The limit empirical spectral distribution of complex matrix polynomials

Giovanni Barbarino

Vanni Noferini

Department of Mathematics and Systems Analysis,
Aalto University

Nordic NLA meeting 2022

Introduction on Spectral Distributions

Empirical Spectral Distribution (ESD)

Let X be a random variable with mean 0 and variance $1 . A_{n}$ is a $n \times n$ random matrix whose entries are normalized i.i.d. copies of X :

$$
A_{n}=\frac{1}{\sqrt{n}}\left[\begin{array}{ccc}
X_{11} & \ldots & X_{1 n} \\
\vdots & \ddots & \vdots \\
X_{n 1} & \ldots & X_{n n}
\end{array}\right]
$$

Its empirical spectral distribution is a random variable taking values
on the space of probab:lity measures on Te Specifically,

Empirical Spectral Distribution (ESD)

Let X be a random variable with mean 0 and variance $1 . A_{n}$ is a $n \times n$ random matrix whose entries are normalized i.i.d. copies of X :

$$
A_{n}=\frac{1}{\sqrt{n}}\left[\begin{array}{ccc}
X_{11} & \ldots & X_{1 n} \\
\vdots & \ddots & \vdots \\
X_{n 1} & \ldots & X_{n n}
\end{array}\right]
$$

Its empirical spectral distribution is a random variable taking values on the space of probability measures on \mathbb{C}. Specifically,

$$
\mu_{A_{n}}(\omega)=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(\omega)}
$$

ESD depends on X

ESD depends on n

For high n, the average ESD doesn't seem to depend on X

ESD depends on n

For high n, the average ESD doesn't seem to depend on X

Limit ESD and Circle Law

We say that μ is a limit ESD if $\mu_{A_{n}} \rightarrow \mu$ weakly as $n \rightarrow \infty$, i.e., if for all real valued continuous functions f with compact support

$$
\mathbb{E}_{\mu_{A_{n}}}[f] \rightarrow \mathbb{E}_{\mu}[f] \text { for } n \rightarrow \infty
$$

Limit ESD and Circle Law

We say that μ is a limit ESD if $\mu_{A_{n}} \rightarrow \mu$ weakly as $n \rightarrow \infty$, i.e., if for all real valued continuous functions f with compact support

$$
\mathbb{E}_{\mu_{A_{n}}}[f] \rightarrow \mathbb{E}_{\mu}[f] \text { for } n \rightarrow \infty
$$

Circle Law [Tao and Vu, 2010]

Let A_{n} be an $n \times n$ random matrix with i.i.d. complex random entries of mean 0 and variance $1 / n$. Then, almost surely, the limit ESD of A_{n} for $n \rightarrow \infty$ is the uniform distribution on the unit disk.

Poisson \{1\}

Limit ESD and Polynomial Roots

Let $p_{k}(z)$ be the degree k random polynomial whose coefficients are i.i.d. copies of X random variable with mean 0 and variance 1 :

$$
p_{k}(z)=X_{0}+X_{1} z+X_{2} z^{2}+\cdots+X_{k} z^{k}
$$

Its roots are eigenvalues of the companion matrix.

Limit ESD and Polynomial Roots

Let $p_{k}(z)$ be the degree k random polynomial whose coefficients are i.i.d. copies of X random variable with mean 0 and variance 1 :

$$
p_{k}(z)=X_{0}+X_{1} z+X_{2} z^{2}+\cdots+X_{k} z^{k}
$$

Its roots are eigenvalues of the companion matrix.
Theorem [Edelman, Kac, Kostlan, Shub, Smale...]
Almost surely, the limit ESD of the roots of $p_{k}(z)$ for $k \rightarrow \infty$ is the uniform distribution on the unit circle.

Standard Gaussian $\{-1,1\}$

Bernoulli $\{-1,1\}$

Uniform on the Square

This is not the first structure that has been studied in random matrix theory, e.g., Hermitian matrices (Wigner's semicircle law), singular values of unstructured matrices (Marchenko-Pastur law).

This is not the first structure that has been studied in random matrix theory, e.g., Hermitian matrices (Wigner's semicircle law), singular values of unstructured matrices (Marchenko-Pastur law).

Theorem [Edelman, Kostlan, Krishnapur...]

Let $A+B z$ be an $n \times n$ random pencil where the entries of A and B are all i.i.d. standard Gaussian complex random variables. Then, the empirical spectral distribution of the generalized eigenvalues of the pencil is (after a stereographic projection) the uniform distribution on the Riemann sphere.

