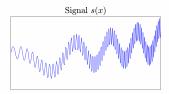
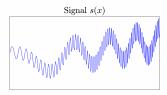
Giovanni Barbarino Department of Mathematics and Systems Analysis, Aalto University Antonio Cicone Department of Information Engineering Computer Science and Mathematics, University of L'Aquila

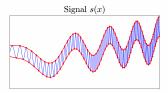
MaSAG23 Conference, INGV Rome

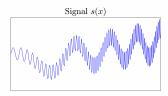
19-20 May 2023

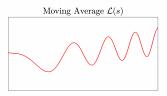
Iterative Filtering

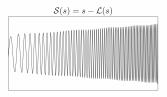




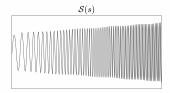


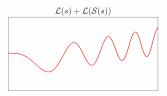


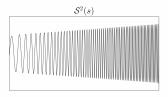




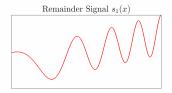
Empirical Method Decomposition (EMD)

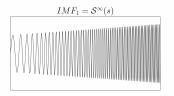




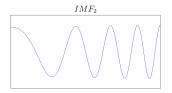


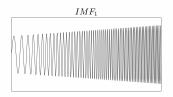
Empirical Method Decomposition (EMD)

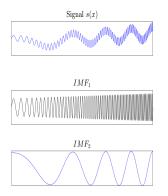




Empirical Method Decomposition (EMD)







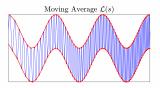
Decomposition of non-stationary signals into Intrinsic Mode Functions (IMF)

- Iterative Method
- Based on the computation of the moving average of the signal
- Splits the signal into simple oscillatory components

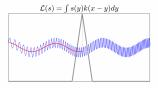
Numerous variants (EEMD, NA-MEMD, FMEMD, etc.) have been proposed in the years to deal with instability and mode splitting/mixing, and to prove its convergence

Iterative Filtering

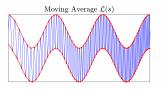
The effect of the moving average is to flatten the highest frequency component



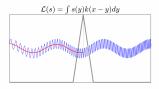
A way to emulate the effect is to use a filter on the signal



The effect of the moving average is to flatten the highest frequency component



A way to emulate the effect is to use a filter on the signal



Choose the filter k:

• Unit-norm, even, nonnegative and compact supported

•
$$k = \omega \star \omega$$

$$\implies 0 \leq \hat{k}(\xi) \leq 1$$

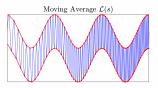
The IF method iteratively apply the filter through convolution

$$\begin{aligned} \mathcal{S}(f) &:= f(x) - \int f(y)k(x - y)dy \\ IMF &= IMF \cup \{\mathcal{S}^{\infty}(s)\} \\ s &= s - \mathcal{S}^{\infty}(s) \end{aligned}$$

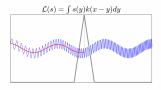
The convergence of $\mathcal{S}^{\infty}(s)$ can be studied on the frequencies space

Iterative Filtering

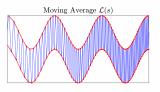
The effect of the moving average is to flatten the highest frequency component



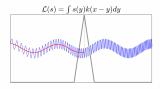
A way to emulate the effect is to use a filter on the signal



The effect of the moving average is to flatten the highest frequency component



A way to emulate the effect is to use a filter on the signal



Choose the filter k:

• Unit-norm, even, nonnegative and compact supported

•
$$k = \omega \star \omega$$

$$\implies 0 \leq \hat{k}(\xi) \leq 1$$

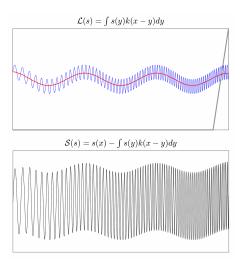
The IF method iteratively apply the filter through convolution

$$\begin{aligned} \mathcal{S}(f) &:= f(x) - \int f(y)k(x - y)dy \\ IMF &= IMF \cup \{\mathcal{S}^{\infty}(s)\} \\ s &= s - \mathcal{S}^{\infty}(s) \end{aligned}$$

The convergence of $\mathcal{S}^{\infty}(s)$ can be studied on the frequencies space

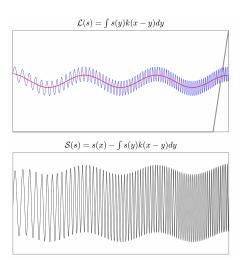
Time-Frequency Space

On the Time Dimension the Sifting Operator is the difference between the signal and the Moving Average

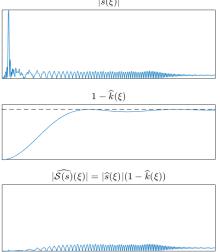


Time-Frequency Space

On the Time Dimension the Sifting Operator is the difference between the signal and the Moving Average



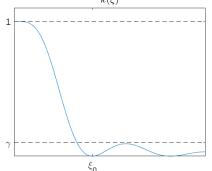
On the Frequency Dimension $\widehat{S(s)}(\xi) = \widehat{s}(\xi)(1 - \widehat{k}(\xi))$ $\widehat{S^{m}(s)}(\xi) = \widehat{s}(\xi)(1 - \widehat{k}(\xi))^{m}$ $|\widehat{s}(\xi)|$



$$\widehat{\mathcal{S}^m(s)}(\xi) = \widehat{s}(\xi)(1-\widehat{k}(\xi))^m \qquad 0 \leq 1-\widehat{k}(\xi) \leq 1$$

$$\widehat{{\mathcal S}^m(s)}(\xi) = \widehat{s}(\xi)(1-\widehat{k}(\xi))^m \qquad 0 \leq 1-\widehat{k}(\xi) \leq 1$$

The Sifting Operator extracts the frequencies corresponding to low values of $0 \le \hat{k}(\xi)$ $\hat{k}(\xi)$



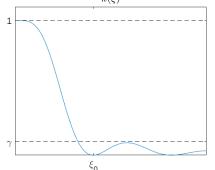
Call J_{γ} the neighbourhood of ξ_0 the first zero of $\hat{k}(\xi)$ on which $\hat{k} < \gamma$

$$|\widehat{\mathcal{S}^m(s)}(\xi)| \leq |\widehat{s}(\xi)|(1-\gamma)^m \quad \xi
ot\in J_\gamma$$

Notice that Lk(Lx) is also a filter with ξ_0/L as first zero

$$\widehat{\mathcal{S}^m(s)}(\xi) = \widehat{s}(\xi)(1-\widehat{k}(\xi))^m \qquad 0 \leq 1-\widehat{k}(\xi) \leq 1$$

The Sifting Operator extracts the frequencies corresponding to low values of $0 \le \hat{k}(\xi)$ $\hat{k}(\xi)$



Call J_{γ} the neighbourhood of ξ_0 the first zero of $\hat{k}(\xi)$ on which $\hat{k} < \gamma$

$$|\widehat{\mathcal{S}^m(s)}(\xi)| \leq |\widehat{s}(\xi)|(1-\gamma)^m \quad \xi
ot\in J_\gamma$$

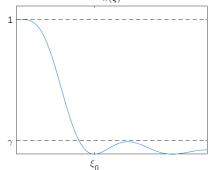
Notice that Lk(Lx) is also a filter with ξ_0/L as first zero

Set the Stopping Criterion for IF as $\|\mathcal{S}^{m+1}(s) - \mathcal{S}^m(s)\| < \delta$

