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Empirical Method Decomposition (EMD)

Decomposition of non-stationary signals into In-
trinsic Mode Functions (IMF)

• Iterative Method

• Based on the computation of the moving
average of the signal

• Splits the signal into simple oscillatory
components

Numerous variants (EEMD, NA-MEMD,
FMEMD, etc.) have been proposed in the years
to deal with instability and mode splitting/mix-
ing, and to prove its convergence



Iterative Filtering

The effect of the moving average is to
flatten the highest frequency component

A way to emulate the effect is to use a
filter on the signal

Choose the filter k:

• Unit-norm, even, nonnegative and compact
supported

• k = ω ? ω

=⇒ 0 ≤ k̂(ξ) ≤ 1

The IF method iteratively apply the filter through
convolution
S(f ) := f (x)−

∫
f (y)k(x − y)dy

IMF = IMF ∪ {S∞(s)}
s = s − S∞(s)

The convergence of S∞(s) can be studied on the
frequencies space
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Time-Frequency Space

On the Time Dimension the Sifting Operator
is the difference between the signal and the
Moving Average

On the Frequency Dimension

Ŝ(s)(ξ) = ŝ(ξ)(1− k̂(ξ))

Ŝm(s)(ξ) = ŝ(ξ)(1− k̂(ξ))m
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The Fundamental Zero and the Stopping Criterion

Ŝm(s)(ξ) = ŝ(ξ)(1− k̂(ξ))m 0 ≤ 1− k̂(ξ) ≤ 1

The Sifting Operator extracts the frequen-
cies corresponding to low values of 0 ≤ k̂(ξ)

Call Jγ the neighbourhood of ξ0 the first
zero of k̂(ξ) on which k̂ < γ

|Ŝm(s)(ξ)| ≤ |ŝ(ξ)|(1− γ)m ξ 6∈ Jγ

Notice that Lk(Lx) is also a filter with ξ0/L
as first zero

Set the Stopping Criterion for IF as

‖Sm+1(s)− Sm(s)‖ < δ

Theorem (Cicone, Zhou, 2021)

Given 0 ≤ k̂ ≤ 1, δ > 0, s(x) ∈ L2(R),
then

mm

(m + 1)m+1 <
δ

‖s‖

implies ‖Sm+1(s)− Sm(s)‖ < δ

Ifm is the stopping index, m = O(‖s‖/δ)

Theorem (Cicone, Zhou 2021, B. 2023)

If Iγ := {ξ : (1− k̂(ξ))m > 1− γ} and

ÎMF
TH

= χIγ ŝ + (1− k̂)m(1− χIγ )ŝ,

then for any fixed η > 0, there exist
δ, γ > 0 for which
‖IMF − IMFTH‖ ≤ η/2 for all IMFs
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Ŝm(s)(ξ) = ŝ(ξ)(1− k̂(ξ))m 0 ≤ 1− k̂(ξ) ≤ 1

The Sifting Operator extracts the frequen-
cies corresponding to low values of 0 ≤ k̂(ξ)

Call Jγ the neighbourhood of ξ0 the first
zero of k̂(ξ) on which k̂ < γ
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Order of the Fundamental Zero

Theorem (Cicone, Zhou 2021, B. 2023)

If Iγ := {ξ : (1− k̂(ξ))m > 1− γ} and

ÎMF
TH

= χIγ ŝ + (1− k̂)m(1− χIγ )ŝ,

then for any fixed η > 0, there exist δ, γ > 0 for which ‖IMF − IMFTH‖ ≤ η/2 for all IMFs

Better results are achieved with bigger Iγ , especially for amplitude-modulated
signals where

s(x) = a(x)g(x) =⇒ ŝ(ξ) = (â ? ĝ)(ξ)

and if a(x) has low instant frequency, then â ? ĝ has non-zero components near
the main frequencies of g

Better performances
are also achieved with
smoother filters and

k ? k ? k ? ...

is a more regular fil-
ter with the same first
zero of the FT

Theorem (B. 2023)
If we choose ξ0 depending on the biggest frequency in ŝ whose intensity is at least η, then

B(ξ0,C
2p
√
ηδ) ⊆ Iγ

where 2p is the order for the first zero in k̂
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ÎMF
TH
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Frequency Partition and Perturbation

Theorem (Cicone, Zhou 2021, B. 2023)

If Iγ := {ξ : (1− k̂(ξ))m > 1− γ} and

ÎMF
TH

= χIγ ŝ + (1− k̂)m(1− χIγ )ŝ,

then for any fixed η > 0, there exist δ, γ > 0 for which ‖IMF − IMFTH‖ ≤ η/2 for all IMFs

