# Dual Simplex Volume Maximization for Simplex-Structured Matrix Factorization

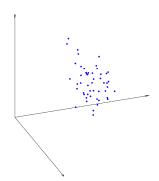
Maryam Abdolali <sup>1</sup> Giovanni Barbarino <sup>2</sup> Nicolas Gillis <sup>2</sup>



<sup>&</sup>lt;sup>1</sup>K.N.Toosi University, Tehran, Iran

<sup>&</sup>lt;sup>2</sup>Université de Mons, Belgium

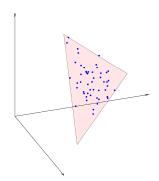
Simplex-Structured Matrix Factorization



Given  $X \in \mathbb{R}^{r-1 \times n}$  can we find  $W \in \mathbb{R}^{r-1 \times r}$ ,  $H \in \mathbb{R}^{r \times n}$  such that

$$X = WH$$
  $H(:, i) \in \Delta' = \{x \in \mathbb{R}_+^r : x^T e = 1\}$   $\forall i$ 

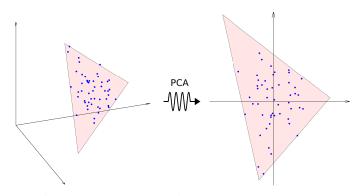
$$Conv(X) \subseteq Conv(W)$$
  $W \in \mathbb{R}^{r-1 \times r}$ 



Given  $X \in \mathbb{R}^{r-1 \times n}$  can we find  $W \in \mathbb{R}^{r-1 \times r}$ ,  $H \in \mathbb{R}^{r \times n}$  such that

$$X = WH$$
  $H(:,i) \in \Delta^r = \{x \in \mathbb{R}_+^r : x^T e = 1\}$   $\forall i$ 

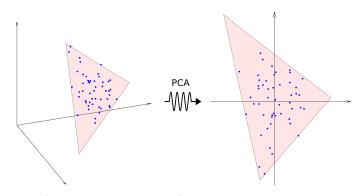
$$Conv(X) \subseteq Conv(W)$$
  $W \in \mathbb{R}^{r-1 \times r}$ 



Given  $X \in \mathbb{R}^{r-1 \times n}$  can we find  $W \in \mathbb{R}^{r-1 \times r}$ ,  $H \in \mathbb{R}^{r \times n}$  such that

$$X = WH$$
  $H(:, i) \in \Delta^{r} = \{x \in \mathbb{R}_{+}^{r} : x^{T}e = 1\}$   $\forall i$ 

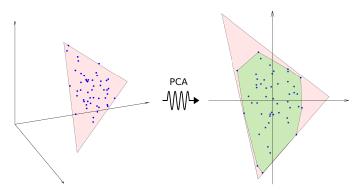
$$Conv(X) \subseteq Conv(W)$$
  $W \in \mathbb{R}^{r-1 \times r}$ 



Given  $X \in \mathbb{R}^{r-1 \times n}$  can we find  $W \in \mathbb{R}^{r-1 \times r}$ ,  $H \in \mathbb{R}^{r \times n}$  such that

$$X = WH$$
  $H(:,i) \in \Delta^r = \{x \in \mathbb{R}_+^r : x^T e = 1\}$   $\forall i$ 

$$Conv(X) \subseteq Conv(W)$$
  $W \in \mathbb{R}^{r-1 \times r}$ 

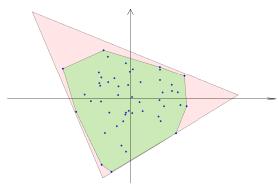


Given  $X \in \mathbb{R}^{r-1 \times n}$  can we find  $W \in \mathbb{R}^{r-1 \times r}$ ,  $H \in \mathbb{R}^{r \times n}$  such that

$$X = WH$$
  $H(:, i) \in \Delta^r = \{x \in \mathbb{R}_+^r : x^T e = 1\}$   $\forall i$ 

$$Conv(X) \subseteq Conv(W)$$
  $W \in \mathbb{R}^{r-1 \times r}$ 

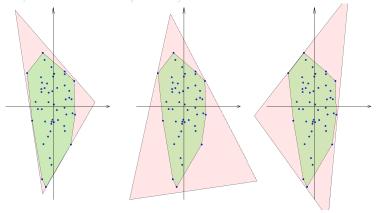
$$Conv(X) \subseteq Conv(W)$$
  $W \in \mathbb{R}^{r-1 \times r}$ 



