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Iterative Filtering



Empirical Method Decomposition (EMD)

Signal s(z)
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Empirical Method Decomposition (EMD)

Signal s(x)
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IMF;

Decomposition of non-stationary signals into In-
trinsic Mode Functions (IMF)

o lterative Method

e Based on the computation of the moving

average of the signal

o Splits the signal into simple oscillatory
components

Numerous (EEMD, NA-MEMD,
FMEMD, etc.) have been proposed in the years
to deal with instability and mode splitting/mix-
ing, and to prove its convergence

variants



Iterative Filtering

The effect of the moving average is to
flatten the highest frequency component

Moving Average L(s)

A way to emulate the effect is to use a
filter on the signal

L(s) = [ s(y)k(z — y)dy
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Iterative Filtering

The effect of the moving average is to
flatten the highest frequency component ~ Choose the filter k:

Moving Average L(s) e Unit-norm, even, nonnegative and compact

supported
o k=w*w

— 0< k(<1

The IF method iteratively apply the filter through
A way to emulate the effect is to use a  convolution
filter on the signal S(f): - [f(y —y)dy
£(s) = [ s(y)k(z — y)dy IMF = IMF u {S‘X’(s)}
s=5—8%(s)

gl “““"‘"x'v\W'numMWM'.‘f\"\' )
b The convergence of §°°(s) can be studied on the

frequencies space
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Iterative Filtering

The effect of the moving average is to
flatten the highest frequency component ~ Choose the filter k:

Moving Average L(s) ‘ e Unit-norm, even, nonnegative and compact
supported

o k=wx*uw

= 0<k() <1

The IF method iteratively apply the filter through
A way to emulate the effect is to use a  convolution
filter on the signal S(f) :=f(x) — [ f(y)k(x — y)dy
£(s) = [ s(w)k(z — y)dy IMF = IMF U {S*°(s)}
s=5—8%(s)

L “"*'w\\".'\ T e i .
’ The convergence of S*°(s) can be studied on the

frequencies space




Time-Frequency Space

On the Time Dimension the Sifting Operator
is the difference between the signal and the
Moving Average

L(s) = [ s(y)k(z —y)dy




Time-Frequency Space

On the Frequency Dimension

On the Time Dimension the Sifting Operator g(;)(g) —5)(1 - ?(5))

is the difference between the signal and the - R

Moving Average Sm(s)(&) =s(6)(1 — k(&)™
[5(9)

L(s) = [ s(y)k(z —y)dy ”
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The Fundamental Zero and the Stopping Criterion

Sn(s)(€) =5(E)1 - k(€))”  0<1-k() <1




The Fundamental Zero and the Stopping Criterion

Sn(s)(§) =S —k(©)"  0<1-k(E) <1
The Sifting Operator extracts the frequen-
cies corresponding to low values of 0 < k(&)

k)

Call J, the neighbourhood of & the first
zero of k(£) on which k < v

[SP() (O < [SEOIA =" &)
Notice that Lk(Lx) is also a filter with & /L
as first zero



The Fundamental Zero and the Stopping Criterion

Sm(s)(€) =31 - k@©)"  0<1-k©<1
The Sifting Operator extracts the frequen-  Set the Stopping Criterion for IF as
cies corresponding to low values of 0 < k(¢) |S™ 2 (s) — S™(s)|| < &
k(&)

Theorem (Cicone, Zhou, 2021)

\ Given 0 < k < 1,5 >0, s(x) € L3(R),

then
\ m™ 1)

— < PR
\ (m+1)mt = ls|
implies ||S™(s) — S™(s)|| < &
\ If mis the stopping index, m = O(||s||/d)

Call J, the neighbourhood of & the first
zero of k(£) on which k < v

[SP() (O < [SEOIA =" &)
Notice that Lk(Lx) is also a filter with & /L
as first zero



The Fundamental Zero and the Stopping Criterion

Sm(s)(€) =31 - k@©)"  0<1-k©<1
The Sifting Operator extracts the frequen-  Set the Stopping Criterion for IF as
cies corresponding to low values of 0 < k(¢) |S™ 2 (s) — S™(s)|| < &
k(&)

Theorem (Cicone, Zhou, 2021)

Given 0 < k <1,6 >0, s(x) € LA(R),
then

s
(m+1)m1 — ||s||
implies || S™(s) — S™(s)|| < &

\ If mis the stopping index, m = O(||s||/d)