Matrix Polynomials

Random Matrix Polynomials

We now consider a random matrix polynomial:

$$
P_{n, k}(z)=\sum_{i=0}^{k} C_{i} z^{i}
$$

where the coefficients C_{i} are random $n \times n$ matrices.
The Finite Eigenvalues of $P_{n, k}(z)$ are the roots of the polynomial $\operatorname{det}\left(P_{n, k}(z)\right)$. If $\operatorname{det}\left(C_{k}\right) \neq 0$, then there are $n k$ finite eigenvalues, corresponding with the spectrum of its random companion matrix

Random Matrix Polynomials

We now consider a random matrix polynomial:

$$
P_{n, k}(z)=\sum_{i=0}^{k} C_{i} z^{i}
$$

where the coefficients C_{i} are random $n \times n$ matrices.
The Finite Eigenvalues of $P_{n, k}(z)$ are the roots of the polynomial $\operatorname{det}\left(P_{n, k}(z)\right)$. If $\operatorname{det}\left(C_{k}\right) \neq 0$, then there are $n k$ finite eigenvalues, corresponding with the spectrum of its random companion matrix

$$
\left[\begin{array}{ccccc}
-C_{k}^{-1} C_{k-1} & \ldots & -C_{k}^{-1} C_{2} & -C_{k}^{-1} C_{1} & -C_{k}^{-1} C_{0} \\
I & 0 & \cdots & 0 & 0 \\
0 & I & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & I & 0
\end{array}\right]
$$

Theorem [Noferini and GB, 2021]

Consider a random vector $\left[X_{0}, X_{1}, \ldots, X_{k}\right]$ where all X_{j} are independent random variables with zero mean and unit variance, not necessarily with the same distribution. Let $\alpha_{0}, \ldots, \alpha_{k}$ be complex constants with $\alpha_{k} \neq 0$. Suppose C_{j} are $n \times n$ random matrices whose entries are independent copies of X_{j}, and construct the random matrix polynomial

$$
P_{n}(z)=\sum_{j=0}^{k} \alpha_{j} C_{j} z^{j}
$$

Then, for $n \rightarrow \infty$, the ESD of $P_{n}(z)$ converges almost surely to a probability measure μ with density

$$
f(z)=\frac{1}{4 k \pi} \Delta_{z} \ln \left(\sum_{i=0}^{k}\left|\alpha_{i}\right|^{2}|z|^{2 i}\right) .
$$

Corollaries

- Kac Polynomials. If $\left|\alpha_{j}\right|=1$, then

$$
f(z)=\frac{1}{\pi k}\left(\frac{1}{\left(|z|^{2}-1\right)^{2}}-\frac{(k+1)^{2}|z|^{2 k}}{\left(|z|^{2 k+2}-1\right)^{2}}\right) .
$$

When $k=1$, then it is the uniform measure on the RS for any pencil (not just Gaussian).

Flat or Weyl Polynomials.

Corollaries

- Kac Polynomials. If $\left|\alpha_{j}\right|=1$, then

$$
f(z)=\frac{1}{\pi k}\left(\frac{1}{\left(|z|^{2}-1\right)^{2}}-\frac{(k+1)^{2}|z|^{2 k}}{\left(|z|^{2 k+2}-1\right)^{2}}\right)
$$

When $k=1$, then it is the uniform measure on the RS for any pencil (not just Gaussian).

- Binomial or Elliptic Polynomials. If $\left|\alpha_{j}\right|^{2}=\binom{k}{j}$, then

$$
f(z)=\frac{1}{\pi\left(|z|^{2}+1\right)^{2}} \text { (Uniform on RS). }
$$

Corollaries

- Kac Polynomials. If $\left|\alpha_{j}\right|=1$, then

$$
f(z)=\frac{1}{\pi k}\left(\frac{1}{\left(|z|^{2}-1\right)^{2}}-\frac{(k+1)^{2}|z|^{2 k}}{\left(|z|^{2 k+2}-1\right)^{2}}\right)
$$

When $k=1$, then it is the uniform measure on the RS for any pencil (not just Gaussian).

