 1 \ \forall x \in \mathcal{S}\}$

• Swaps points and hyperplanes

 $\{x: \theta^T x = 1\} \rightsquigarrow \theta$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

 $Conv(M) \subseteq Conv(U) \iff Conv(U)^* \subseteq Conv(M)^*$ $\iff \Theta^\top M \le 1 \quad \text{where} \quad Conv(U)^* = Conv(\Theta)$

We can thus seek the simplex Θ with maximum volume inside $Conv(M)^*$ as in

$$\mathcal{S} \subseteq \mathbb{R}^{r-1}$$
 $\mathcal{S}^* := \{\theta : \theta^T x \le 1 \ \forall x \in \mathcal{S}\}$

• Swaps points and hyperplanes

$$\{x: \theta^T x = 1\} \rightsquigarrow \theta$$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

 $Conv(M) \subseteq Conv(U) \iff Conv(U)^* \subseteq Conv(M)^*$ $\iff \Theta^\top M \le 1 \quad \text{where} \quad Conv(U)^* = Conv(\Theta)$

We can thus seek the simplex ⊖ with **maximum** volume inside *Conv(M)** as in

$$\mathcal{S} \subseteq \mathbb{R}^{r-1}$$
 $\mathcal{S}^* := \{\theta : \theta^T x \le 1 \ \forall x \in \mathcal{S}\}$

• Swaps points and hyperplanes

$$\{x:\theta^T x=1\} \rightsquigarrow \theta$$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

 $Conv(M) \subseteq Conv(U) \iff Conv(U)^* \subseteq Conv(M)^*$ $\iff \Theta^\top M < 1 \quad \text{where} \quad Conv(U)^* = Conv(\Theta)$

We can thus seek the simplex ⊖ with **maximum** volume inside *Conv(M)** as in

$$\mathcal{S} \subseteq \mathbb{R}^{r-1}$$
 $\mathcal{S}^* := \{\theta : \theta^T x \le 1 \ \forall x \in \mathcal{S}\}$

• Swaps points and hyperplanes

$$\{x:\theta^T x=1\} \rightsquigarrow \theta$$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

$$Conv(M) \subseteq Conv(U) \iff Conv(U)^* \subseteq Conv(M)^*$$

 $\iff \Theta^\top M \le 1 \quad \text{where} \quad Conv(U)^* = Conv(\Theta)$

We can thus seek the simplex Θ with **maximum volume** inside *Conv*(*M*)^{*} as in

$$\mathcal{S} \subseteq \mathbb{R}^{r-1}$$
 $\mathcal{S}^* := \{\theta : \theta^T x \le 1 \ \forall x \in \mathcal{S}\}$

• Swaps points and hyperplanes

$$\{x:\theta^T x=1\} \rightsquigarrow \theta$$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

$$Conv(M) \subseteq Conv(U) \iff Conv(U)^* \subseteq Conv(M)^*$$

 $\iff \Theta^\top M \le 1 \quad \text{where} \quad Conv(U)^* = Conv(\Theta)$

We can thus seek the simplex ⊖ with **maximum** volume inside *Conv(M)** as in

$$\mathcal{S} \subseteq \mathbb{R}^{r-1}$$
 $\mathcal{S}^* := \{\theta : \theta^T x \le 1 \ \forall x \in \mathcal{S}\}$

• Swaps points and hyperplanes

$$\{x:\theta^T x=1\} \rightsquigarrow \theta$$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

$$Conv(M) \subseteq Conv(U) \iff Conv(U)^* \subseteq Conv(M)^*$$

 $\iff \Theta^\top M \le 1 \quad \text{where} \quad Conv(U)^* = Conv(\Theta)$

We can thus seek the simplex Θ with **maximum volume** inside $Conv(M)^*$ as in

 $\max_{\boldsymbol{\theta} \in \mathbb{R}^{r-1 \times r}} Vol(\boldsymbol{\Theta}) \quad : \quad \boldsymbol{\Theta}^{T} \boldsymbol{M} \leq 1 \qquad (MaxVol)$

Theorem (M.A., G.B., N.G., 2023)

Let $M = UV \in \mathbb{R}^{r-1 \times n}$ SSC and for any $u \in \mathbb{R}^{r-1}$ define

$$\mathcal{V}(u) := \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) : \Theta^T(M - ue^T) \le 1$$

Then $\mathcal{V}(u)$ is convex in u with unique minimum for u = Ue/r and Θ polar of U

Theorem (M.A., G.B., N.G., 2023)

Let $M = UV \in \mathbb{R}^{r-1 \times n}$ SSC and for any $u \in \mathbb{R}^{r-1}$ define

$$\mathcal{V}(u) := \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) : \Theta^T(M - ue^T) \le 1$$