S S Theorem (Cicone, Zhou 2021, B. 2023)
- Il = {€: (1— k()™ >1—~} and

Call JvAthe neighbourhood of & the first imME™ — X5+ (1 ?)m(l )5,
zero of k(&) on which k <~
‘S/m(\s)(g)‘ <561 —7)" £¢J, then for any fixed n > 0, there exist

Notice that Lk(Lx) is also a filter with & /L e > Uty V‘;_’Z;Ch
as first zero [IMF — IMF"""|| < n/2 for all IMFs




Order of the Fundamental Zero

Theorem (Cicone, Zhou 2021, B. 2023)
IfF L, = {€: (1 — k(€)™ >1—~} and
— TH . ~m .
IMF = x1,5+ (1 - k)"(1—x1,)5,
then for any fixed n > 0, there exist §,~ > 0 for which |[IMF — IMF™| < n/2 for all IMFs

Better results are achieved with bigger I, especially for amplitude-modulated
signals where

s(x) = a(x)g(x) = s(§) = (@~ &)(¢)
and if a(x) has low instant frequency, then ax g has non-zero components near

the main frequencies of g



Order of the Fundamental Zero

Theorem (Cicone, Zhou 2021, B. 2023)
IfFl, = {€: (1 —k(€))™ >1—~} and
— TH N ~m _
IMF = x1,5+ (1= k)"(1—=x1,)5,
then for any fixed n > 0, there exist §,~ > 0 for which ||[IMF — IMF™| < /2 for all IMFs

k(&) fx k(€) = k(6)?

777777777777777777777777777 Better performances

are also achieved with
smoother filters and

kxkxkx..

\ \ is a more regular fil-
ter with the same first
zero of the FT

& ) ] &
Theorem (B. 2023)
If we choose &, depending on the biggest frequency in's whose intensity is at least 7, then
B(€07 C ZC 175) g I’Y

where 2p is the order for the first zero in k



Frequency Partition and Perturbation

Theorem (Cicone, Zhou 2021, B. 2023)
IfFly, = {€: (1 — k(€)™ >1—~} and
M = x5+ 1 - B™(1 - )5,
then for any fixed 1 > 0, there exist 5, > 0 for which ||IMF — IMF™|| < n/2 for all IMFs

— This implies the decomposition is an approximate subband partition, but there's more



Frequency Partition and Perturbation

Theorem (Cicone, Zhou 2021, B. 2023)
IfFly, = {€: (1 — k(€)™ >1—~} and
M = x5+ 1 - B™(1 - )5,
then for any fixed 1 > 0, there exist 5, > 0 for which ||IMF — IMF™|| < n/2 for all IMFs

— This implies the decomposition is an approximate subband partition, but there's more

IMF; = 87 (1) = 5(1 ~ k)"
where r; is what's left after having extracted
J — 1 IMFs from the original signal s(x), so

i =7 — IMF; = 71 - (1~ k)"]
Theorem (B. 2023)

IMF;(€) = Xi(€) - 5(¢)

where 0 < \;(§) and 3°; Ai(§) <1 V&
Thus, there is a finite number of relevant
IMF, i.e. |IMF;|| > 7



Frequency Partition and Perturbation

Theorem (Cicone, Zhou 2021, B. 2023)
IfFly, = {€: (1 — k(€)™ >1—~} and
M = x5+ 1 - B™(1 - )5,
then for any fixed 1 > 0, there exist 5, > 0 for which ||IMF — IMF™|| < n/2 for all IMFs

— This implies the decomposition is an approximate subband partition, but there's more

,W/ﬁ:j — STJG) =71 — Qj)mj This is important for perturbations, since
where r; is what's left after having extracted
J — 1 IMFs from the original signal s(x), so

i =7 — IMF; = 71 - (1~ k)"]

Theorem (B. 2023)
For any h,s € L2
IS (s + B) = S"(s)Il < ||ll

Theorem (B. 2023) and if we fix k;, m; in the algorithm, for

. N IMF; the modes generated by s(x) and
W8 = 4E)-5E) for IMF;* generated by s(x) + h(x), we
where 0 < \;(§) and 3°; Ai(§) <1 V& have