Theorem (Cicone, Zhou, 2021) Given $0 \le \hat{k} \le 1$, $\delta > 0$, $s(x) \in L^2(\mathbb{R})$, then $\frac{m^m}{(m+1)^{m+1}} < \frac{\delta}{\|s\|}$ implies $\|S^{m+1}(s) - S^m(s)\| < \delta$ If *m* is the stopping index, $m = O(\|s\|/\delta)$

$$\widehat{\mathcal{S}^m(s)}(\xi) = \widehat{s}(\xi)(1-\widehat{k}(\xi))^m \qquad 0 \leq 1-\widehat{k}(\xi) \leq 1$$

The Sifting Operator extracts the frequencies corresponding to low values of $0 \le \hat{k}(\xi)$ $\hat{k}(\xi)$



Call J_{γ} the neighbourhood of ξ_0 the first zero of $\hat{k}(\xi)$ on which $\hat{k} < \gamma$

 $|\widehat{S^{m}(s)}(\xi)| \leq |\widehat{s}(\xi)|(1-\gamma)^{m} \quad \xi \notin J_{\gamma}$ Notice that Lk(Lx) is also a filter with ξ_{0}/L as first zero Set the Stopping Criterion for IF as $\|\mathcal{S}^{m+1}(s)-\mathcal{S}^m(s)\|<\delta$

Theorem (Cicone, Zhou, 2021) Given $0 \leq \hat{k} \leq 1$. $\delta > 0$. $s(x) \in L^2(\mathbb{R})$. then $\frac{m^m}{(m+1)^{m+1}} < \frac{\delta}{\|s\|}$ implies $\|S^{m+1}(s) - S^m(s)\| < \delta$ If *m* is the stopping index, $m = O(||s||/\delta)$ Theorem (Cicone, Zhou 2021, B. 2023) If $I_{\gamma} := \{ \xi : (1 - \hat{k}(\xi))^m > 1 - \gamma \}$ and $\widehat{IMF}^{TH} = \chi_{L}\widehat{s} + (1-\widehat{k})^{m}(1-\chi_{L})\widehat{s},$ then for any fixed $\eta > 0$, there exist $\delta, \gamma > 0$ for which $||IMF - IMF^{TH}|| \leq \eta/2$ for all IMFs

Order of the Fundamental Zero

Theorem (Cicone, Zhou 2021, B. 2023) If $I_{\gamma} := \{\xi : (1 - \hat{k}(\xi))^m > 1 - \gamma\}$ and $\widehat{IMF}^{TH} = \chi_{I_{\gamma}} \hat{s} + (1 - \hat{k})^m (1 - \chi_{I_{\gamma}}) \hat{s},$ then for any fixed $\eta > 0$, there exist $\delta, \gamma > 0$ for which $\|IMF - IMF^{TH}\| \le \eta/2$ for all IMFs

Better results are achieved with bigger I_γ , especially for amplitude-modulated

signals where

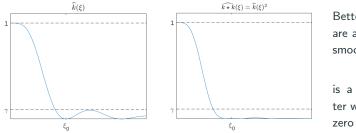
$$s(x) = a(x)g(x) \implies \widehat{s}(\xi) = (\widehat{a} \star \widehat{g})(\xi)$$

and if a(x) has low instant frequency, then $\hat{a} \star \hat{g}$ has non-zero components near the main frequencies of g

Order of the Fundamental Zero

Theorem (Cicone, Zhou 2021, B. 2023) If $I_{\gamma} := \{\xi : (1 - \hat{k}(\xi))^m > 1 - \gamma\}$ and $\widehat{IMF}^{TH} = \chi_{I_{\gamma}}\widehat{s} + (1 - \hat{k})^m (1 - \chi_{I_{\gamma}})\widehat{s},$

then for any fixed $\eta > 0$, there exist $\delta, \gamma > 0$ for which $\|IMF - IMF^{TH}\| \le \eta/2$ for all IMFs



Better performances are also achieved with smoother filters and k + k + k +

K * K * K * ...

is a more regular filter with the same first zero of the FT

Theorem (B. 2023)

If we choose ξ_0 depending on the biggest frequency in \hat{s} whose intensity is at least η , then $B(\xi_0, C \stackrel{2p}{\sim} \sqrt{\eta \delta}) \subseteq I_{\gamma}$

where 2p is the order for the first zero in k

Frequency Partition and Perturbation

Theorem (Cicone, Zhou 2021, B. 2023) If $I_{\gamma} := \{\xi : (1 - \hat{k}(\xi))^m > 1 - \gamma\}$ and $\widehat{IMF}^{TH} = \chi_{I_{\gamma}}\hat{s} + (1 - \hat{k})^m (1 - \chi_{I_{\gamma}})\hat{s},$ then for any fixed $\eta > 0$, there exist $\delta, \gamma > 0$ for which $\|IMF - IMF^{TH}\| \le \eta/2$ for all IMFs

ightarrow This implies the decomposition is an approximate subband partition, but there's more

Frequency Partition and Perturbation

Theorem (Cicone, Zhou 2021, B. 2023) If $I_{\gamma} := \{\xi : (1 - \hat{k}(\xi))^m > 1 - \gamma\}$ and $\widehat{IMF}^{TH} = \chi_{I_{\gamma}}\widehat{s} + (1 - \hat{k})^m (1 - \chi_{I_{\gamma}})\widehat{s},$

then for any fixed $\eta > 0$, there exist $\delta, \gamma > 0$ for which $\|IMF - IMF^{TH}\| \le \eta/2$ for all IMFs

ightarrow This implies the decomposition is an approximate subband partition, but there's more

$$\widehat{IMF}_j = \widehat{\mathcal{S}^{m_j}(r_j)} = \widehat{r_j}(1-\widehat{k}_j)^{m_j}$$

where r_j is what's left after having extracted j - 1 IMFs from the original signal s(x), so

$$\widehat{r_{j+1}} = \widehat{r_j} - \widehat{IMF}_j = \widehat{r_j}[1 - (1 - \widehat{k_j})^{m_j}]$$

Theorem (B. 2023)

 $\widehat{IMF}_j(\xi) = \lambda_j(\xi) \cdot \widehat{s}(\xi)$

where $0 \le \lambda_j(\xi)$ and $\sum_j \lambda_j(\xi) \le 1 \quad \forall \xi$. Thus, there is a finite number of relevant IMF, i.e. $\|IMF_j\| > \eta$

Frequency Partition and Perturbation

Theorem (Cicone, Zhou 2021, B. 2023) If $I_{\gamma} := \{\xi : (1 - \hat{k}(\xi))^m > 1 - \gamma\}$ and $\widehat{IMF}^{TH} = \chi_{I_{\gamma}}\hat{s} + (1 - \hat{k})^m (1 - \chi_{I_{\gamma}})\hat{s},$ then for any fixed $\eta > 0$, there exist $\delta, \gamma > 0$ for which $\|IMF - IMF^{TH}\| < \eta/2$ for all IMFs

 $\| \le \eta/2 \text{ for all the exist } 0, \ y > 0 \text{ for which } \| \| \| = \eta/2 \text{ for all the exist } 0, \ y > 0 \text{ for which } \| \| \| = \eta/2 \text{ for all the exist } 0, \ y > 0, \ y >$

ightarrow This implies the decomposition is an approximate subband partition, but there's more

 $\widehat{IMF}_{j} = \widehat{S^{m_{j}}(r_{j})} = \widehat{r_{j}}(1 - \widehat{k}_{j})^{m_{j}}$ where r_{j} is what's left after having extracted j - 1 IMFs from the original signal s(x), so $\widehat{r_{j+1}} = \widehat{r_{j}} - \widehat{IMF}_{j} = \widehat{r_{j}}[1 - (1 - \widehat{k}_{j})^{m_{j}}]$

Theorem (B. 2023)