→ This implies the decomposition is an approximate subband partition, but there’s more

ÎMF j = Ŝmj (rj) = r̂j(1− k̂j)
mj

where rj is what’s left after having extracted
j − 1 IMFs from the original signal s(x), so

r̂j+1 = r̂j − ÎMF j = r̂j [1− (1− k̂j)
mj ]

Theorem (B. 2023)

ÎMF j(ξ) = λj(ξ) · ŝ(ξ)

where 0 ≤ λj(ξ) and
∑

j λj(ξ) ≤ 1 ∀ξ.
Thus, there is a finite number of relevant
IMF, i.e. ‖IMFj‖ > η

This is important for perturbations, since

Theorem (B. 2023)

For any h, s ∈ L2

‖Sm(s + h)− Sm(s)‖ ≤ ‖h‖
and if we fix kj , mj in the algorithm, for
IMFj the modes generated by s(x) and
for IMF ∗j generated by s(x) + h(x), we
have ∑

j

‖IMF ∗j − IMFj‖2 ≤ ‖h‖2.
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Discrete Setting

The signal s(x) is studied on [0, 1] and it is supposed to be periodic at the boundaries
[Stallone, Cicone, Materassi 2020] so that the discretization results in a circulant matrix

s = [s(h) s(2h) . . . s(1− h) s(1)] h = 1/N

S(s)(x) = s(x)−
∫ 1

0
s(x − y)k(y)dy |x=ah S(s)(ah) ∼ sa −

1
N

N∑
b=1

k (bh) sa−b

S(s) := s − Ks = (I − K)s

One can thus write the main loop of the discrete IF Algorithm as
S(f ) := (I − K)f
IMF = IMF ∪ {Sm(s)}
s = s − Sm(s)

where the stopping condition is ‖Sm+1(s)− Sm(s)‖ < δ

Fast IF

Sm(s) = (I − K)ms =⇒ Ŝm(s) = k◦m ◦ ŝ
where k is the first row of I − K , ◦ is the elementwise product and ŝ is the DFT of s

‖Sm+1(s)− Sm(s)‖ < δ ⇐⇒ ‖k◦m ◦ (k − e) ◦ ŝ‖ < δ

The stopping condition can be checked on k and ŝ with linear cost + 2 DFT per IMF
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Theorems in the Discrete Settings

Sm(s) = (I − K)ms =⇒ Ŝm(s) = k◦m ◦ ŝ

Theorem
If k is a filter, then 0 ≤ k ≤ 1, so Sm(s)
always converges

Theorem (Cicone, Zhou, 2021, B. 2023)
Given δ > 0, s, then

mm

(m + 1)m+1 <
δ

‖s‖

implies ‖Sm+1(s)− Sm(s)‖ < δ

Theorem (B. 2023)

ÎMF j = λj ◦ ŝ

where 0 ≤ λj and
∑

j λj ≤ 1. Thus, there is
a finite number of relevant IMF, i.e.
‖IMF j‖ > η

Theorem (B. 2023)
For any vectors h, s let K be any n × n

Hermitian matrix with spectrum in
[0, 1]. Then

‖Sm(s + h)− Sm(s)‖ ≤ ‖h‖.

If now the filters and mj are fixed, for
IMF j the modes generated by s and for
IMF ∗j generated by s + h, we have∑

j

‖IMF ∗j − IMF j‖2 ≤ ‖h‖2.

Theorem (B. 2023)
The approximation error of IMF j with
respect to the continuous algorithm
modes IMFj is proportional to
log(1/δ)/n
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Drawbacks

Let’s take a look at the instantaneous frequencies (don’t skip)
skip
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Adaptive Local Iterative Filtering

kx(y) := k(`(x)−1y)`(x)−1 S(s)(x) := s(x)−
∫

s(y)kx(x − y)dy
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Adaptive Local Iterative Filtering

Given the signal s(x), fix the filter

kx(y) := k(`(x)−1y)`(x)−1

where ideally `(x) ∼ ξ0/f (x), with f (x) be-
ing the instantaneous frequency of the higher-
frequency IMF.
Apply iteratively the filter through sifting
S(f ) := f (x)−

∫
f (y)kx(x − y)dy

IMF = IMF ∪ {S∞(s)}
s = s − S∞(s)

ALIF is now as flexible as EMD, and empirically
converges, but..