Thus, there is a finite number of relevant

> IIMF; — IMFj||* < |[h]|>.
IMF, i.e. |[IMF;| > n -

J



Discrete Setting

The signal s(x) is studied on [0, 1] and it is supposed to be periodic at the boundaries
[Stallone, Cicone, Materassi 2020] so that the discretization results in a circulant matrix
s = [s(h) s(2h) ... s(1 — h) s(1)] h= 1/N
N

SE)0) =560 — [ s Ky S()ah) ~ 52— 1 DK (h) 51
S(s) = s— Ks = (I — K)s o



Discrete Setting

The signal s(x) is studied on [0, 1] and it is supposed to be periodic at the boundaries
[Stallone, Cicone, Materassi 2020] so that the discretization results in a circulant matrix

s=[s(h) s(2h) ... s(1—h)s(1)] h= 1//v

SE)0) =560 — [ s Ky S()ah) ~ 52— 1 DK (h) 51
S(s) = s— Ks = (I — K)s o

One can thus write the main loop of the discrete IF Algorithm as
S(f) = (I — K)f
IMF = IMF U {S"(s)}
s=s5—-S8"(s)
where the stopping condition is [|S™(s) — S™(s)|| < &



Discrete Setting

The signal s(x) is studied on [0, 1] and it is supposed to be periodic at the boundaries
[Stallone, Cicone, Materassi 2020] so that the discretization results in a circulant matrix

s = [s(h) s(2h) ... s(1— h) s(1)] hfl/N

SE0) =36 = [ stx = k)dyhosn S(E)am) ~ 5= Z (Bh) S0
S(s):=s—Ks=(I—K)s B

One can thus write the main loop of the discrete IF Algorithm as
S(f) := (I — K)f
IMF = IMF U {S"(s)}
s=s5—-S8"(s)
where the stopping condition is [|S™(s) — S™(s)|| < &
Fast IF

S™(s) = (I — K)"s = Sm(s) = k°" 03
where k is the first row of | — K, o is the elementwise product and s is the DFT of s

IS™ () = S"(s)l| <& <= [[k°" o (k —e)o3|| <
The stopping condition can be checked on k and s with linear cost + 2 DFT per IMF



Theorems in the Discrete Settings

—

S"(s) = (I — K)"s = Sm(s)=k°" 05



Theorems in the Discrete Settings

S™(s)= (I — K)"s => Sm(s) = k°" 03
Theorem

If k is a filter, then 0 < k < 1, so 8" (s)
always converges
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S™(s)= (I — K)"s => Sm(s) = k°" 03
Theorem

If k is a filter, then 0 < k < 1, so 8" (s)
always converges

Theorem (Cicone, Zhou, 2021, B. 2023)
Given § > 0, s, then
b
(m+1)m s

implies ||S™!(s) — S™(s)| < &



Theorems in the Discrete Settings

—

S"(s) = (I — K)"s = Sm(s)=k°" 05

Theorem
If k is a filter, then 0 < k < 1, so 8" (s)
always converges

Theorem (Cicone, Zhou, 2021, B. 2023)
Given § > 0, s, then
b
(m+1)m s
implies ||S™!(s) — S™(s)| < &
Theorem (B. 2023)
I/IVI\FJ' =Ajos

where 0 < Aj and 3°; Aj < 1. Thus, there is
a finite number of relevant IMF, i.e.
[IMFj|| >n



Theorems in the Discrete Settings

—

S"(s)=(I—K)"s = 87m(s)=k°"os
Theorem (B. 2023)

For any vectors h, s let K be any n x n

Theorem
If k is a filter, then 0 < k < 1, so 8" (s)

Hermitian matrix with spectrum in
always converges

[0,1]. Then
Theorem (Cicone, Zhou, 2021, B. 2023)

Given § > 0, s, then
™ 5 If now the filters and mj are fixed, for

18" (s + h) = S™(s)|| < ||l

m
W < H IMF; the modes generated by s and for

IMF;} generated by s + h, we have
D IIMF; — IMF;||* < ||h]?.