Then $\mathcal{V}(u)$ is convex in u with unique minimum for u = Ue/r and Θ polar of U

Theorem (M.A., G.B., N.G., 2023)

Let $M = UV \in \mathbb{R}^{r-1 \times n}$ SSC and for any $u \in \mathbb{R}^{r-1}$ define

$$\mathcal{V}(u) := \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) : \Theta^{T}(M - ue^{T}) \leq 1$$

Then $\mathcal{V}(u)$ is convex in u with unique minimum for u = Ue/r and Θ polar of U

Theorem (M.A., G.B., N.G., 2023)

Let $M = UV \in \mathbb{R}^{r-1 \times n}$ be η -expanded and suppose u = Uv, $v \in \mathbf{V}$. Then

$$\max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) \quad : \quad \Theta^{T}(X - ue^{T}) \leq 1$$

is solved uniquely by Θ polar of U

Theorem (M.A., G.B., N.G., 2023)

Let $M = UV \in \mathbb{R}^{r-1 \times n}$ SSC and for any $u \in \mathbb{R}^{r-1}$ define

$$\mathcal{V}(u) := \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) : \Theta^{T}(M - ue^{T}) \leq 1$$

Then $\mathcal{V}(u)$ is convex in u with unique minimum for u = Ue/r and Θ polar of U

Conjecture (M.A., G.B., N.G., 2023)

Let $M = UV \in \mathbb{R}^{r-1 \times n}$ be η -expanded and suppose u = Uv, $v \in \blacktriangle$. Then

$$\max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) \quad : \quad \Theta^{\mathsf{T}}(M - ue^{\mathsf{T}}) \leq 1$$

is solved uniquely by Θ polar of U

Algorithm Maximum Volume in the Dual (MV-Dual)

Input: Data matrix $\widetilde{M} \in \mathbb{R}^{m \times n}$ and a factorization rank r**Output:** A matrix $\widetilde{U} \in \mathbb{R}^{m \times r}$ and a vector z such that $\widetilde{M} \approx z + \widetilde{U}V$ where V is column stochastic

- 1: Use PCA to reduce $\widetilde{M} = z + QM$ with $M \in \mathbb{R}^{r-1 imes n}$
- 2: Initialize $u_1 = \mathit{Me}/\mathit{n}, \ p = 1$ and $\Theta \in \mathcal{N}(0,1)^{r-1 imes r}$
- 3: while not converged: p = 1 or $\frac{\|u_p u_{p-1}\|_2}{\|u_{p-1}\|_2} > 0.01$ do

4: Solve

$$\arg\max_{\Theta\in\mathbb{R}^{r-1\times r}} Vol(\Theta): \Theta^{T}(X - v_{\rho}e^{T}) \leq 1$$

via alternating optimization on the columns of $\boldsymbol{\Theta}$

- 5: Recover U by computing the polar of $Conv(\Theta)$
- 6: Let $u_{p+1} \leftarrow Ue/r$, and p = p+1
- 7: end while

8: Compute $\widetilde{U} = QU$

Algorithm Maximum Volume in the Dual (MV-Dual)

Input: Data matrix $\widetilde{M} \in \mathbb{R}^{m \times n}$ and a factorization rank r**Output:** A matrix $\widetilde{U} \in \mathbb{R}^{m \times r}$ and a vector z such that $\widetilde{M} \approx z + \widetilde{U}V$ where V is column stochastic

- 1: Use PCA to reduce $\widetilde{M} = z + QM$ with $M \in \mathbb{R}^{r-1 imes n}$
- 2: Initialize $u_1 = \mathit{Me}/\mathit{n}, \ p = 1$ and $\Theta \in \mathcal{N}(0,1)^{r-1 imes r}$
- 3: while not converged: p = 1 or $\frac{\|u_p u_{p-1}\|_2}{\|u_{p-1}\|_2} > 0.01$ do

4: Solve

$$\arg\max_{\Theta\in\mathbb{R}^{r-1\times r}} Vol(\Theta): \Theta^{T}(X - v_{\rho}e^{T}) \leq 1$$

via alternating optimization on the columns of $\boldsymbol{\Theta}$

- 5: Recover U by computing the polar of $Conv(\Theta)$
- 6: Let $u_{p+1} \leftarrow Ue/r$, and p = p+1
- 7: end while

8: Compute $\widetilde{U} = QU$

Cost : PCA O(mnr) plus Maximization problem solver for a single column $O(nr^2)$ times the number of iterations

Algorithm Maximum Volume in the Dual (MV-Dual)

Input: Data matrix $\widetilde{M} \in \mathbb{R}^{m \times n}$ and a factorization rank rOutput: A matrix $\widetilde{U} \in \mathbb{R}^{m \times r}$ and a vector z such that $\widetilde{M} \approx z + \widetilde{U}V$ where V is column stochastic