- Binomial or Elliptic Polynomials. If $\left|\alpha_{j}\right|^{2}=\binom{k}{j}$, then

$$
f(z)=\frac{1}{\pi\left(|z|^{2}+1\right)^{2}} \text { (Uniform on RS) }
$$

- Flat or Weyl Polynomials. If $\left|\alpha_{j}\right|^{2}=k^{j}(j!)^{-1}$, then

$$
f(z)=\frac{1-\left(-k|z|^{2}+k+1\right) k|z|^{2 k} \Gamma^{-1}-k|z|^{4 k+2} \Gamma^{-2}}{\pi}
$$

where

$$
\Gamma=e^{k|z|^{2}} \int_{|z|^{2}}^{\infty}\left(e^{-s} s\right)^{k} \mathrm{~d} s
$$

Experiments $k=5$

Theorem [Noferini and GB, 2021]

Suppose $X_{0}^{(k)}, X_{1}^{(k)}, \ldots, X_{k}^{(k)}$ are independent random variables with zero mean, unit variance, and uniformly bounded continuous distributions. Let also $\alpha_{0}^{(k)}, \alpha_{1}^{(k)}, \ldots, \alpha_{k}^{(k)}$ be sequences of complex numbers with $\alpha_{k}^{(k)}=1$. Let

$$
P_{n, k}(z)=\sum_{j=0}^{k} \alpha_{j}^{(k)} C_{j}^{(k)} z^{j}
$$

where, for $j=0, \ldots, k$ every coefficient $C_{j}^{(k)}$ is an $n \times n$ random matrix whose entries are i.i.d. copies of $X_{j}^{(k)}$. If $n=O\left(k^{P}\right)$ for some $P>0$, then the ESDs of $P_{n, k}$ converge almost surely as $k \rightarrow \infty$ to a probability measure μ with density

$$
f(z)=\frac{1}{4 \pi} \Delta_{z}\left[\lim _{k \rightarrow \infty} \frac{1}{k} \ln \left(\sum_{j=0}^{k}\left|\alpha_{j}^{(k)}\right|^{2}|z|^{2 i}\right)\right]
$$

whenever it exists.

Corollaries

- Kac Polynomials. If $\left|\alpha_{j}^{(k)}\right|=1$, then μ is the uniform measure on the unit circle.

Binomial or Elliptic Polynomials.

Corollaries

- Kac Polynomials. If $\left|\alpha_{j}^{(k)}\right|=1$, then μ is the uniform measure on the unit circle.
- Binomial or Elliptic Polynomials. If $\left|\alpha_{j}^{(k)}\right|^{2}=\binom{k}{j}$, then

$$
f(z)=\frac{1}{\pi\left(|z|^{2}+1\right)^{2}} \text { (Uniform on RS). }
$$

Flat or Weyl Polynomials. If $\left|\alpha_{j}^{(k)}\right|^{2}=k^{j} / j!$, then μ is the
uniform measure on the unit disk.
Hynerholic Polynomials. If $\left|n^{(k)}\right|^{2}=\Gamma(d+j) /(\Gamma(d) j!)$
where $d>0$ and $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t$, then μ is the uniform
measure on the unit circle.

Corollaries

- Kac Polynomials. If $\left|\alpha_{j}^{(k)}\right|=1$, then μ is the uniform measure on the unit circle.
- Binomial or Elliptic Polynomials. If $\left|\alpha_{j}^{(k)}\right|^{2}=\binom{k}{j}$, then

$$
f(z)=\frac{1}{\pi\left(|z|^{2}+1\right)^{2}} \text { (Uniform on RS). }
$$

- Flat or Weyl Polynomials. If $\left|\alpha_{j}^{(k)}\right|^{2}=k^{j} / j$!, then μ is the uniform measure on the unit disk.

Hyperbolic Polynomials. where $d>0$ and $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} \mathrm{~d} t$, then μ is the uniform measure on the unit circle.

Corollaries

- Kac Polynomials. If $\left|\alpha_{j}^{(k)}\right|=1$, then μ is the uniform measure on the unit circle.
- Binomial or Elliptic Polynomials. If $\left|\alpha_{j}^{(k)}\right|^{2}=\binom{k}{j}$, then

$$
f(z)=\frac{1}{\pi\left(|z|^{2}+1\right)^{2}}(\text { Uniform on RS })
$$

- Flat or Weyl Polynomials. If $\left|\alpha_{j}^{(k)}\right|^{2}=k^{j} / j$!, then μ is the uniform measure on the unit disk.
- Hyperbolic Polynomials. If $\left|\alpha_{j}^{(k)}\right|^{2}=\Gamma(d+j) /(\Gamma(d) j$!) where $d>0$ and $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} \mathrm{~d} t$, then μ is the uniform measure on the unit circle.