J

implies ||S™!(s) — S™(s)| < &
Theorem (B. 2023)
I/IVI\FJ' =Ajos

where 0 < Aj and 3°; Aj < 1. Thus, there is
a finite number of relevant IMF, i.e.
[IMFj|| >n



Theorems in the Discrete Settings

S"(s)=(—-K)"s = Sm(s) =

Theorem
If k is a filter, then 0 < k < 1, so 8" (s)
always converges

Theorem (Cicone, Zhou, 2021, B. 2023)
Given § > 0, s, then
b
(m+1)m s

implies |S™*!(s) — S™(s)|| < &
Theorem (B. 2023)
I/IVI\FJ' =Ajos

where 0 < A\j and ZJ. Aj < 1. Thus, there is
a finite number of relevant IMF, i.e.
[IMF;|| >n

PR kOm o /S\

Theorem (B. 2023)

For any vectors h, s let K be any n x n
Hermitian matrix with spectrum in
[0,1]. Then

18" (s + h) = S™(s)|| < ||l

If now the filters and mj are fixed, for
IMF; the modes generated by s and for
IMF;} generated by s + h, we have

D IIMF; — IMF;||* < ||h]?.

J

Theorem (B. 2023)

The approximation error of IMF; with
respect to the continuous algorithm
modes IMF; is proportional to

log(1/3)/n
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L(s) = [ s(y)k(z — y)dy EMD L(s)

Let's take a look at the instantaneous frequencies (don’t skip)
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w \. | Instantaneous Frequencies

L(s) = [ s(y)k(z — y)dy

IF does not work with non-disjoint bands of frequencies
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L(s) = [ s(y)k(z —y)dy EMD £(s)
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Let's take a look at the instantaneous frequencies
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L(s) = [ s(k(z — y)dy

IF does not work with non-disjoint bands of frequencies



Adaptive Local lterative Filtering




Adaptive Local Iterative Filtering

ke(y) = k(E0) )0 S(s)(x) = s(x) — / s(y)ke(x — y)dy

b ’ \VM f\v | H“\ M‘{”\“H vf” JNP('\“M“N

/\W W

Instantaneous Frequencies

L(s) = [ s(y)k.(z — y)dy




Adaptive Local Iterative Filtering

ke(y) = k(EC) TG T S(s)(x) = s(x) — /S(Y)kx(x —y)dy
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Instantaneous Frequencies

——

L(s) = [ s(y)k.(z — y)dy




Adaptive Local Iterative Filtering

ke(y) = k(EC) TG T S(s)(x) = s(x) — /S(Y)kx(x —y)dy

Instantaneous Frequencies

i wuﬂ/\uf A

L(s) = [ s(y)k.(z — y)dy

VAL




Adaptive Local Iterative Filtering

ke(y) = k(EC) TG T S(s)(x) = s(x) — /S(Y)kx(x —y)dy

Rt

\ M\

Instantaneous Frequencies

= [ s(ku(z — y)dy




Adaptive Local Iterative Filtering

Given the signal s(x), fix the filter

ke(y) = k(£0) )0~
where ideally ¢(x) ~ & /f(x), with f(x) be-

Signal s(z ing the instantaneous frequency of the higher-

)
W’] WMW NMWWL frequency IMF.
W»\«M Apply iteratively the filter through sifting

S(f) := () = [ F(¥)ke(x = y)dy
IMF = IMF U {S>(s)}
L(s) = [ s(y)kx(z — y)dy s=5—8%(s)

\/V\/WMNV\NWWW ALIF is now as flexible as EMD, and empirically
converges, but..

o No structure, not fast as IF (O(n?) against

Instantaneous Frequencies O(nlog(n)))

[ e Has no clean formal analysis since it is not
a convolution

o §°(s) is not always convergent (in the
discrete setting) even with a stopping
condition



Discrete ALIF

s=[s(h) s(2h) ... s(1—h)s(1)] h=1/N

x) — ' X — ~ _1 S (a—b)hy 1
0~ [ stx e ~ sy o (G e




Discrete ALIF

s=[s(h) s(2h) ... s(1—h)s(1)] h=1/N

S(X)_/o s(¥)ka(x = y)dy|x=an  ~ sa_lilbz;k(w> :

S(s):=s—Ks=(I—K)s
o §°°(s) converges when
N = K) <1V NI—K)=1

o Converges to the kernel of K

The kernel is the same in aM where o € R,
so the real condition is

S(N(K)) >0 V M(K) =0

Setting a stopping condition in the iteration
makes S*°(s) a near-kernel vector



Discrete ALIF

s =[s(h) s(2h) ...