 $\widehat{IMF}_j(\xi) = \lambda_j(\xi) \cdot \widehat{s}(\xi)$

where $0 \le \lambda_j(\xi)$ and $\sum_j \lambda_j(\xi) \le 1 \quad \forall \xi$. Thus, there is a finite number of relevant IMF, i.e. $\|IMF_j\| > \eta$ This is important for perturbations, since

Theorem (B. 2023)

For any
$$h, s \in L^2$$

 $\|{\mathcal S}^m(s+h)-{\mathcal S}^m(s)\|\leq \|h\|$

and if we fix k_j , m_j in the algorithm, for IMF_j the modes generated by s(x) and for IMF_j^{*} generated by s(x) + h(x), we have

$$\sum_{j} \|IMF_{j}^{*} - IMF_{j}\|^{2} \leq \|h\|^{2}.$$

Discrete Setting

The signal s(x) is studied on [0, 1] and it is supposed to be periodic at the boundaries [**Stallone, Cicone, Materassi 2020**] so that the discretization results in a circulant matrix

$$s = [s(h) \ s(2h) \ \dots \ s(1-h) \ s(1)] \qquad h = 1/N$$
$$\mathcal{S}(s)(x) = s(x) - \int_0^1 s(x-y)k(y)dy|_{x=ah} \qquad \mathcal{S}(s)(ah) \sim s_a - \frac{1}{N} \sum_{b=1}^N k \ (bh) \ s_{a-b}$$
$$\mathcal{S}(s) := s - Ks = (I-K)s$$

Discrete Setting

The signal s(x) is studied on [0, 1] and it is supposed to be periodic at the boundaries [Stallone, Cicone, Materassi 2020] so that the discretization results in a circulant matrix

$$s = [s(h) \ s(2h) \ \dots \ s(1-h) \ s(1)] \qquad h = 1/N$$
$$\mathcal{S}(s)(x) = s(x) - \int_0^1 s(x-y)k(y)dy|_{x=ah} \qquad \mathcal{S}(s)(ah) \sim s_a - \frac{1}{N} \sum_{b=1}^N k \ (bh) \ s_{a-b}$$
$$\mathcal{S}(s) := s - Ks = (I - K)s$$

One can thus write the main loop of the discrete IF Algorithm as

$$S(f) := (I - K)f$$

$$IMF = IMF \cup \{S^{m}(s)\}$$

$$s = s - S^{m}(s)$$

where the stopping condition is $\|\mathcal{S}^{m+1}(s) - \mathcal{S}^m(s)\| < \delta$

Discrete Setting

The signal s(x) is studied on [0, 1] and it is supposed to be periodic at the boundaries [Stallone, Cicone, Materassi 2020] so that the discretization results in a circulant matrix

$$s = [s(h) \ s(2h) \ \dots \ s(1-h) \ s(1)] \qquad h = 1/N$$

$$S(s)(x) = s(x) - \int_0^1 s(x-y)k(y)dy|_{x=ah} \qquad S(s)(ah) \sim s_a - \frac{1}{N} \sum_{b=1}^N k \ (bh) \ s_{a-b}$$

$$S(s) := s - Ks = (I - K)s$$

One can thus write the main loop of the discrete IF Algorithm as

$$S(f) := (I - K)f$$

$$IMF = IMF \cup \{S^{m}(s)\}$$

$$s = s - S^{m}(s)$$

where the stopping condition is $\|\mathcal{S}^{m+1}(s) - \mathcal{S}^m(s)\| < \delta$

Fast IF

$$\mathcal{S}^m(\boldsymbol{s}) = (\boldsymbol{I} - \mathcal{K})^m \boldsymbol{s} \implies \widehat{\mathcal{S}^m(\boldsymbol{s})} = \boldsymbol{k}^{\circ m} \circ \widehat{\boldsymbol{s}}$$

where **k** is the first row of I - K, \circ is the elementwise product and \hat{s} is the DFT of **s**

$$\|\mathcal{S}^{m+1}(\boldsymbol{s}) - \mathcal{S}^m(\boldsymbol{s})\| < \delta \iff \|\boldsymbol{k}^{\circ m} \circ (\boldsymbol{k} - \boldsymbol{e}) \circ \widehat{\boldsymbol{s}}\| < \delta$$

The stopping condition can be checked on k and \hat{s} with linear cost + 2 DFT per IMF

$$\mathcal{S}^{m}(\boldsymbol{s}) = (I - K)^{m} \boldsymbol{s} \implies \widehat{\mathcal{S}^{m}(\boldsymbol{s})} = \boldsymbol{k}^{\circ m} \circ \widehat{\boldsymbol{s}}$$

$$\mathcal{S}^m(\boldsymbol{s}) = (I - \mathcal{K})^m \boldsymbol{s} \implies \widehat{\mathcal{S}^m(\boldsymbol{s})} = \boldsymbol{k}^{\circ m} \circ \widehat{\boldsymbol{s}}$$

Theorem

If k is a filter, then $0 \le k \le 1$, so $\mathcal{S}^m(s)$ always converges

$$\mathcal{S}^m(\boldsymbol{s}) = (I - \mathcal{K})^m \boldsymbol{s} \implies \widehat{\mathcal{S}^m(\boldsymbol{s})} = \boldsymbol{k}^{\circ m} \circ \widehat{\boldsymbol{s}}$$

Theorem

If k is a filter, then $0 \le k \le 1$, so $\mathcal{S}^m(s)$ always converges

Theorem (Cicone, Zhou, 2021, B. 2023) Given $\delta > 0$, s, then

$$\frac{m^m}{(m+1)^{m+1}} < \frac{\delta}{\|\boldsymbol{s}\|}$$

implies $\|\mathcal{S}^{m+1}(s) - \mathcal{S}^m(s)\| < \delta$

$$\mathcal{S}^m(\boldsymbol{s}) = (I - \mathcal{K})^m \boldsymbol{s} \implies \widehat{\mathcal{S}^m(\boldsymbol{s})} = \boldsymbol{k}^{\circ m} \circ \widehat{\boldsymbol{s}}$$

Theorem

If k is a filter, then $0 \le k \le 1$, so $\mathcal{S}^m(s)$ always converges

Theorem (Cicone, Zhou, 2021, B. 2023) Given $\delta > 0$, s, then

$$\frac{m^m}{(m+1)^{m+1}} < \frac{\delta}{\|\boldsymbol{s}\|}$$

implies $\|\mathcal{S}^{m+1}(s) - \mathcal{S}^m(s)\| < \delta$

Theorem (B. 2023)

$$\widehat{\mathsf{IMF}}_j = \lambda_j \circ \widehat{s}$$

where $0 \leq \lambda_j$ and $\sum_j \lambda_j \leq 1$. Thus, there is a finite number of relevant IMF, i.e. $\|IMF_j\| > \eta$

$$\mathcal{S}^m(\boldsymbol{s}) = (I - \mathcal{K})^m \boldsymbol{s} \implies \widehat{\mathcal{S}^m(\boldsymbol{s})} = \boldsymbol{k}^{\circ m} \circ \widehat{\boldsymbol{s}}$$

Theorem

If k is a filter, then $0 \le k \le 1$, so $\mathcal{S}^m(s)$ always converges

Theorem (Cicone, Zhou, 2021, B. 2023) Given $\delta > 0$, s, then

$$\frac{m^m}{(m+1)^{m+1}} < \frac{\delta}{\|\boldsymbol{s}\|}$$

implies $\|\mathcal{S}^{m+1}(s) - \mathcal{S}^m(s)\| < \delta$

Theorem (B. 2023)

$$\widehat{\mathsf{IMF}}_j = \lambda_j \circ \widehat{s}$$

where $0 \leq \lambda_j$ and $\sum_j \lambda_j \leq 1$. Thus, there is a finite number of relevant IMF, i.e. $\|IMF_j\| > \eta$ **Theorem (B. 2023)** For any vectors h, s let K be any $n \times n$ Hermitian matrix with spectrum in [0, 1]. Then