Corollaries

- Kac Polynomials. If $\left|\alpha_{j}^{(k)}\right|=1$, then μ is the uniform measure on the unit circle.
- Binomial or Elliptic Polynomials. If $\left|\alpha_{j}^{(k)}\right|^{2}=\binom{k}{j}$, then

$$
f(z)=\frac{1}{\pi\left(|z|^{2}+1\right)^{2}} \text { (Uniform on RS) }
$$

- Flat or Weyl Polynomials. If $\left|\alpha_{j}^{(k)}\right|^{2}=k^{j} / j$!, then μ is the uniform measure on the unit disk.
- Hyperbolic Polynomials. If $\left|\alpha_{j}^{(k)}\right|^{2}=\Gamma(d+j) /(\Gamma(d) j!)$ where $d>0$ and $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} \mathrm{~d} t$, then μ is the uniform measure on the unit circle.

Conjecture: It holds also if $n \notin O\left(k^{P}\right)$.

Experiments $n=5, k=100$

Standard Gaussian

Uniform on Square

Idea of Proof

Let $s_{k}(z)^{2}$ be the variance of any entry of $P_{n, k}(z)$.

$$
\begin{aligned}
\frac{1}{n k} \ln \left|\operatorname{det}\left(P_{n, k}(z)\right)\right| & =\left\{\begin{array}{l}
\frac{1}{k} \ln \left(s_{k}(z)\right)+\frac{1}{n k} \sum_{i=1}^{n} \ln \left(\sigma_{i}\left(P_{n, k}(z) / s_{k}(z)\right)\right) \\
\frac{1}{n k} \ln \left|\operatorname{det}\left(C_{k}\right)\right|+\frac{1}{n k} \sum_{i=1}^{n k} \ln \left|z-\lambda_{i}\left(P_{n, k}\right)\right|
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{1}{k} \ln \left(s_{k}(z)\right)+\frac{1}{k} \int_{\mathbb{R}} \ln (x) \mathrm{d} \nu_{P_{n, k}(z) / s_{k}(z)} \\
\frac{1}{k} \int_{\mathbb{R}} \ln (x) \mathrm{d} \nu_{C_{k}}+\int_{\mathbb{C}} \ln \left|z-z^{\prime}\right| \mathrm{d} \mu_{P_{n, k}}\left(z^{\prime}\right)
\end{array}\right.
\end{aligned}
$$

Both for $n \rightarrow \infty$ and $k \rightarrow \infty$ we have
and from the theory of Logarithmic Potentials

Idea of Proof

Let $s_{k}(z)^{2}$ be the variance of any entry of $P_{n, k}(z)$.

$$
\begin{aligned}
\frac{1}{n k} \ln \left|\operatorname{det}\left(P_{n, k}(z)\right)\right| & =\left\{\begin{array}{l}
\frac{1}{k} \ln \left(s_{k}(z)\right)+\frac{1}{n k} \sum_{i=1}^{n} \ln \left(\sigma_{i}\left(P_{n, k}(z) / s_{k}(z)\right)\right) \\
\frac{1}{n k} \ln \left|\operatorname{det}\left(C_{k}\right)\right|+\frac{1}{n k} \sum_{i=1}^{n k} \ln \left|z-\lambda_{i}\left(P_{n, k}\right)\right|
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{1}{k} \ln \left(s_{k}(z)\right)+\frac{1}{k} \int_{\mathbb{R}} \ln (x) \mathrm{d} \nu_{P_{n, k}(z) / s_{k}(z)} \\
\frac{1}{k} \int_{\mathbb{R}} \ln (x) \mathrm{d} \nu_{C_{k}}+\int_{\mathbb{C}} \ln \left|z-z^{\prime}\right| \mathrm{d} \mu_{P_{n, k}}\left(z^{\prime}\right)
\end{array}\right.
\end{aligned}
$$

Both for $n \rightarrow \infty$ and $k \rightarrow \infty$ we have

$$
\frac{1}{k}\left|\int_{\mathbb{R}} \ln (x) \mathrm{d} \nu_{P_{n, k}(z) / s_{k}(z)}-\int_{\mathbb{R}} \ln (x) \mathrm{d} \nu_{C_{k}}\right| \rightarrow 0
$$

and from the theory of Logarithmic Potentials

Idea of Proof

Let $s_{k}(z)^{2}$ be the variance of any entry of $P_{n, k}(z)$.