S(s):=s—Ks=(I—K)s
o §°°(s) converges when
N = K) <1V NI—K)=1

o Converges to the kernel of K

The kernel is the same in aM where o € R,
so the real condition is

S(N(K)) >0 V M(K) =0

Setting a stopping condition in the iteration
makes S*°(s) a near-kernel vector

s(1- h) s(1)]

s(x) —/0 sWke(x = y)dyl=an  ~ 53— %;k (%) 0(ah)**

h=1/N

1

For big enough N and if £(x) is continuous,
positive and

k(x) = w(x) * w(x),

then the spectrum of K respects the condi-
tion for almost every eigenvalue [B., Cicone
2022]

There are artificial examples where K has
negative eigenvalues, so the convergence is
not always assured



Stable ALIF

Given the ALIF matrix K, let
S(s)i=s—K'Ks=(l —K"K)s

o KTK Has the same kernel of K

o 1> X\(KTK) >0 after a
renormalization

As a consequence, S*°(s) always converges,

but the method is way slower
e The cost per iteration is doubled

o There are more eigenvalues close to
zero, so it takes more iterations to
extract the exact component

T x 1/20 N = 3000

ALIF 87(s) - Finished
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Stable ALIF

Given the ALIF matrix K, let

S(s):=s—K'Ks=(l—K"K)s
N = 3000
o KTK Has the same kernel of K

o 1> )\;(KTK) > 0 after a

renormalization 1w A,v‘ i ‘,m )
N v‘HV‘ H‘,‘ “”‘ ‘J‘w‘ ‘“\ i L ‘,\ ‘l“hv V‘ \h
[ ‘u U‘ I W W Wit

ALIF 8¥(s)

As a consequence, S°°(s) always converges,
but the method is way slower

o The cost per iteration is doubled

e There are more eigenvalues close to
zero, so it takes more iterations to
extract the exact component



Stable ALIF

T=1/20 N = 3000
Given the ALIF matrix K, let

ALIF 8?(s)

S(s):=s—K'Ks=(l—K"K)s

I
I ww\h‘\muﬁuH\W‘W il u'(‘u’“ ""‘H(Wh
o KTK Has the same kernel of K V| \HH‘J ““HH”M“V”‘J“‘V““Uu Mi\ "w.‘“ 1‘1 ”‘l ‘ﬂ“
e 1> N(KTK) >0 after a
renormalization
A o I
s a consequenc'e, 8°°(s) always converges, SALIE s )
but the method is way slower )
W \ ‘
o The cost per iteration is doubled ol ,H ‘H ” HHH | ‘HHW i
www W\u w \w. ‘h.‘h il
e There are more eigenvalues close to ‘J‘ ‘\ ‘ \‘H L“‘\ \H ‘U‘ |l H\‘
zero, so it takes more iterations to J |

extract the exact component




Stable ALIF

Given the ALIF matrix K, let
S(s):=s—K'Ks=(l—K"K)s

o KTK Has the same kernel of K

o 1> )\;(KTK) > 0 after a
renormalization

As a consequence, S°°(s) always converges,

but the method is way slower
o The cost per iteration is doubled

e There are more eigenvalues close to
zero, so it takes more iterations to
extract the exact component

T =2/20

N = 3000

ALIF S7(s) - Finished
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Stable ALIF

Given the ALIF matrix K, let
S(s):=s—K'Ks=(l—K"K)s

o KTK Has the same kernel of K

o 1> )\;(KTK) > 0 after a
renormalization

As a consequence, S°°(s) always converges,

but the method is way slower
o The cost per iteration is doubled

e There are more eigenvalues close to
zero, so it takes more iterations to
extract the exact component

T =3/20

ALIF S7(s) - Finished
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Stable ALIF

T =4/20 N = 3000
Given the ALIF matrix K, let

ALIF S7(s) - Finished

S(s):=s—K'Ks=(l—K"K)s

“‘ I I H‘ HMHMHH Il WW"HWWH l H““’”H
o KTK Has the same kernel of K ““\‘M\“H\“H“J “Uu“H‘JUU“J“J w..wWmhmmmlNHMHM
o 1> )\;(KTK) > 0 after a
renormalization