 $\|\mathcal{S}^m(\boldsymbol{s}+\boldsymbol{h})-\mathcal{S}^m(\boldsymbol{s})\|\leq\|\boldsymbol{h}\|.$

If now the filters and m_j are fixed, for IMF_j the modes generated by s and for IMF_j^* generated by s + h, we have $\sum_{i} ||IMF_j^* - IMF_j||^2 \le ||h||^2$.

$$\mathcal{S}^m(\boldsymbol{s}) = (I - \mathcal{K})^m \boldsymbol{s} \implies \widehat{\mathcal{S}^m(\boldsymbol{s})} = \boldsymbol{k}^{\circ m} \circ \widehat{\boldsymbol{s}}$$

Theorem

If k is a filter, then $0 \le k \le 1$, so $\mathcal{S}^m(s)$ always converges

Theorem (Cicone, Zhou, 2021, B. 2023) Given $\delta > 0$, s, then

$$\frac{m^m}{(m+1)^{m+1}} < \frac{\delta}{\|\boldsymbol{s}\|}$$

implies $\|\mathcal{S}^{m+1}(s) - \mathcal{S}^m(s)\| < \delta$

Theorem (B. 2023)

 $\widehat{\mathsf{IMF}}_j = \lambda_j \circ \widehat{s}$

where $0 \leq \lambda_j$ and $\sum_j \lambda_j \leq 1$. Thus, there is a finite number of relevant IMF, i.e. $\|IMF_j\| > \eta$ **Theorem (B. 2023)** For any vectors h, s let K be any $n \times n$ Hermitian matrix with spectrum in [0, 1]. Then

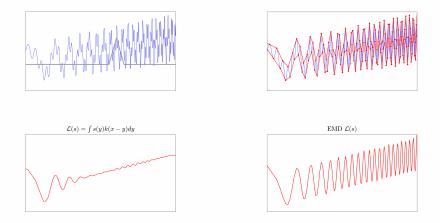
 $\|\mathcal{S}^m(\boldsymbol{s}+\boldsymbol{h})-\mathcal{S}^m(\boldsymbol{s})\|\leq\|\boldsymbol{h}\|.$

If now the filters and m_j are fixed, for IMF_j the modes generated by s and for IMF_j^* generated by s + h, we have $\sum_j ||IMF_j^* - IMF_j||^2 \le ||h||^2$.

Theorem (B. 2023)

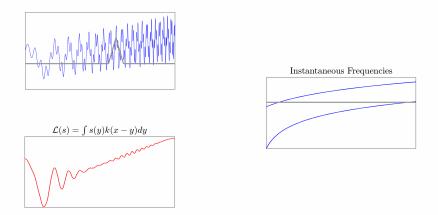
The approximation error of IMF_{j} with respect to the continuous algorithm modes IMF_{j} is proportional to $\log(1/\delta)/n$

➡ skip



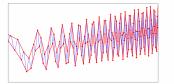
Let's take a look at the instantaneous frequencies (don't skip)

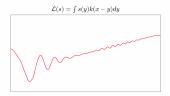
Drawbacks

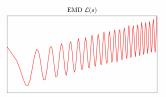


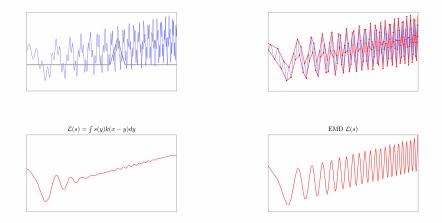
$$\widehat{\mathcal{S}(s)}(\xi) = \widehat{s}(\xi) \cdot (1 - \widehat{k}(\xi))$$

IF does not work with non-disjoint bands of frequencies



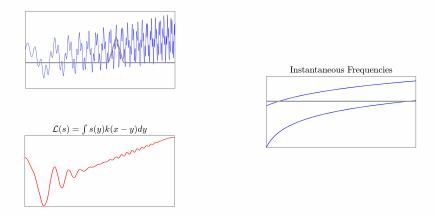






Let's take a look at the instantaneous frequencies

Drawbacks



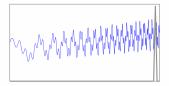
$$\widehat{\mathcal{S}(s)}(\xi) = \widehat{s}(\xi) \cdot (1 - \widehat{k}(\xi))$$

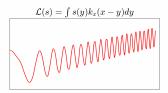
IF does not work with non-disjoint bands of frequencies

Adaptive Local Iterative Filtering

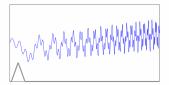
Adaptive Local Iterative Filtering

$$k_x(y) := k(\ell(x)^{-1}y)\ell(x)^{-1}$$
 $S(s)(x) := s(x) - \int s(y)k_x(x-y)dy$



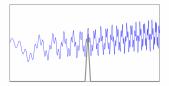


$$k_x(y) := k(\ell(x)^{-1}y)\ell(x)^{-1}$$
 $S(s)(x) := s(x) - \int s(y)k_x(x-y)dy$



$$\mathcal{L}(s) = \int s(y)k_x(x-y)dy$$

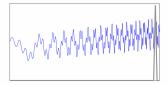
$$k_x(y) := k(\ell(x)^{-1}y)\ell(x)^{-1}$$
 $S(s)(x) := s(x) - \int s(y)k_x(x-y)dy$



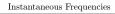
$$\mathcal{L}(s) = \int s(y) k_x(x-y) dy$$

Instantaneous Frequencies

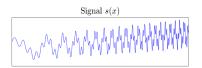
$$k_x(y) := k(\ell(x)^{-1}y)\ell(x)^{-1}$$
 $S(s)(x) := s(x) - \int s(y)k_x(x-y)dy$



$$\mathcal{L}(s) = \int s(y)k_x(x-y)dy$$



Adaptive Local Iterative Filtering



$$\mathcal{L}(s) = \int s(y)k_x(x-y)dy$$

Instantaneous Frequencies

Given the signal s(x), fix the filter

$$k_x(y) := k(\ell(x)^{-1}y)\ell(x)^{-1}$$

where ideally $\ell(x) \sim \xi_0/f(x)$, with f(x) being the instantaneous frequency of the higher-frequency IMF.

Apply iteratively the filter through sifting

$$S(f) := f(x) - \int f(y)k_x(x - y)dy$$

$$IMF = IMF \cup \{S^{\infty}(s)\}$$

$$s = s - S^{\infty}(s)$$

ALIF is now as flexible as EMD, and empirically converges, but..