• No structure, not fast as IF (O(n2) against
O(n log(n)))

• Has no clean formal analysis since it is not
a convolution

• S∞(s) is not always convergent (in the
discrete setting) even with a stopping
condition



Discrete ALIF

s = [s(h) s(2h) . . . s(1− h) s(1)] h = 1/N

s(x)−
∫ 1

0
s(y)kx(x − y)dy |x=ah ∼ sa −

1
N

N∑
b=1

k

(
(a− b)h

`(ah)

)
1

`(ah)
sb

S(s) := s − Ks = (I − K)s

• S∞(s) converges when

|λi (I − K)| < 1 ∨ λi (I − K) = 1

• Converges to the kernel of K

The kernel is the same in αM where α ∈ R,
so the real condition is

=(λi (K)) > 0 ∨ λi (K) = 0

Setting a stopping condition in the iteration
makes S∞(s) a near-kernel vector

For big enough N and if `(x) is continuous,
positive and

k(x) = ω(x) ? ω(x),

then the spectrum of K respects the condi-
tion for almost every eigenvalue [B., Cicone
2022]

There are artificial examples where K has
negative eigenvalues, so the convergence is
not always assured
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Stable ALIF

Given the ALIF matrix K , let

S(s) := s − KTKs = (I − KTK)s

• KTK Has the same kernel of K

• 1 ≥ λi (K
TK) ≥ 0 after a

renormalization

As a consequence, S∞(s) always converges,
but the method is way slower

• The cost per iteration is doubled

• There are more eigenvalues close to
zero, so it takes more iterations to
extract the exact component

T × 1/20 N = 3000

skip
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Given the ALIF matrix K , let

S(s) := s − KTKs = (I − KTK)s
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Results about SALIF

S(s) = (I − KTK)s 1 ≥ λi (K
TK) ≥ 0

Since ‖KTK‖ ≤ 1 and it is Hermitian, we can recover some of the IF good properties:

Theorem (B. 2023)
For any vectors h, s let K be any n × n Hermitian matrix with spectrum in [0, 1]. Then

‖Sm(s + h)− Sm(s)‖ ≤ ‖h‖.
If now the filters and mj are fixed, for IMF j the modes generated by s and for IMF ∗j
generated by s + h, we have ∑

j

‖IMF ∗j − IMF j‖2 ≤ ‖h‖2.

Theorem (B. 2023)
Given δ > 0, s, then

mm

(m + 1)m+1 <
δ

‖s‖ =⇒ ‖Sm+1(s)− Sm(s)‖ < δ

Theorem (B. 2023)∑
j ‖IMF j‖2 ≤ ‖s‖2. Thus, there is a finite number of relevant IMF, i.e. ‖IMF j‖ > η
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Resampled Iterative Filtering
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Resampling Function G (y)

Recall that in ALIF the length `(x) is computed as ξ0/f (x) where f (x) is the
highest instantaneous frequency for the IMFs of the signal s(x).
From now on ξ0 = 1.

Example: The Instantaneous Frequency of s(x) = cos(α(x)) is α′(x) if it is
regular enough. In this case, `(x) = 1/α′(x).

In the Resampled IF (RIF), we instead operate a IF loop to the resampled
stationary signal s(G(y)) where

G−1(z) =

∫ z

0

1
`(x)

dx

Example: In the previous example, G−1(z) =
∫ z

0 α
′(x) = α(z)− α(0) so that

s(G(y)) = cos(α(G(y))) = cos(α(0) + y)

is a stationary signal with frequency equal to ξ0 = 1
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Resampled Iterative Filtering

Given the signal s(x), compute the resampling

sr (x) := s(G(x)) G−1(z) =

∫ z

0

1
`(x)

dx

and apply iteratively the filter through convolution
S(f ) := f (x)−

∫
f (y)k(x − y)dy

IMF = IMF ∪ {S∞(sr )(G
−1(x))}

s = s − S∞(sr )(G
−1(x))

We have an algorithm that is

• As flexible as ALIF and SALIF

• Efficient as Fast IF, the resampling is
outside the iterations and has the same
complexity as the FFT, thus way faster than
ALIF and SALIF

• Differently from ALIF, S∞(sr ) is always
convergent because it is an IF iteration. In
particular, given a stopping criterion with
δ > 0 we have the same results that limit
the number of iterations.
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Theorem

Given 0 ≤ k̂ ≤ 1, δ > 0, sr (x) ∈ L2(R), then

mm

(m + 1)m+1 <
δ

‖sr‖

implies ‖Sm+1(sr )− Sm(sr )‖ < δ

Theorem

For any h, sr ∈ L2

‖Sm(sr + h)− Sm(sr )‖ ≤ ‖h‖

Fast Discrete RIF

Ŝm(s r ) = k◦m ◦ ŝ r
‖Sm+1(s r )− Sm(s)r‖ < δ ⇐⇒ ‖k◦m ◦ (k − e) ◦ ŝ r‖ < δ

The stopping condition is checked on k and ŝ r with linear cost + 2 DFT

We don’t know if we can still recover

• Global perturbation results

• Intrinsic relation with ŝ

• Limited number of meaningful IMFs
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Non-Stationary Error Bounds