As a consequence, S°°(s) always converges,

. SALIF 87(s)
but the method is way slower
A it
o The cost per iteration is doubled H\ I “ﬂ‘ “\W““‘\‘\‘H‘WM \w MM ‘
A
o There are more eigenvalues close to \“\\‘\‘H ‘\“H\‘HJ M“J\\H\J\JHHH‘MH W‘
zero, so it takes more iterations to 'J VI H || ” | ” H

extract the exact component



Stable ALIF

T =5/20 N = 3000
Given the ALIF matrix K, let

ALIF S7(s) - Finished

S(s):=s—K'Ks=(l—K"K)s

i \”w”‘ m M”W\‘\‘ H\‘x‘r‘m‘nmll i H"IHL
o KTK Has the same kernel of K ‘\H‘\‘ M\‘W \\\‘HMH‘\HH \HH‘ HUM ”M N
N
o 1> )\;(KTK) > 0 after a
renormalization

As a consequence, S°°(s) always converges,

but the method is way slower S )’ | ‘ J 1 ‘ ‘
o The cost per iteration is doubled '\‘ ‘\‘q\ | ‘\\ H‘\“ \H\”‘\H\HH HHHMH W ” 'HH ﬂ W
o There are more eigenvalues close to ‘u‘ “HHH‘ il ‘H\ H“ HHHHHHHMM HL
zero, so it takes more iterations to ‘ mwlw w“ J

extract the exact component



Results about SALIF

S(s)=(I-K'K)s 1> X(K'K)>0

Since ||[K"K|| <1 and it is Hermitian, we can recover some of the IF good properties:
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Results about SALIF

S(s)=(I-K'K)s 1> X(K'K)>0
Since ||[K"K|| <1 and it is Hermitian, we can recover some of the IF good properties:

Theorem (B. 2023)
For any vectors h,s let K be any n x n Hermitian matrix with spectrum in [0,1]. Then
87 (s + h) = S"(s)I| < [|hll-
If now the filters and m; are fixed, for IMF; the modes generated by s and for IMF}
generated by s + h, we have
> IIMF; — IMF;|* < ||h||*.
J
Theorem (B. 2023)
Given 6 > 0, s, then

m"™ 1)

= v m+1 . gQm
(m+ 1)m+1 < I1s]] = [|S"(s) = S"(s)l| <&
Theorem (B. 2023)

> IMF;|? < ||s||?. Thus, there is a finite number of relevant IMF, i.e. |[IMF|| > n
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Resampling Function G(y)

Recall that in ALIF the length ¢(x) is computed as &o/f(x) where f(x) is the
highest instantaneous frequency for the IMFs of the signal s(x).

From now on & = 1.

Example: The Instantaneous Frequency of s(x) = cos(a(x)) is o/(x) if it is
regular enough. In this case, £(x) = 1/a’(x).



Resampling Function G(y)

Recall that in ALIF the length ¢(x) is computed as &o/f(x) where f(x) is the
highest instantaneous frequency for the IMFs of the signal s(x).
From now on & = 1.

Example: The Instantaneous Frequency of s(x) = cos(a(x)) is o/(x) if it is
regular enough. In this case, £(x) = 1/a’(x).

In the Resampled IF (RIF), we instead operate a IF loop to the resampled
stationary signal s(G(y)) where

1 1
G (z):/0 @dx

Example: In the previous example, G~ *(z) = [ o/(x) = a(z) — a(0) so that
s(G(y)) = cos(a(G(y))) = cos((0) + y)

is a stationary signal with frequency equal to & =1



Resampled Iterative Filtering

Given the signal s(x), compute the resampling

._ e [T 4
s-(x) == s(G(x)) G (z)f/o Z(x)d
Signal s(z) and apply iteratively the filter through convolution
e AR A S(F) i= F(x) = [ F(y)k(x — y)dy
WWWWWWW‘WWW IMF — IMFU{S“(S,)(G 1(x))}
s=5—8%(s)(67(x)

Resampled Signal s, ()

SABAANAARY M% WWJ‘

_L(s) = [sr(yk(@ —y)dy

Resampled Moving Average

ANV




Resampled Iterative Filtering

Slgnal s(x)

A

V WMWNWW J“W% »W\/f

_L(s) = [sr(yk(@ —y)dy

Resampled Moving Average

ANV

Given the signal s(x), compute the resampling

s(x) = s(G(x)) c*l(z):/ozﬁdx

and apply iteratively the filter through convolution

S(f) :=f(x) — [ f(y)k(x — y)dy
IMF = IMF U {S8>(s,)(G*(x))}
s=5-8%(s)(G'(x))

We have an algorithm that is
o As flexible as ALIF and SALIF

o Efficient as Fast IF, the resampling is

outside the iterations and has the same
complexity as the FFT, thus way faster than
ALIF and SALIF

Differently from ALIF, S*°(s;) is always
convergent because it is an IF iteration. In
particular, given a stopping criterion with
0 > 0 we have the same results that limit
the number of iterations.