- No structure, not fast as IF (O(n²) against O(n log(n)))
- Has no clean formal analysis since it is not a convolution
- S[∞](s) is not always convergent (in the discrete setting) even with a stopping condition

Discrete ALIF

$$s = [s(h) \ s(2h) \ \dots \ s(1-h) \ s(1)] \qquad h = 1/N$$
$$s(x) - \int_0^1 s(y) k_x(x-y) dy|_{x=ah} \quad \sim \quad s_a - \frac{1}{N} \sum_{b=1}^N k\left(\frac{(a-b)h}{\ell(ah)}\right) \frac{1}{\ell(ah)} s_b$$

$$s = [s(h) \ s(2h) \ \dots \ s(1-h) \ s(1)] \qquad h = 1/N$$
$$s(x) - \int_0^1 s(y) k_x(x-y) dy|_{x=ah} \qquad \sim \qquad s_a - \frac{1}{N} \sum_{b=1}^N k\left(\frac{(a-b)h}{\ell(ah)}\right) \frac{1}{\ell(ah)} s_b$$

$$S(s) := s - Ks = (I - K)s$$

• $\mathcal{S}^\infty(s)$ converges when

$$|\lambda_i(I-{\cal K})| < 1 \lor \lambda_i(I-{\cal K}) = 1$$

• Converges to the kernel of K

The kernel is the same in αM where $\alpha \in \mathbb{R}$, so the real condition is

$$\Im(\lambda_i(K)) > 0 \lor \lambda_i(K) = 0$$

Setting a stopping condition in the iteration makes $\mathcal{S}^\infty(s)$ a near-kernel vector

$$s = [s(h) \ s(2h) \ \dots \ s(1-h) \ s(1)] \qquad h = 1/N$$
$$s(x) - \int_0^1 s(y) k_x(x-y) dy|_{x=ah} \qquad \sim \qquad s_a - \frac{1}{N} \sum_{b=1}^N k\left(\frac{(a-b)h}{\ell(ah)}\right) \frac{1}{\ell(ah)} s_b$$

$$\mathcal{S}(s) := s - Ks = (I - K)s$$

• $\mathcal{S}^{\infty}(s)$ converges when

$$|\lambda_i(I-K)| < 1 \lor \lambda_i(I-K) = 1$$

• Converges to the kernel of KThe kernel is the same in αM where $\alpha \in \mathbb{R}$, so the real condition is

 $\Im(\lambda_i(K)) > 0 \lor \lambda_i(K) = 0$

Setting a stopping condition in the iteration makes $\mathcal{S}^\infty(\boldsymbol{s})$ a near-kernel vector

For big enough N and if $\ell(x)$ is continuous, positive and

$$k(x) = \omega(x) \star \omega(x),$$

then the spectrum of K respects the condition for almost every eigenvalue [B., Cicone 2022]

There are artificial examples where K has negative eigenvalues, so the convergence is not always assured

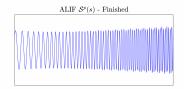
Given the ALIF matrix K, let

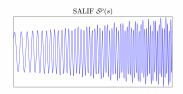
$$\mathcal{S}(s) := s - K^T K s = (I - K^T K) s$$

- $K^T K$ Has the same kernel of K
- 1 ≥ λ_i(K^TK) ≥ 0 after a renormalization

As a consequence, $\mathcal{S}^\infty(s)$ always converges, but the method is way slower

- The cost per iteration is doubled
- There are more eigenvalues close to zero, so it takes more iterations to extract the exact component





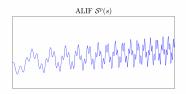
Given the ALIF matrix K, let

$$\mathcal{S}(\boldsymbol{s}) := \boldsymbol{s} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K} \boldsymbol{s} = (\boldsymbol{I} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \boldsymbol{s}$$

- $K^T K$ Has the same kernel of K
- $1 \ge \lambda_i(K^T K) \ge 0$ after a renormalization

As a consequence, $\mathcal{S}^\infty(s)$ always converges, but the method is **way slower**

- The cost per iteration is doubled
- There are more eigenvalues close to zero, so it takes more iterations to extract the exact component



Given the ALIF matrix K, let

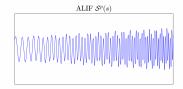
$$\mathcal{S}(\boldsymbol{s}) := \boldsymbol{s} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K} \boldsymbol{s} = (\boldsymbol{I} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \boldsymbol{s}$$

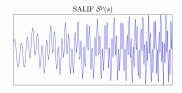
- $K^T K$ Has the same kernel of K
- 1 ≥ λ_i(K^TK) ≥ 0 after a renormalization

As a consequence, $\mathcal{S}^\infty(s)$ always converges, but the method is **way slower**

- The cost per iteration is doubled
- There are more eigenvalues close to zero, so it takes more iterations to extract the exact component

T = 1/20





Given the ALIF matrix K, let

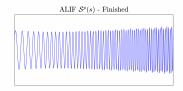
$$\mathcal{S}(\boldsymbol{s}) := \boldsymbol{s} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K} \boldsymbol{s} = (\boldsymbol{I} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \boldsymbol{s}$$

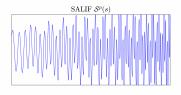
- $K^T K$ Has the same kernel of K
- $1 \ge \lambda_i(K^T K) \ge 0$ after a renormalization

As a consequence, $\mathcal{S}^\infty(s)$ always converges, but the method is **way slower**

- The cost per iteration is doubled
- There are more eigenvalues close to zero, so it takes more iterations to extract the exact component

T = 2/20





Given the ALIF matrix K, let

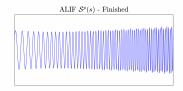
$$\mathcal{S}(\boldsymbol{s}) := \boldsymbol{s} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K} \boldsymbol{s} = (\boldsymbol{I} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \boldsymbol{s}$$

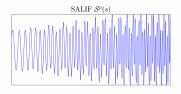
- $K^T K$ Has the same kernel of K
- 1 ≥ λ_i(K^TK) ≥ 0 after a renormalization

As a consequence, $\mathcal{S}^\infty(s)$ always converges, but the method is **way slower**

- The cost per iteration is doubled
- There are more eigenvalues close to zero, so it takes more iterations to extract the exact component

T = 3/20





Given the ALIF matrix K, let

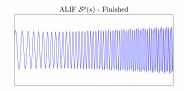
$$\mathcal{S}(\boldsymbol{s}) := \boldsymbol{s} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K} \boldsymbol{s} = (\boldsymbol{I} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \boldsymbol{s}$$

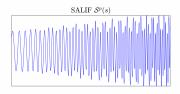
- $K^T K$ Has the same kernel of K
- $1 \ge \lambda_i(K^T K) \ge 0$ after a renormalization

As a consequence, $\mathcal{S}^\infty(s)$ always converges, but the method is **way slower**

- The cost per iteration is doubled
- There are more eigenvalues close to zero, so it takes more iterations to extract the exact component

T = 4/20





Given the ALIF matrix K, let

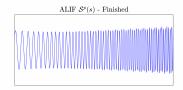
$$\mathcal{S}(\boldsymbol{s}) := \boldsymbol{s} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K} \boldsymbol{s} = (\boldsymbol{I} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \boldsymbol{s}$$

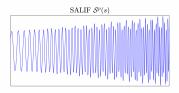
- $K^T K$ Has the same kernel of K
- $1 \ge \lambda_i(K^T K) \ge 0$ after a renormalization

As a consequence, $\mathcal{S}^\infty(s)$ always converges, but the method is **way slower**

- The cost per iteration is doubled
- There are more eigenvalues close to zero, so it takes more iterations to extract the exact component

T = 5/20





$$\mathcal{S}(\boldsymbol{s}) = (\boldsymbol{I} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \boldsymbol{s} \qquad 1 \geq \lambda_i (\boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \geq 0$$

Since $\|K^T K\| \leq 1$ and it is Hermitian, we can recover some of the IF good properties:

$$\mathcal{S}(\boldsymbol{s}) = (\boldsymbol{I} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \boldsymbol{s} \qquad 1 \geq \lambda_i (\boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \geq 0$$

Since $\|K^T K\| \leq 1$ and it is Hermitian, we can recover some of the IF good properties:

Theorem (B. 2023)

For any vectors \mathbf{h}, \mathbf{s} let K be any $n \times n$ Hermitian matrix with spectrum in [0,1]. Then $\|S^m(\mathbf{s} + \mathbf{h}) - S^m(\mathbf{s})\| \le \|\mathbf{h}\|.$