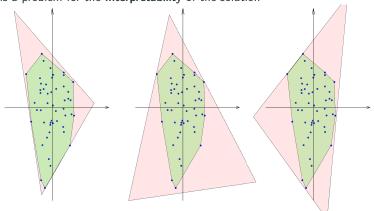
$$Conv(X) \subseteq Conv(W)$$
  $W \in \mathbb{R}^{r-1 \times r}$ 

#### Exists? Yes... but it is far from being Unique

This is a problem for the Interpretability of the solution



$$Conv(X) \subseteq Conv(W)$$
  $W \in \mathbb{R}^{r-1 \times r}$ 



$$Conv(X) \subseteq Conv(W)$$
  $W \in \mathbb{R}^{r-1 \times r}$ 

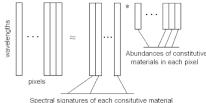


Jasper Ridge Data set

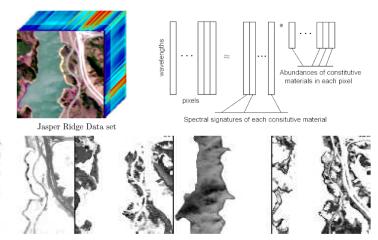
$$Conv(X) \subseteq Conv(W)$$
  $W \in \mathbb{R}^{r-1 \times r}$ 



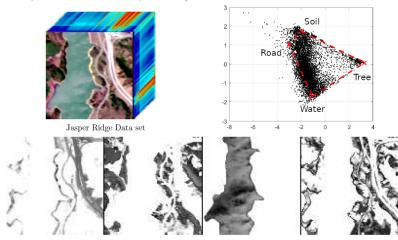
Jasper Ridge Data set



$$Conv(X) \subseteq Conv(W)$$
  $W \in \mathbb{R}^{r-1 \times r}$ 



$$Conv(X) \subseteq Conv(W)$$
  $W \in \mathbb{R}^{r-1 \times r}$ 



$$X = X(:, \mathcal{K})H$$
  $|\mathcal{K}| = r$ 

i.e.

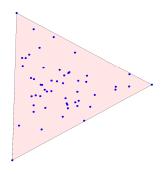
 $Conv(X) \equiv Conv(W)$ 

$$X = X(:, \mathcal{K})H$$
  $|\mathcal{K}| = r$ 

i.e.

$$Conv(X) \equiv Conv(W)$$

- ✓ Polytime algorithm
- √ Robust to perturbation
- Uniqueness of solution (up to permutations)
- √ Immediate Interpretability
- × Very strong assumption



In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

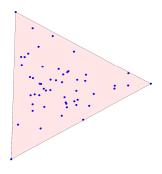
$$X = X(:, \mathcal{K})H$$
  $|\mathcal{K}| = r$ 

i.e.

 $Conv(X) \equiv Conv(W)$ 

#### ✓ Polytime algorithm

- √ Robust to perturbation
- Uniqueness of solution (up to permutations)
- √ Immediate Interpretability
- × Very strong assumption



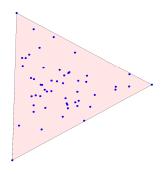
In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = X(:, \mathcal{K})H$$
  $|\mathcal{K}| = r$ 

i.e.

$$Conv(X) \equiv Conv(W)$$

- ✓ Polytime algorithm
- √ Robust to perturbation
- Uniqueness of solution (up to permutations)
- ✓ Immediate Interpretability
- × Very strong assumption



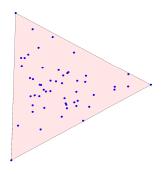
In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = X(:, \mathcal{K})H$$
  $|\mathcal{K}| = r$ 

i.e.

$$Conv(X) \equiv Conv(W)$$

- ✓ Polytime algorithm
- √ Robust to perturbation
- ✓ Uniqueness of solution (up to permutations)
- ✓ Immediate Interpretability
- × Very strong assumption



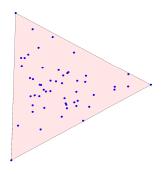
In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = X(:, \mathcal{K})H$$
  $|\mathcal{K}| = r$ 

i.e.

$$Conv(X) \equiv Conv(W)$$

- ✓ Polytime algorithm
- √ Robust to perturbation
- ✓ Uniqueness of solution (up to permutations)
- ✓ Immediate Interpretability
- × Very strong assumption