Theorem
Given0 < k< 1,6 >0, s,(x) € L(R), then
m™ )

TS
(m+1)m™ s ||

implies || S™(s;) — S™(s/)|| < &

Theorem

For any h,s, € L? m m
87 (sr +h) = S™(s:)Il < [l

Fast Discrete RIF

Sn(s) = k"o §
IS™(s,) = S™(s)/l| <& <= [|k°"o(k—e)o&| <
The stopping condition is checked on k and s; with linear cost + 2 DFT



Theorem
Given0 < k< 1,6 >0, s,(x) € L(R), then
m™ )

TS
(m+1)m™ s ||

implies || S™(s;) — S™(s/)|| < &

Theorem

For any h,s, € L? m m
IS™ (sr + h) =S (se)|l < |l

Fast Discrete RIF
Sn(s) = k"o §
IS™(s,) = S™(s)/l| <& <= [|k°"o(k—e)o&| <
The stopping condition is checked on k and s; with linear cost + 2 DFT

We don't know if we can still recover

o Global perturbation results
o Intrinsic relation with 5

o Limited number of meaningful IMFs



Non-Stationary Error Bounds

Let us suppose that the signal s(x) is a linear combination of non-stationary components
M
s(x) =) ag(x)  g(x) = cos(aj(x))
=1
with af(x) > as(x) > " > osz(JX) > € >0 and |aj| < P for any j, and resampling
si(z) = ah(z)  hi(z) = cos(a(ay }(2sz)) = cos(B;(z))
j=1

where hj(x) are all 1-periodic and hi1(z) = cos(2msz)



Non-Stationary Error Bounds

Let us suppose that the signal s(x) is a linear combination of non-stationary components
M
=Y ag(x)  g(x) = cos(a (x))

Jj=1
with af(x) > a5(x) > -+ > aj(x) > € > 0 and |aj| < P for any j, and resampling
M

si(z) = Z aihi(z)  hi(z) = cos(ay(ay ' (2msz)) = cos(f;(2))

where hj(x) are all 1-periodic and hi1(z) = cos(2msz)

The IF Algorithm extracts as the first IMF the component hi(z) plus the coefficients of the
components hj(z), j > 2 with frequency greater or equal than & = 27ws. When the
components are non-stationary, h;j(z) for j > 2 may be non-zero also for high frequencies,
thus we need an estimation of the error.



Non-Stationary Error Bounds

Let us suppose that the signal s(x) is a linear combination of non-stationary components
M
s(x) =) ag(x)  g(x) = cos(aj(x))
=1
with af(x) > ah(x) > -+ > osz(Jx) > e > 0 and |a;] < P for any j, and resampling
M
si(z) = ah(z)  hi(z) = cos(a(ay }(2sz)) = cos(B;(z))
j=1

where hj(x) are all 1-periodic and hi(z) = cos(2msz)

The IF Algorithm extracts as the first IMF the component h1(z) plus the coefficients of the
components hj(z), j > 2 with frequency greater or equal than & = 27s. When the
components are non-stationary, h;j(z) for j > 2 may be non-zero also for high frequencies,

thus we need an estimation of the error.