- 1: Use PCA to reduce $\widetilde{M} = z + QM$ with $M \in \mathbb{R}^{r-1 \times n}$
- 2: Initialize $u_1 = Me/n, \ p = 1$ and $\Theta \in \mathcal{N}(0,1)^{r-1 imes r}$
- 3: while not converged: p = 1 or $\frac{\|u_p u_{p-1}\|_2}{\|u_{p-1}\|_2} > 0.01$ do
- 4: Solve

 $\arg\max_{\Theta\in\mathbb{R}^{r-1\times r},\Delta\in\mathbb{R}^{r\times n}} \textit{Vol}(\Theta)^2 - \lambda \|\Delta\|_{\textit{F}}^2:\Theta^{\mathsf{T}}(X-v_{\textit{p}}e^{\mathsf{T}}) \leq 1+\Delta^{\mathsf{T}}$

via alternating optimization on the columns of Θ, Δ

- 5: Recover U by computing the polar of $Conv(\Theta)$
- 6: Let $u_{p+1} \leftarrow Ue/r$, and p = p+1
- 7: end while
- 8: Compute $\tilde{U} = QU$

Cost : PCA O(mnr) plus Maximization problem solver for a single column $O(nr^2)$ times the number of iterations

Experiments

Exact Case

$$U^*, V^*$$
 ground truth $ERR = \frac{\|U^* - U\|_F}{\|U^*\|_F}$ purity $p = \max_{i,j} |V^*_{i,j}| = \eta + (1 - \eta)^2_r$

ERR for r = 3, n = 30r

ERR for r = 5, n = 30r

0.88 1.00

Noisy Case

$$U^*, V^*$$
 ground truth $ERR = \frac{\|U^* - U\|_F}{\|U^*\|_F}$ purity $p = \max_{i,j} |V^*_{i,j}| = \eta + (1 - \eta) \frac{2}{r}$

ERR for r = 3, SNR = 60 ERR for r = 3, SNR = 40

ERR for r = 3, SNR = 30

ERR for r = 4, SNR = 60

ERR for r = 4, SNR = 40

ERR for r = 4, SNR = 30

Noisy Case

ERR for r = 4, SNR = 60 ERR for r = 4, SNR = 40 ERR for r = 4, SNR = 30

	MVDual	GFPI	min vol	min vol	min vol	SNPA	MVIE	HyperCSI	MVES
SNR			$\lambda = 0.1$	$\lambda = 1$	$\lambda = 5$				
30	$0.56{\pm}0.11$	$7.76{\pm}3.51$	$0.12{\pm}0.01$	$0.13{\pm}0.01$	$0.14{\pm}0.02$	$0.01{\pm}0.001$	$5.28{\pm}0.23$	$0.01{\pm}0.004$	$0.30{\pm}0.04$
40	0.45 ± 0.06	$4.18 {\pm} 1.12$	0.10 ± 0.01	$0.11 {\pm} 0.01$	0.13 ± 0.01	$0.01 {\pm} 0.00$	$4.96{\pm}0.12$	$0.005{\pm}0.004$	$0.30 {\pm} 0.05$
60	0.42 ± 0.06	$1.47{\pm}0.45$	0.07 ± 0.01	$0.08 {\pm} 0.01$	$0.09 {\pm} 0.01$	$0.01 {\pm} 0.00$	$3.78{\pm}0.12$	$0.001{\pm}0.00$	$0.26{\pm}0.07$

Unmixing Hyperspectral Imaging

$$\mathsf{MRSA}(x,y) = \frac{100}{\pi} \cos^{-1} \left(\frac{(x-\bar{x}e)^\top (y-\bar{y}e)}{\|x-\bar{x}e\|_2 \|y-\bar{y}e\|_2} \right)$$

 $ERR = \sum_{k} MRSA(U_{k}^{*}, U_{k})$

Projection of data points and the symplex computed by MV-Dual

Abundance maps estimated by MV-Dual From left to right: road, tree, soil, water

	SNPA	Min-Vol	HyperCSI	GFPI	MV-Dual
MRSA	22.27	6.03	17.04	4.82	3.74
Time (s)	0.60	1.45	0.88	100*	43.51

Comparing the performances of MV-Dual with the state-of-the-art SSMF algorithms on Jasper-Ridge data set. Numbers marked with * indicate that the corresponding algorithms did not converge within 100 seconds.

Thank You!

Abdolali M., Barbarino G., and Gillis N. Dual simplex volume maximization for simplex-structured matrix factorization. *SIAM Journal* of *Scientific Imaging*, 2024.

Nicolas Gillis. *Nonnegative matrix factorization*. SIAM, Philadelphia, 2020.