Let us suppose that the signal s(x) is a linear combination of non-stationary components

s(x) :=
M∑
j=1

ajgj(x) gj(x) = cos(αj(x))

with α′1(x) > α′2(x) > · · · > α′M(x) > ε > 0 and |aj | ≤ P for any j , and resampling

sr (z) :=
M∑
j=1

ajhj(z) hj(z) = cos(αj(α
−1
1 (2πsz)) = cos(βj(z))

where hj(x) are all 1-periodic and h1(z) = cos(2πsz)

The IF Algorithm extracts as the first IMF the component h1(z) plus the coefficients of the
components hj(z), j ≥ 2 with frequency greater or equal than ξ0 = 2πs. When the
components are non-stationary, ĥj(z) for j ≥ 2 may be non-zero also for high frequencies,
thus we need an estimation of the error.

Theorem (B. 2023)

Let β : R→ R be a C 1 function with β′(x) ∈ [a, b] 1-periodic, 0 < a < b, R := b− a. Let
f (x) := cos(β(x)) and let f (x)N be the N-tail of its Fourier series, and G := 2πN − b > 0

‖f (x)N‖22 ≤ min

{(
b

G + b + 2π

)2

,
R2

π3G

}

If now j > 1, f (z) = hj(z) and N = s − 1, then P‖f (x)− f (x)N‖2 is a bound on the
perturbation of the IMF caused by the j-th component hj , and it is proportional to both

b

G + b + 2π
=

maxz β
′
j (z)

2πs
= max

x

α′j(x)

α′1(x)
(low for far frequencies)

R = max
z
β′j (z)−min

z
β′j (z) = 2πs

(
max

x

α′j(x)

α′1(x)
−min

x

α′j(x)

α′1(x)

)
(zero if same shape)

The method actually extracts only selected frequencies near ξ0, with way less error
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Non-Stationary Error Bounds

sr (z) :=
M∑
j=1

ajhj(z) hj(z) = cos(αj(α
−1
1 (2πsz)) = cos(βj(z))

where hj(x) are all 1-periodic and h1(z) = cos(2πsz), |aj | ≤ P

Theorem (B. 2023)

Let β : R→ R be a C 1 function with β′(x) ∈ [a, b] 1-periodic, 0 < a < b, R := b− a. Let
f (x) := cos(β(x)) and let f (x)N be the N-tail of its Fourier series, and G := 2πN − b > 0

‖f (x)N‖22 ≤ min

{(
b

G + b + 2π

)2

,
R2

π3G

}

If now j > 1, f (z) = hj(z) and N = s − 1, then P‖f (x)− f (x)N‖2 is a bound on the
perturbation of the IMF caused by the j-th component hj , and it is proportional to both

b

G + b + 2π
=

maxz β
′
j (z)

2πs
= max

x

α′j(x)

α′1(x)
(low for far frequencies)

R = max
z
β′j (z)−min

z
β′j (z) = 2πs

(
max

x

α′j(x)

α′1(x)
−min

x

α′j(x)

α′1(x)

)
(zero if same shape)

The method actually extracts only selected frequencies near ξ0, with way less error



Numerical Experiments



Experiment 1

N = 8000
h1(x) = cos(20 cos(4πt)− 160πt)
h2(x) = cos(20 cos(4πt)− 280πt)
h3(x) = cos(2πt)
h(x) = h1(x) + h2(x) + h3(x)



ALIF SALIF RIF

Time err1 err2 err3 Niter1 Niter2
ALIF 4.0860 0.070388 0.071158 0.008549 18 2
SALIF 19.7919 0.010054 0.010055 0.000161 353 5
RIF 1.4724 0.003426 0.003292 0.000908 81 11



Experiment 2



Experiment 2



IF

RIF



Conclusions and Future Works

We developed Algorithms and Theory for

• SALIF - Stable, Flexible, Convergent but very Slow

• RIF - Flexible, Convergent, Fast but may introduce inaccuracies

Moreover RIF proves himself also Aliasing-Free and we also expanded the
theory of IF.

Still to do:

• Better exploit the order of zero of the filter

• Further analysis of IF for non-stationary and AM components

• We can use RIF to better study ALIF through the relation between G(x)

and `(x)

• Better ways to compute G(x) without relying on `(x)

• Improve the error bounds, since they prove to be empirically better

• How perturbation affect the output of RIF
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