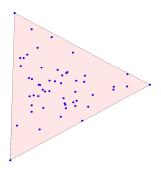
In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = X(:, \mathcal{K})H$$
  $|\mathcal{K}| = r$ 

i.e.

$$Conv(X) \equiv Conv(W)$$

- ✓ Polytime algorithm
- √ Robust to perturbation
- ✓ Uniqueness of solution (up to permutations)
- ✓ Immediate Interpretability
- × Very strong assumption



In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = X(:, \mathcal{K})H$$
  $|\mathcal{K}| = r$  i.e.  $Conv(X) \equiv Conv(W)$ 

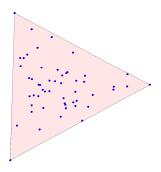
- ✓ Polytime algorithm
- √ Robust to perturbation
- ✓ Uniqueness of solution (up to permutations)
- ✓ Immediate Interpretability
- × Very strong assumption



In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = X(:, \mathcal{K})H$$
  $|\mathcal{K}| = r$  i.e.  $Conv(X) \equiv Conv(W)$ 

- ✓ Polytime algorithm
- ✓ Robust to perturbation
- ✓ Uniqueness of solution (up to permutations)
- ✓ Immediate Interpretability
- × Very strong assumption



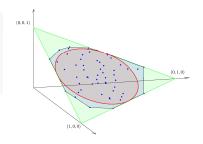
In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = WH$$
 is SSC if  $C \subset Conv(H)$ 

$$X = WH$$
 is SSC if  $C \subset Conv(H)$ 

Theorem (Fu, Ma, Huang, Sidiropoulos, 2015) X = WH SSC is the unique solution to

$$\min_{W \in \mathbb{R}^{r-1} \times r} Vol(W) : Conv(X) \subseteq Conv(W)$$



- × Non-convex
- × Robustness to perturbation not understood

**Notice**: Separability  $\implies$  *H* contains *I* as submatrix  $\implies$  SSC

Change of Paradigm: Instead of looking for the vertices of Conv(W) let us

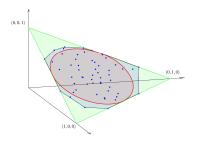
ook for its Facets

$$X = WH$$
 is SSC if  $C \subset Conv(H)$ 

Theorem (Fu, Ma, Huang, Sidiropoulos, 2015)

X = WH SSC is the unique solution to

 $\min_{W \in \mathbb{R}^{r-1} imes r} Vol(W) : Conv(X) \subseteq Conv(W)$ 



- × Non-convex
- × Robustness to perturbation not understood

**Notice**: Separability  $\implies$  H contains I as submatrix  $\implies$  SSC

Change of Paradigm: Instead of looking for the vertices of Conv(W) let us

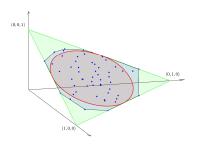
ook for its Facets

$$X = WH$$
 is SSC if  $C \subset Conv(H)$ 

Theorem (Fu, Ma, Huang, Sidiropoulos, 2015)

X = WH SSC is the unique solution to

 $\min_{W \in \mathbb{R}^{r-1} \times r} Vol(W) : Conv(X) \subseteq Conv(W)$ 



- × Non-convex
- × Robustness to perturbation not understood

**Notice**: Separability  $\implies$  *H* contains *I* as submatrix  $\implies$  SSC

Change of Paradigm: Instead of looking for the vertices of Conv(W) let us

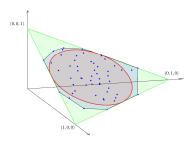
look for its Facets

$$X = WH$$
 is SSC if  $C \subset Conv(H)$ 

Theorem (Fu, Ma, Huang, Sidiropoulos, 2015)

X = WH SSC is the unique solution to

 $\min_{W \in \mathbb{R}^{r-1} \times r} Vol(W) : Conv(X) \subseteq Conv(W)$ 



- × Non-convex
- × Robustness to perturbation not understood

**Notice**: Separability  $\implies$  H contains I as submatrix  $\implies$  SSC

Change of Paradigm: Instead of looking for the vertices of Conv(W) let us

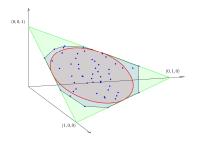
look for its Facets

$$X = WH$$
 is SSC if  $C \subset Conv(H)$ 

Theorem (Fu, Ma, Huang, Sidiropoulos, 2015)