If now the filters and m_j are fixed, for IMF_j the modes generated by s and for IMF_j^* generated by s + h, we have

$$\sum_{j} \|\boldsymbol{I}\boldsymbol{M}\boldsymbol{F}_{j}^{*} - \boldsymbol{I}\boldsymbol{M}\boldsymbol{F}_{j}\|^{2} \leq \|\boldsymbol{h}\|^{2}.$$

$$\mathcal{S}(\boldsymbol{s}) = (\boldsymbol{I} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \boldsymbol{s} \qquad 1 \geq \lambda_i (\boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \geq 0$$

Since $||K^TK|| \le 1$ and it is Hermitian, we can recover some of the IF good properties:

Theorem (B. 2023)

For any vectors \mathbf{h}, \mathbf{s} let K be any $n \times n$ Hermitian matrix with spectrum in [0,1]. Then $\|S^m(\mathbf{s} + \mathbf{h}) - S^m(\mathbf{s})\| \le \|\mathbf{h}\|.$

If now the filters and m_j are fixed, for IMF_j the modes generated by s and for IMF_j^* generated by s + h, we have

$$\sum_{j} \left\| \boldsymbol{I} \boldsymbol{M} \boldsymbol{F}_{j}^{*} - \boldsymbol{I} \boldsymbol{M} \boldsymbol{F}_{j} \right\|^{2} \leq \left\| \boldsymbol{h} \right\|^{2}.$$

Theorem (B. 2023)

Given $\delta > 0$, s, then

$$rac{m^m}{(m+1)^{m+1}} < rac{\delta}{\|m{s}\|} \implies \|\mathcal{S}^{m+1}(m{s}) - \mathcal{S}^m(m{s})\| < \delta$$

$$\mathcal{S}(\boldsymbol{s}) = (\boldsymbol{I} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \boldsymbol{s} \qquad 1 \geq \lambda_i (\boldsymbol{K}^{\mathsf{T}} \boldsymbol{K}) \geq 0$$

Since $\|K^T K\| \leq 1$ and it is Hermitian, we can recover some of the IF good properties:

Theorem (B. 2023)

For any vectors \mathbf{h}, \mathbf{s} let K be any $n \times n$ Hermitian matrix with spectrum in [0,1]. Then $\|\mathcal{S}^m(\mathbf{s} + \mathbf{h}) - \mathcal{S}^m(\mathbf{s})\| \le \|\mathbf{h}\|.$

If now the filters and m_j are fixed, for IMF_j the modes generated by s and for IMF_j^* generated by s + h, we have

$$\sum_{j} \left\| \boldsymbol{I} \boldsymbol{M} \boldsymbol{F}_{j}^{*} - \boldsymbol{I} \boldsymbol{M} \boldsymbol{F}_{j} \right\|^{2} \leq \left\| \boldsymbol{h} \right\|^{2}.$$

Theorem (B. 2023)

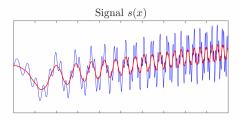
Given $\delta > 0$, s, then

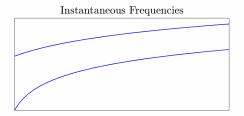
$$rac{m^m}{(m+1)^{m+1}} < rac{\delta}{\|m{s}\|} \implies \|\mathcal{S}^{m+1}(m{s}) - \mathcal{S}^m(m{s})\| < \delta$$

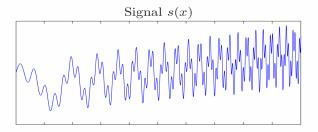
Theorem (B. 2023)

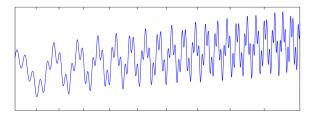
 $\sum_{i} \|IMF_{j}\|^{2} \leq \|s\|^{2}$. Thus, there is a finite number of relevant IMF, i.e. $\|IMF_{j}\| > \eta$

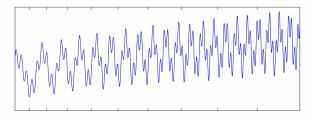
Resampled Iterative Filtering

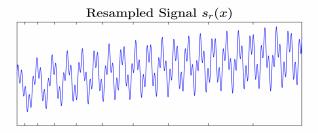


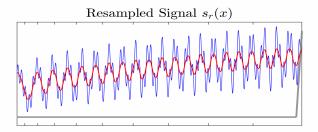


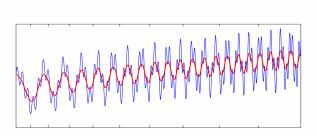


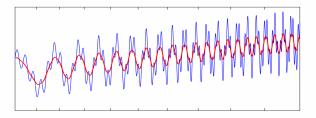


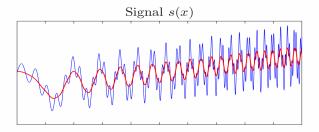


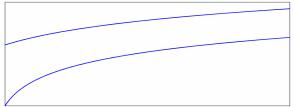












Recall that in ALIF the length $\ell(x)$ is computed as $\xi_0/f(x)$ where f(x) is the highest instantaneous frequency for the IMFs of the signal s(x). From now on $\xi_0 = 1$.

Example: The Instantaneous Frequency of $s(x) = cos(\alpha(x))$ is $\alpha'(x)$ if it is regular enough. In this case, $\ell(x) = 1/\alpha'(x)$.

Recall that in ALIF the length $\ell(x)$ is computed as $\xi_0/f(x)$ where f(x) is the highest instantaneous frequency for the IMFs of the signal s(x). From now on $\xi_0 = 1$.

Example: The Instantaneous Frequency of $s(x) = cos(\alpha(x))$ is $\alpha'(x)$ if it is regular enough. In this case, $\ell(x) = 1/\alpha'(x)$.

In the Resampled IF (RIF), we instead operate a IF loop to the resampled stationary signal s(G(y)) where

$$G^{-1}(z) = \int_0^z \frac{1}{\ell(x)} dx$$

Example: In the previous example, $G^{-1}(z) = \int_0^z \alpha'(x) = \alpha(z) - \alpha(0)$ so that $s(G(y)) = \cos(\alpha(G(y))) = \cos(\alpha(0) + y)$

is a stationary signal with frequency equal to $\xi_{\rm 0}=1$

Resampled Iterative Filtering

Given the signal s(x), compute the resampling

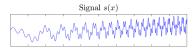
$$s_r(x) := s(G(x))$$
 $G^{-1}(z) = \int_0^z \frac{1}{\ell(x)} dx$

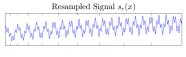
and apply iteratively the filter through convolution

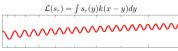
$$S(f) := f(x) - \int f(y)k(x - y)dy$$

$$IMF = IMF \cup \{S^{\infty}(s_r)(G^{-1}(x))\}$$

$$s = s - S^{\infty}(s_r)(G^{-1}(x))$$



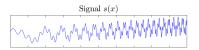


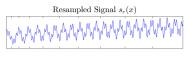


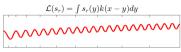
Resampled Moving Average

Resampled Iterative Filtering

$$s_r(x) := s(G(x))$$
 $G^{-1}(z) = \int_0^z \frac{1}{\ell(x)} dx$







and apply iteratively the filter through convolution

$$\begin{aligned} \mathcal{S}(f) &:= f(x) - \int f(y)k(x-y)dy\\ IMF &= IMF \cup \{\mathcal{S}^{\infty}(s_r)(\mathcal{G}^{-1}(x))\}\\ s &= s - \mathcal{S}^{\infty}(s_r)(\mathcal{G}^{-1}(x)) \end{aligned}$$

We have an algorithm that is

- As flexible as ALIF and SALIF
- Efficient as Fast IF, the resampling is outside the iterations and has the same complexity as the FFT, thus way faster than ALIF and SALIF
- Differently from ALIF, $S^{\infty}(s_r)$ is always convergent because it is an IF iteration. In particular, given a stopping criterion with $\delta > 0$ we have the same results that limit the number of iterations.

