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Introduction on Spectral
Distributions



Empirical Spectral Distribution (ESD)

Let X be a random variable with mean 0 and variance 1. An is a
n×n random matrix whose entries are normalized i.i.d. copies of X :

An =
1√
n

X11 . . . X1n
...

. . .
...

Xn1 . . . Xnn



Its empirical spectral distribution is a random variable taking values
on the space of probability measures on C. Specifically,

µAn(ω) =
1
n

n∑
i=1

δλi (ω)
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ESD depends on X
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Limit ESD and Circle Law

We say that µ is a limit ESD if µAn → µ weakly as n→∞, i.e., if
for all real valued continuous functions f with compact support

EµAn [f ]→ Eµ[f ] for n→∞.

Circle Law [Tao and Vu, 2010]
Let An be an n × n random matrix with i.i.d. complex random
entries of mean 0 and variance 1/n. Then, almost surely, the limit
ESD of An for n→∞ is the uniform distribution on the unit disk.

Standard Gaussian {−1, 1} Bernoulli {−1, 1} Poisson {1}
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Limit ESD and Polynomial Roots

Let pk(z) be the degree k random polynomial whose coefficients
are i.i.d. copies of X random variable with mean 0 and variance 1:

pk(z) = X0 + X1z + X2z
2 + · · ·+ Xkz

k

Its roots are eigenvalues of the companion matrix.

Theorem [Edelman, Kac, Kostlan, Shub, Smale...]

Almost surely, the limit ESD of the roots of pk(z) for k →∞ is
the uniform distribution on the unit circle.

Standard Gaussian {−1, 1} Bernoulli {−1, 1} Uniform on the Square
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This is not the first structure that has been studied in random
matrix theory, e.g., Hermitian matrices (Wigner’s semicircle law),
singular values of unstructured matrices (Marchenko-Pastur law).

Theorem [Edelman, Kostlan, Krishnapur...]
Let A + Bz be an n× n random pencil where the entries of A and
B are all i.i.d. standard Gaussian complex random variables.
Then, the empirical spectral distribution of the generalized
eigenvalues of the pencil is (after a stereographic projection) the
uniform distribution on the Riemann sphere.
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Matrix Polynomials



Random Matrix Polynomials

We now consider a random matrix polynomial:

Pn,k(z) =
k∑

i=0

Ciz
i

where the coefficients Ci are random n × n matrices.

The Finite Eigenvalues of Pn,k(z) are the roots of the polynomial
det(Pn,k(z)). If det(Ck) 6= 0, then there are nk finite eigenvalues,
corresponding with the spectrum of its random companion matrix

−C−1
k Ck−1 . . . −C−1

k C2 −C−1
k C1 −C−1

k C0

I 0 . . . 0 0
0 I 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 I 0


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Theorem [Noferini and GB, 2021]

Consider a random vector [X0,X1, . . . ,Xk ] where all Xj are
independent random variables with zero mean and unit variance,
not necessarily with the same distribution. Let α0, . . . , αk be
complex constants with αk 6= 0. Suppose Cj are n × n random
matrices whose entries are independent copies of Xj , and
construct the random matrix polynomial

Pn(z) =
k∑

j=0

αjCjz
j .

Then, for n→∞, the ESD of Pn(z) converges almost surely to a
probability measure µ with density

f (z) =
1

4kπ
∆z ln

(
k∑

i=0

|αi |2|z |2i
)
.



Corollaries

• Kac Polynomials. If |αj | = 1, then

f (z) =
1
πk

(
1

(|z |2 − 1)2 −
(k + 1)2|z |2k

(|z |2k+2 − 1)2

)
.

When k = 1, then it is the uniform measure on the RS for any
pencil (not just Gaussian).

• Binomial or Elliptic Polynomials. If |αj |2 =
(k
j

)
, then

f (z) =
1

π(|z |2 + 1)2 (Uniform on RS).

• Flat or Weyl Polynomials. If |αj |2 = k j(j!)−1, then

f (z) =
1− (−k |z |2 + k + 1)k |z |2kΓ−1 − k |z |4k+2Γ−2

π
,

where
Γ = ek|z|

2
∫ ∞
|z|2

(e−ss)k ds.
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Experiments k = 5

Standard Gaussian Bernoulli {−1, 1}
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Theorem [Noferini and GB, 2021]

Suppose X
(k)
0 ,X

(k)
1 , . . . ,X

(k)
k are independent random variables

with zero mean, unit variance, and uniformly bounded continuous
distributions. Let also α(k)

0 , α
(k)
1 , . . . , α

(k)
k be sequences of

complex numbers with α(k)
k = 1. Let

Pn,k(z) =
k∑

j=0

α
(k)
j C

(k)
j z j ,

where, for j = 0, . . . , k every coefficient C (k)
j is an n × n random

matrix whose entries are i.i.d. copies of X (k)
j . If n = O(kP) for

some P > 0, then the ESDs of Pn,k converge almost surely as
k →∞ to a probability measure µ with density

f (z) =
1
4π

∆z

 lim
k→∞

1
k

ln

 k∑
j=0

|α(k)
j |

2|z |2i


whenever it exists.



Corollaries

• Kac Polynomials. If |α(k)
j | = 1, then µ is the uniform

measure on the unit circle.

• Binomial or Elliptic Polynomials. If |α(k)
j |2 =

(k
j

)
, then

f (z) =
1

π(|z |2 + 1)2 (Uniform on RS).

• Flat or Weyl Polynomials. If |α(k)
j |2 = k j/j!, then µ is the

uniform measure on the unit disk.

• Hyperbolic Polynomials. If |α(k)
j |2 = Γ(d + j)/(Γ(d)j!)

where d > 0 and Γ(x) =
∫∞
0 e−ttx−1 dt, then µ is the uniform

measure on the unit circle.

Conjecture: It holds also if n 6∈ O(kP).
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Experiments n = 5, k = 100
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Idea of Proof

Let sk(z)2 be the variance of any entry of Pn,k(z).

1
nk

ln | det(Pn,k(z))| =

 1
k ln(sk(z)) + 1

nk

∑n
i=1 ln(σi (Pn,k(z)/sk(z)))

1
nk ln | det(Ck)|+ 1

nk

∑nk
i=1 ln |z − λi (Pn,k)|

=

 1
k ln(sk(z)) + 1

k

∫
R ln(x) dνPn,k (z)/sk (z)

1
k

∫
R ln(x) dνCk

+
∫
C ln |z − z ′| dµPn,k

(z ′)

Both for n→∞ and k →∞ we have

1
k

∣∣∣∣∫
R

ln(x) dνPn,k (z)/sk (z) −
∫
R

ln(x) dνCk

∣∣∣∣→ 0

and from the theory of Logarithmic Potentials

2π lim
k|n→∞

µPn,k
= ∆z lim

k|n→∞

∫
C

ln |z−z ′| dµPn,k
(z ′) = ∆z lim

k|n→∞

1
k

ln(sk(z))
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If there’s time...

Pn(z) = Izk +
k−1∑
i=0

Ciz
i

where Ci are n × n random matrices whose entries are Gaussian
random variables with mean 0 and variance 1.

Theorem [Noferini and GB, 2020]
Almost surely, as n→∞ the empirical spectral distribution of
Pn(
√
nz) converges to

k − 1
k

δ0 +
1
k
1D

where δ0, 1D are the atomic distribution on zero and the uniform
distribution on the unit disk respectively.

For k →∞, all the non-monic case results still hold.
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