X = WH SSC is the unique solution to

$$\min_{W \in \mathbb{R}^{r-1} \times r} Vol(W) : Conv(X) \subseteq Conv(W)$$



- × Non-convex
- × Robustness to perturbation not understood

**Notice**: Separability  $\implies$  *H* contains *I* as submatrix  $\implies$  SSC

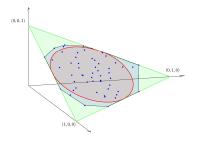
Change of Paradigm: Instead of looking for the vertices of Conv(W) let us look for its Facets

$$X = WH$$
 is SSC if  $C \subset Conv(H)$ 

Theorem (Fu, Ma, Huang, Sidiropoulos, 2015)

X = WH SSC is the unique solution to

$$\min_{W \in \mathbb{R}^{r-1} \times r} Vol(W) : Conv(X) \subseteq Conv(W)$$



- × Non-convex
- × Robustness to perturbation not understood

**Notice**: Separability  $\implies$  *H* contains *I* as submatrix  $\implies$  SSC

Change of Paradigm: Instead of looking for the vertices of Conv(W) let us

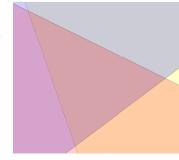
look for its Facets

# Facet Identification

$$Conv(W) = \bigcap_{i=1}^{r} S_i$$
 where  $S_i := \{x : \theta_i^T x \le 1\}$ 

$$Conv(X) \subseteq Conv(W) \iff \Theta = \begin{pmatrix} \theta_1 & \dots & \theta_r \end{pmatrix} \qquad \Theta^T X \leq 1$$

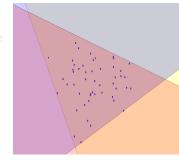
- MVIE Maximum Volume Inscribed Ellipsoid Enumerates the facets of Conv(X), very expensive (Lin, Wu, Ma, Chi, Wang, 2018)
- GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive (Abdolali, Gillis, 2021)



$$Conv(W) = \cap_{i=1}^{r} S_i$$
 where  $S_i := \{x : \theta_i^T x \le 1\}$ 

$$Conv(X) \subseteq Conv(W) \iff \Theta = \begin{pmatrix} \theta_1 & \dots & \theta_r \end{pmatrix} \qquad \Theta^T X \leq 1$$

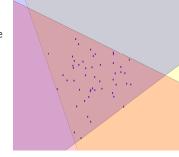
- MVIE Maximum Volume Inscribed Ellipsoid
  Enumerates the facets of Conv(X), very expensive
  (Lin, Wu, Ma, Chi, Wang, 2018)
- GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive (Abdolali, Gillis, 2021)



$$Conv(W) = \bigcap_{i=1}^{r} S_i$$
 where  $S_i := \{x : \theta_i^T x \le 1\}$ 

$$Conv(X) \subseteq Conv(W) \iff \Theta = \begin{pmatrix} \theta_1 & \dots & \theta_r \end{pmatrix} \qquad \Theta^T X \leq 1$$

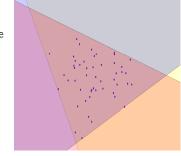
- MVIE Maximum Volume Inscribed Ellipsoid Enumerates the facets of Conv(X), very expensive (Lin, Wu, Ma, Chi, Wang, 2018)
- GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive (Abdolali, Gillis, 2021)



$$\textit{Conv}(W) = \cap_{i=1}^{r} \mathcal{S}_{i} \quad \text{where} \quad \mathcal{S}_{i} := \{x : \theta_{i}^{T} x \leq 1\}$$

$$\textit{Conv}(X) \subseteq \textit{Conv}(W) \qquad \Longleftrightarrow \qquad \Theta = \begin{pmatrix} \theta_1 \ \dots \ \theta_r \end{pmatrix} \qquad \Theta^T X \leq 1$$

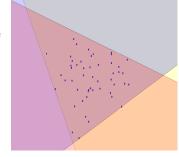
- MVIE Maximum Volume Inscribed Ellipsoid Enumerates the facets of Conv(X), very expensive (Lin, Wu, Ma, Chi, Wang, 2018)
- GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive (Abdolali, Gillis, 2021)



$$Conv(W) = \bigcap_{i=1}^{r} S_i$$
 where  $S_i := \{x : \theta_i^T x \le 1\}$ 

$$Conv(X) \subseteq Conv(W) \iff \Theta = \begin{pmatrix} \theta_1 & \dots & \theta_r \end{pmatrix} \qquad \Theta^T X \leq 1$$