Theorem

Given $0 \leq \widehat{k} \leq 1$, $\delta > 0$, $s_r(x) \in L^2(\mathbb{R})$, then

$$\frac{m^m}{(m+1)^{m+1}} < \frac{\delta}{\|s_r\|}$$

implies $\|\mathcal{S}^{m+1}(s_r) - \mathcal{S}^m(s_r)\| < \delta$

Theorem

For any $h, s_r \in L^2$

$$|\mathcal{S}^m(s_r+h) - \mathcal{S}^m(s_r)|| \le ||h||$$

Fast Discrete RIF

$$\widehat{\mathcal{S}^{m}(\boldsymbol{s}_{r})} = \boldsymbol{k}^{\circ m} \circ \widehat{\boldsymbol{s}_{r}}$$
$$\|\mathcal{S}^{m+1}(\boldsymbol{s}_{r}) - \mathcal{S}^{m}(\boldsymbol{s})_{r}\| < \delta \iff \|\boldsymbol{k}^{\circ m} \circ (\boldsymbol{k} - \boldsymbol{e}) \circ \widehat{\boldsymbol{s}_{r}}\| < \delta$$

The stopping condition is checked on k and $\hat{s_r}$ with linear cost + 2 DFT

Theorem

Given $0 \leq \widehat{k} \leq 1$, $\delta > 0$, $s_r(x) \in L^2(\mathbb{R})$, then

$$\frac{m^m}{(m+1)^{m+1}} < \frac{\delta}{\|s_r\|}$$

implies $\|\mathcal{S}^{m+1}(s_r) - \mathcal{S}^m(s_r)\| < \delta$

Theorem

For any $h, s_r \in L^2$

$$|\mathcal{S}^m(s_r+h) - \mathcal{S}^m(s_r)|| \le ||h||$$

Fast Discrete RIF

$$\widehat{\mathcal{S}^m(\boldsymbol{s}_r)} = \boldsymbol{k}^{\circ m} \circ \widehat{\boldsymbol{s}_r}$$

$$\|\mathcal{S}^{m+1}(\boldsymbol{s}_r) - \mathcal{S}^m(\boldsymbol{s})_r\| < \delta \iff \|\boldsymbol{k}^{\circ m} \circ (\boldsymbol{k} - \boldsymbol{e}) \circ \widehat{\boldsymbol{s}_r}\| < \delta$$

The stopping condition is checked on k and $\hat{s_r}$ with linear cost + 2 DFT

We don't know if we can still recover

- Global perturbation results
- Intrinsic relation with \widehat{s}
- Limited number of meaningful IMFs

Let us suppose that the signal s(x) is a linear combination of non-stationary components

$$s(x) := \sum_{j=1}^{M} a_j g_j(x) \qquad g_j(x) = \cos(\alpha_j(x))$$

with $\alpha'_1(x) > \alpha'_2(x) > \cdots > \alpha'_M(x) > \epsilon > 0$ and $|a_j| \le P$ for any j, and resampling $s(z) := \sum_{M} 2zh_i(z) \qquad h_i(z) = \cos(\alpha_i(\alpha_i^{-1}(2\pi sz))) = \cos(\beta_i(z))$

$$s_r(z) := \sum_{j=1} a_j h_j(z) \qquad h_j(z) = \cos(\alpha_j(\alpha_1 - (2\pi sz))) = \cos(\beta_j(z))$$

where $h_j(x)$ are all 1-periodic and $h_1(z) = \cos(2\pi sz)$

Let us suppose that the signal s(x) is a linear combination of non-stationary components

$$s(x) := \sum_{j=1}^{M} a_j g_j(x) \qquad g_j(x) = \cos(\alpha_j(x))$$

with $\alpha'_1(x) > \alpha'_2(x) > \cdots > \alpha'_M(x) > \epsilon > 0$ and $|a_j| \le P$ for any j, and resampling $s_r(z) := \sum_{j=1}^M a_j h_j(z) \qquad h_j(z) = \cos(\alpha_j(\alpha_1^{-1}(2\pi sz))) = \cos(\beta_j(z))$

where $h_j(x)$ are all 1-periodic and $h_1(z) = \cos(2\pi sz)$

The IF Algorithm extracts as the first IMF the component $h_1(z)$ plus the coefficients of the components $h_j(z)$, $j \ge 2$ with frequency greater or equal than $\xi_0 = 2\pi s$. When the components are non-stationary, $\hat{h}_j(z)$ for $j \ge 2$ may be non-zero also for high frequencies, thus we need an estimation of the error.

Let us suppose that the signal s(x) is a linear combination of non-stationary components

$$s(x) := \sum_{j=1}^{M} a_j g_j(x) \qquad g_j(x) = \cos(\alpha_j(x))$$

with $\alpha'_1(x) > \alpha'_2(x) > \dots > \alpha'_M(x) > \epsilon > 0$ and $|a_j| \le P$ for any j, and resampling $s_{-}(z) := \sum_{i=1}^{M} a_i h_i(z) \qquad h_i(z) = \cos(\alpha_i(\alpha_1^{-1}(2\pi sz))) = \cos(\beta_i(z))$

$$s_r(z) := \sum_{j=1} a_j h_j(z)$$
 $h_j(z) = \cos(\alpha_j(\alpha_1^{-1}(2\pi s z))) = \cos(\beta_j(z))$

where $h_j(x)$ are all 1-periodic and $h_1(z) = \cos(2\pi sz)$

The IF Algorithm extracts as the first IMF the component $h_1(z)$ plus the coefficients of the components $h_j(z)$, $j \ge 2$ with frequency greater or equal than $\xi_0 = 2\pi s$. When the components are non-stationary, $\hat{h}_j(z)$ for $j \ge 2$ may be non-zero also for high frequencies, thus we need an estimation of the error.

Theorem (B. 2023)

Let $\beta : \mathbb{R} \to \mathbb{R}$ be a C^1 function with $\beta'(x) \in [a, b]$ 1-periodic, 0 < a < b, R := b - a. Let $f(x) := \cos(\beta(x))$ and let $f(x)_N$ be the N-tail of its Fourier series, and $G := 2\pi N - b > 0$

$$\|f(x)_N\|_2^2 \le \min\left\{\left(\frac{b}{G+b+2\pi}\right)^2, \frac{R^2}{\pi^3 G}\right\}$$

$$s_r(z) := \sum_{j=1}^M a_j h_j(z)$$
 $h_j(z) = \cos(\alpha_j(\alpha_1^{-1}(2\pi s z))) = \cos(\beta_j(z))$

where $h_j(x)$ are all 1-periodic and $h_1(z) = \cos(2\pi sz)$, $|a_j| \le P$

Theorem (B. 2023)

Let $\beta : \mathbb{R} \to \mathbb{R}$ be a C^1 function with $\beta'(x) \in [a, b]$ 1-periodic, 0 < a < b, R := b - a. Let $f(x) := \cos(\beta(x))$ and let $f(x)_N$ be the N-tail of its Fourier series, and $G := 2\pi N - b > 0$

$$\|f(x)_N\|_2^2 \le \min\left\{\left(\frac{b}{G+b+2\pi}\right)^2, \frac{R^2}{\pi^3 G}\right\}$$

$$s_r(z) := \sum_{j=1}^M a_j h_j(z)$$
 $h_j(z) = \cos(\alpha_j(\alpha_1^{-1}(2\pi sz))) = \cos(\beta_j(z))$

where $h_j(x)$ are all 1-periodic and $h_1(z) = \cos(2\pi sz)$, $|a_j| \le P$

Theorem (B. 2023)