Theorem (B. 2023)

Let B:R — R be a C* function with 8'(x) € [a, b] 1-periodic, 0 < a < b, R := b—a. Let
f(x) := cos(B(x)) and let f(x)n be the N-tail of its Fourier series, and G :=27wN — b > 0

b 2 R?
2 = mi - A
IF()nllz < mm{(GerJrzW) ’ﬁc}



Non-Stationary Error Bounds

M
s(2):= > a(z)  hi(z) = cos(ajlar™ (2ns2)) = cos(5(2))
Jj=1
where hj(x) are all 1-periodic and h1(z) = cos(2wsz), |aj| < P
Theorem (B. 2023)

Let 3:R — R be a C* function with B'(x) € [a, b] 1-periodic, 0 < a < b, R := b—a. Let
f(x) := cos(B(x)) and let f(x)n be the N-tail of its Fourier series, and G := 27N — b > 0

b 2 R?
2 o b R
[[7]: = e { (G+ b+27r) ’7r3c}



Non-Stationary Error Bounds

M
s(2):= > a(z)  hi(z) = cos(ajlar™ (2ns2)) = cos(5(2))
Jj=1
where hj(x) are all 1-periodic and h1(z) = cos(2wsz), |aj| < P
Theorem (B. 2023)

Let 3:R — R be a C* function with B'(x) € [a, b] 1-periodic, 0 < a < b, R := b—a. Let
f(x) := cos(B(x)) and let f(x)n be the N-tail of its Fourier series, and G := 27N — b > 0

b 2 R?
2 o b R
[[7]: = e { (G+ b+27r) ’7r3c}

If now j > 1, f(z) = hj(z) and N = s — 1, then P||f(x) — f(x)n]|2 is a bound on the
perturbation of the IMF caused by the j-th component hj, and it is proportional to both

b _ max; 3/(z) a(x) o for far £ _
G+btor  o2ms M ol () (low for far frequencies)
/ . ’ Oél-(X) . (X{(X)) .
R = max 3;(z) — min 3j(z) = 27s ( max —2 — min —2 zero if same shape
ax 3)(2) — min £(2) ( ) i ) .



Non-Stationary Error Bounds

M
s(2):= > a(z)  hi(z) = cos(ajlar™ (2ns2)) = cos(5(2))
Jj=1
where hj(x) are all 1-periodic and h1(z) = cos(2wsz), |aj| < P
Theorem (B. 2023)

Let 3:R — R be a C* function with B'(x) € [a, b] 1-periodic, 0 < a < b, R := b—a. Let
f(x) := cos(B(x)) and let f(x)n be the N-tail of its Fourier series, and G := 27N — b > 0

b 2 R?
2 o b R
[[7]: = e { (G+ b+27r> ’WBG}

If now j > 1, f(z) = hj(z) and N = s — 1, then P||f(x) — f(x)n]|2 is a bound on the
perturbation of the IMF caused by the j-th component hj, and it is proportional to both

g = ) g 20 (low for far f ies)
Grbtor  27s M o (x) ow for far frequencies
R = max 54(2) — min §}(z) = 2rs (max 200 i S0DY  (ero if same shape)
z e e O/l(X) 1 O/l(x)

The method actually extracts only selected frequencies near &, with way less error



Numerical Experiments




N = 8000 Rl I ‘wHJ\‘x‘\‘4,\[\[\!\!\’\’\’\‘\‘uﬁ\‘p"w Il I N"‘"““.‘,‘,‘,‘,‘,‘,‘,“‘“.‘ﬁ“\\“‘

h1(x) = cos(20 cos(47t) — 1607t) o IHHIMM‘\‘\‘\‘\‘HVMJHJHHI““ll‘lll||Imwu‘\‘\‘\‘m‘\ WHHH““““H
h2(x) = cos(20 cos(4mt) — 2807t) ”5

hz(x) = cos(2mt)
h(x) = hi(x) + h2(x) + hz(x)
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ALIF 4.0860 0.070388 0.071158 0.008549 18 2
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Conclusions and Future Works

We developed Algorithms and Theory for

o SALIF - Stable, Flexible, Convergent but very Slow

e RIF - Flexible, Convergent, Fast but may introduce inaccuracies

Moreover RIF proves himself also Aliasing-Free and we also expanded the
theory of IF.



Conclusions and Future Works

We developed Algorithms and Theory for

o SALIF - Stable, Flexible, Convergent but very Slow
e RIF - Flexible, Convergent, Fast but may introduce inaccuracies

Moreover RIF proves himself also Aliasing-Free and we also expanded the
theory of IF.

Still to do:

o Better exploit the order of zero of the filter
o Further analysis of IF for non-stationary and AM components

e We can use RIF to better study ALIF through the relation between G(x)
and /(x)

o Better ways to compute G(x) without relying on #(x)
o Improve the error bounds, since they prove to be empirically better

o How perturbation affect the output of RIF
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