- MVIE Maximum Volume Inscribed Ellipsoid Enumerates the facets of Conv(X), very expensive (Lin, Wu, Ma, Chi, Wang, 2018)
- GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive (Abdolali, Gillis, 2021)



$$S \subseteq \mathbb{R}^{r-1}$$
  $S^* := \{\theta : \theta^T x \le 1 \ \forall x \in S\}$ 

Swaps points and hyperplanes

$$\{x: \theta^T x = 1\} \leadsto \theta$$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

$$Conv(X) \subseteq Conv(W) \iff Conv(W)^* \subseteq Conv(X)^*$$
  
 $\iff \Theta^T X < 1 \quad \text{where} \quad Conv(W)^* = Conv(\Theta)$ 

$$\max_{\Theta \in \mathbb{R}^{r-1} imes r} Vol(\Theta) : \Theta^T X \leq 1$$
 (MaxVol)

$$S \subseteq \mathbb{R}^{r-1}$$
  $S^* := \{\theta : \theta^T x \le 1 \ \forall x \in S\}$ 

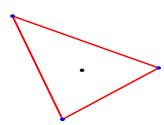
Swaps points and hyperplanes

$$\{x:\theta^T x=1\} \leadsto \theta$$

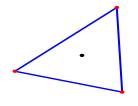
- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

$$Conv(X) \subseteq Conv(W) \iff Conv(W)^* \subseteq Conv(X)$$
  
 $\iff \Theta^T X \le 1 \quad \text{where} \quad Conv(W)^* = Conv(\Theta)$ 

$$\max_{\theta \in \mathbb{R}^{r-1} \times r} Vol(\Theta) : \Theta^T X \leq 1$$
 (MaxVol)







$$S \subseteq \mathbb{R}^{r-1}$$
  $S^* := \{\theta : \theta^T x \le 1 \ \forall x \in S\}$ 

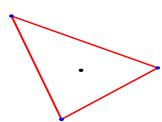
Swaps points and hyperplanes

$$\{x:\theta^T x=1\} \leadsto \theta$$

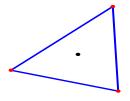
- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

$$Conv(X) \subseteq Conv(W) \iff Conv(W)^* \subseteq Conv(X)$$
  
 $\iff \Theta^T X \le 1 \quad \text{where} \quad Conv(W)^* = Conv(\Theta)$ 

$$\max_{\theta \in \mathbb{R}^{r-1} imes r} Vol(\Theta)$$
 :  $\Theta^T X \leq 1$  (MaxVol)







$$S \subseteq \mathbb{R}^{r-1}$$
  $S^* := \{\theta : \theta^T x \le 1 \ \forall x \in S\}$ 

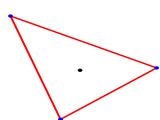
Swaps points and hyperplanes

$$\{x:\theta^Tx=1\}\leadsto\theta$$

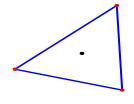
- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

$$Conv(X) \subseteq Conv(W) \iff Conv(W)^* \subseteq Conv(X)$$
  
 $\iff \Theta^T X \le 1 \quad \text{where} \quad Conv(W)^* = Conv(\Theta)$ 

$$\max_{\theta \in \mathbb{R}^{r-1} imes r} Vol(\Theta)$$
 :  $\Theta^T X \leq 1$  (MaxVol)







$$S \subseteq \mathbb{R}^{r-1}$$
  $S^* := \{\theta : \theta^T x \le 1 \ \forall x \in S\}$ 

Swaps points and hyperplanes

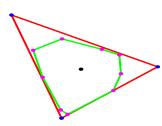
$$\{x:\theta^T x=1\} \leadsto \theta$$

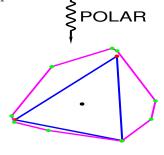
- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

$$Conv(X) \subseteq Conv(W) \iff Conv(W)^* \subseteq Conv(X)^*$$

$$\iff \Theta^T X \leq 1 \quad \text{where} \quad \textit{Conv}(W)^* = \textit{Conv}(\Theta)$$

$$\max_{\theta \in \mathbb{R}^{r-1} \times r} Vol(\Theta) : \Theta^T X \leq 1$$
 (MaxVol





$$S \subseteq \mathbb{R}^{r-1}$$
  $S^* := \{\theta : \theta^T x \le 1 \ \forall x \in S\}$ 