Let $\beta : \mathbb{R} \to \mathbb{R}$ be a C^1 function with $\beta'(x) \in [a, b]$ 1-periodic, 0 < a < b, R := b - a. Let $f(x) := \cos(\beta(x))$ and let $f(x)_N$ be the N-tail of its Fourier series, and $G := 2\pi N - b > 0$

$$\|f(x)_N\|_2^2 \le \min\left\{\left(\frac{b}{G+b+2\pi}\right)^2, \frac{R^2}{\pi^3 G}\right\}$$

If now j > 1, $f(z) = h_j(z)$ and N = s - 1, then $P || f(x) - f(x)_N ||_2$ is a bound on the perturbation of the IMF caused by the *j*-th component h_j , and it is proportional to both

$$\frac{b}{G+b+2\pi} = \frac{\max_{z} \beta_{j}'(z)}{2\pi s} = \max_{x} \frac{\alpha_{j}'(x)}{\alpha_{1}'(x)} \quad \text{(low for far frequencies)}$$
$$R = \max_{z} \beta_{j}'(z) - \min_{z} \beta_{j}'(z) = 2\pi s \left(\max_{x} \frac{\alpha_{j}'(x)}{\alpha_{1}'(x)} - \min_{x} \frac{\alpha_{j}'(x)}{\alpha_{1}'(x)} \right) \quad \text{(zero if same shape)}$$

$$s_r(z) := \sum_{j=1}^M a_j h_j(z)$$
 $h_j(z) = \cos(\alpha_j(\alpha_1^{-1}(2\pi sz))) = \cos(\beta_j(z))$

where $h_j(x)$ are all 1-periodic and $h_1(z) = \cos(2\pi sz)$, $|a_j| \le P$

Theorem (B. 2023)

Let $\beta : \mathbb{R} \to \mathbb{R}$ be a C^1 function with $\beta'(x) \in [a, b]$ 1-periodic, 0 < a < b, R := b - a. Let $f(x) := \cos(\beta(x))$ and let $f(x)_N$ be the N-tail of its Fourier series, and $G := 2\pi N - b > 0$

$$\|f(x)_N\|_2^2 \le \min\left\{\left(\frac{b}{G+b+2\pi}\right)^2, \frac{R^2}{\pi^3 G}\right\}$$

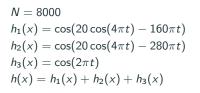
If now j > 1, $f(z) = h_j(z)$ and N = s - 1, then $P || f(x) - f(x)_N ||_2$ is a bound on the perturbation of the IMF caused by the *j*-th component h_j , and it is proportional to both

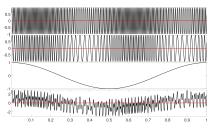
$$\frac{b}{G+b+2\pi} = \frac{\max_{z} \beta'_{j}(z)}{2\pi s} = \max_{x} \frac{\alpha'_{j}(x)}{\alpha'_{1}(x)} \quad \text{(low for far frequencies)}$$
$$R = \max_{z} \beta'_{j}(z) - \min_{z} \beta'_{j}(z) = 2\pi s \left(\max_{x} \frac{\alpha'_{j}(x)}{\alpha'_{1}(x)} - \min_{x} \frac{\alpha'_{j}(x)}{\alpha'_{1}(x)} \right) \quad \text{(zero if same shape)}$$

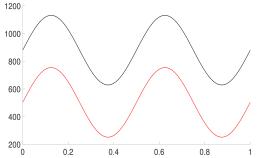
The method actually extracts only selected frequencies near ξ_0 , with way less error

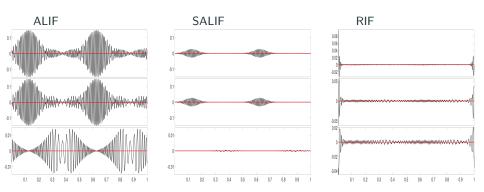
Numerical Experiments

Experiment 1

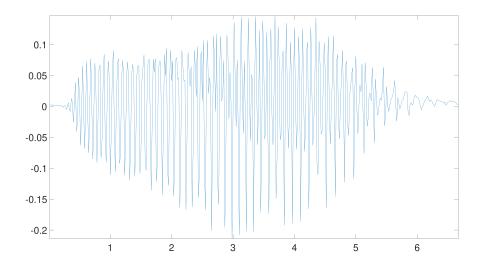


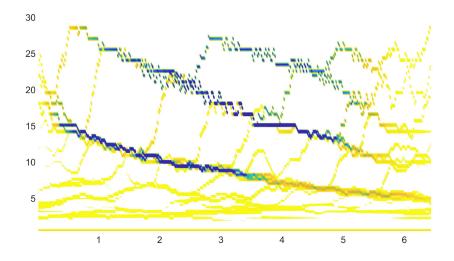


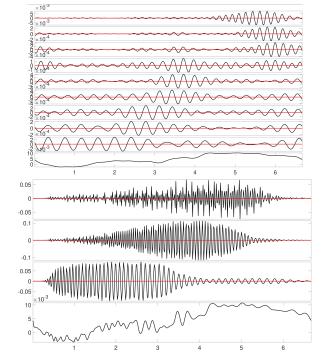




	Time	err1	err2	err3	Niter1	Niter2
ALIF	4.0860	0.070388	0.071158	0.008549	18	2
SALIF	19.7919	0.010054	0.010055	0.008549 0.000161	353	5
RIF	1.4724	0.003426	0.003292	0.000908	81	11







IF

RIF

We developed Algorithms and Theory for

- SALIF Stable, Flexible, Convergent but very Slow
- RIF Flexible, Convergent, Fast but may introduce inaccuracies

Moreover RIF proves himself also Aliasing-Free and we also expanded the theory of IF.

We developed Algorithms and Theory for

- SALIF Stable, Flexible, Convergent but very Slow
- RIF Flexible, Convergent, Fast but may introduce inaccuracies

Moreover RIF proves himself also Aliasing-Free and we also expanded the theory of IF.

Still to do:

- Better exploit the order of zero of the filter
- Further analysis of IF for non-stationary and AM components
- We can use RIF to better study ALIF through the relation between G(x) and $\ell(x)$
- Better ways to compute G(x) without relying on $\ell(x)$
- Improve the error bounds, since they prove to be empirically better
- How perturbation affect the output of RIF

Thank You!

- Cicone A., Garoni C., and Serra-Capizzano S. Spectral and convergence analysis of the discrete alif method. *Linear Algebra and its Applications*, 580:62–95, 2019.
- Cicone A. and Zhou H. Numerical analysis for iterative filtering with new efficient implementations based on fft. *Numerische Mathematik*, 147(1):1–28, 2021.
- Cicone A., Liu J., and Zhou H. Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis. Applied and Computational Harmonic Analysis, 41(2):384–411, 2016.

Stallone A., Cicone A., and Materassi M. New insights and best practices for the successful use of empirical mode decomposition, iterative filtering and derived algorithms. *Scientific Reports*, 10:15161, 2020.

Barbarino G. and Cicone A. Stabilization and variations to the adaptive local iterative filtering algorithm: the fast resampled iterative filtering method. *Arxiv*.

Barbarino G. and Cicone A. **Conjectures on spectral properties of alif algorithm.** *Linear Algebra and Its Applications*, 647:127–152, 2022.