$$
\begin{aligned}
\frac{1}{n k} \ln \left|\operatorname{det}\left(P_{n, k}(z)\right)\right| & =\left\{\begin{array}{l}
\frac{1}{k} \ln \left(s_{k}(z)\right)+\frac{1}{n k} \sum_{i=1}^{n} \ln \left(\sigma_{i}\left(P_{n, k}(z) / s_{k}(z)\right)\right) \\
\frac{1}{n k} \ln \left|\operatorname{det}\left(C_{k}\right)\right|+\frac{1}{n k} \sum_{i=1}^{n k} \ln \left|z-\lambda_{i}\left(P_{n, k}\right)\right|
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{1}{k} \ln \left(s_{k}(z)\right)+\frac{1}{k} \int_{\mathbb{R}} \ln (x) \mathrm{d} \nu_{P_{n, k}(z) / s_{k}(z)} \\
\frac{1}{k} \int_{\mathbb{R}} \ln (x) \mathrm{d} \nu_{C_{k}}+\int_{\mathbb{C}} \ln \left|z-z^{\prime}\right| \mathrm{d} \mu_{P_{n, k}}\left(z^{\prime}\right)
\end{array}\right.
\end{aligned}
$$

Both for $n \rightarrow \infty$ and $k \rightarrow \infty$ we have

$$
\frac{1}{k}\left|\int_{\mathbb{R}} \ln (x) \mathrm{d} \nu_{P_{n, k}(z) / s_{k}(z)}-\int_{\mathbb{R}} \ln (x) \mathrm{d} \nu_{C_{k}}\right| \rightarrow 0
$$

and from the theory of Logarithmic Potentials
$2 \pi \lim _{k \mid n \rightarrow \infty} \mu_{P_{n, k}}=\Delta_{z} \lim _{k \mid n \rightarrow \infty} \int_{\mathbb{C}} \ln \left|z-z^{\prime}\right| \mathrm{d} \mu_{P_{n, k}}\left(z^{\prime}\right)=\Delta_{z} \lim _{k \mid n \rightarrow \infty} \frac{1}{k} \ln \left(s_{k}(z)\right)$

If there's time...

$$
P_{n}(z)=I z^{k}+\sum_{i=0}^{k-1} C_{i} z^{i}
$$

where C_{i} are $n \times n$ random matrices whose entries are Gaussian random variables with mean 0 and variance 1 .
aistibution on the unit als respectively

For $k \rightarrow \infty$, all the non-monic case results still hold

If there's time...

$$
P_{n}(z)=I z^{k}+\sum_{i=0}^{k-1} C_{i} z^{i}
$$

where C_{i} are $n \times n$ random matrices whose entries are Gaussian random variables with mean 0 and variance 1 .

Theorem [Noferini and GB, 2020]

Almost surely, as $n \rightarrow \infty$ the empirical spectral distribution of $P_{n}(\sqrt{n} z)$ converges to

$$
\frac{k-1}{k} \delta_{0}+\frac{1}{k} 1_{D}
$$

where $\delta_{0}, 1_{D}$ are the atomic distribution on zero and the uniform distribution on the unit disk respectively.

If there's time...

$$
P_{n}(z)=I z^{k}+\sum_{i=0}^{k-1} C_{i} z^{i}
$$

where C_{i} are $n \times n$ random matrices whose entries are Gaussian random variables with mean 0 and variance 1 .

Theorem [Noferini and GB, 2020]

Almost surely, as $n \rightarrow \infty$ the empirical spectral distribution of $P_{n}(\sqrt{n} z)$ converges to

$$
\frac{k-1}{k} \delta_{0}+\frac{1}{k} 1_{D}
$$

where $\delta_{0}, 1_{D}$ are the atomic distribution on zero and the uniform distribution on the unit disk respectively.

For $k \rightarrow \infty$, all the non-monic case results still hold.

Thank You!

(Giovanni Barbarino and Vanni Noferini. The limit empirical spectral distribution of complex matrix polynomials. Random Matrices: Theory and Applications, 092021.
(Giovanni Barbarino and Vanni Noferini. The limit empirical spectral distribution of gaussian monic complex matrix polynomials. Journal of Theoretical Probability, pages 1-35, 022022.
(i) Charles Bordenave, Pietro Caputo, and Djalil Chafaï. Circular law theorem for random markov matrices. Probability Theory and Related Fields, 152:751-779, 2008.

嗇 V.L. Girko. Theory of Random Determinants. Springer, Dordrecht, 1990.
Terence Tao. Topics in Random Matrix Theory. AMS, 2012.
回 Terence Tao, Van Vu, and Manjunath Krishnapur. Random matrices: Universality of ESDs and the circular law. The Annals of Probability, 38(5):2023-2065, 2010.