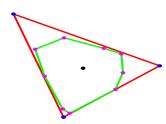
Swaps points and hyperplanes

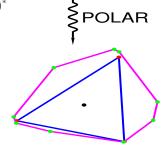
$$\{x:\theta^T x=1\} \leadsto \theta$$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

$$Conv(X) \subseteq Conv(W) \iff Conv(W)^* \subseteq Conv(X)^*$$
  
 $\iff \Theta^T X < 1 \quad \text{where} \quad Conv(W)^* = Conv(\Theta)$ 

$$\max_{\theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) \quad : \quad \Theta^T X \leq 1 \qquad (\textit{MaxVol})$$





#### Theorem (M.A., G.B., N.G., 2023)

Let  $X = WH \in \mathbb{R}^{r-1 \times n}$  SSC and for any  $v \in \mathbb{R}^{r-1}$  define

$$\mathcal{V}(v) := \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) : \Theta^{T}(X - ve^{T}) \leq 1$$

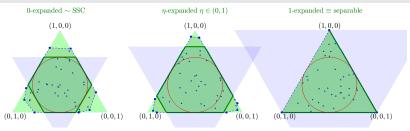
Then V(v) is convex in v with unique minimum for v = We/r and  $\Theta$  polar of W

#### Theorem (M.A., G.B., N.G., 2023)

Let  $X = WH \in \mathbb{R}^{r-1 \times n}$  SSC and for any  $v \in \mathbb{R}^{r-1}$  define

$$\mathcal{V}(v) := \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) \quad : \quad \Theta^{T}(X - ve^{T}) \leq 1$$

Then V(v) is convex in v with unique minimum for v = We/r and  $\Theta$  polar of W

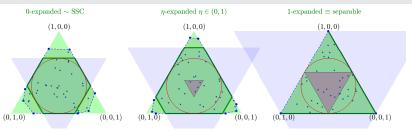


#### Theorem (M.A., G.B., N.G., 2023)

Let  $X = WH \in \mathbb{R}^{r-1 \times n}$  SSC and for any  $v \in \mathbb{R}^{r-1}$  define

$$\mathcal{V}(v) := \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) : \Theta^{T}(X - ve^{T}) \leq 1$$

Then V(v) is convex in v with unique minimum for v = We/r and  $\Theta$  polar of W



#### Theorem (M.A., G.B., N.G., 2023)

Let  $X = WH \in \mathbb{R}^{r-1 \times n}$  be  $\eta$ -expanded and suppose v = Wh,  $h \in \P$ . Then

$$\max_{\Theta \in \mathbb{R}^{r-1} \times r} Vol(\Theta)$$
 :  $\Theta^T(X - ve^T) \leq 1$ 

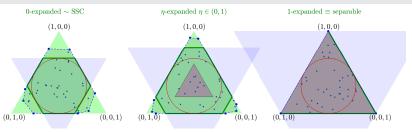
is solved uniquely by  $\Theta$  polar of W

#### Theorem (M.A., G.B., N.G., 2023)

Let  $X = WH \in \mathbb{R}^{r-1 \times n}$  SSC and for any  $v \in \mathbb{R}^{r-1}$  define

$$\mathcal{V}(v) := \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) : \Theta^{T}(X - ve^{T}) \leq 1$$

Then V(v) is convex in v with unique minimum for v = We/r and  $\Theta$  polar of W



#### Conjecture (M.A., G.B., N.G., 2023)

Let  $X = WH \in \mathbb{R}^{r-1 \times n}$  be  $\eta$ -expanded and suppose v = Wh,  $h \in A$ . Then

$$\max_{\Theta \in \mathbb{R}^{r-1} \times r} Vol(\Theta)$$
 :  $\Theta^T(X - ve^T) \leq 1$ 

is solved uniquely by  $\Theta$  polar of W

#### Maximum Volume in Dual

#### Algorithm 1 Maximum Volume in the Dual (MV-Dual)

**Input:** Data matrix  $\widetilde{X} \in \mathbb{R}^{m \times n}$  and a factorization rank r

**Output:** A matrix  $\widetilde{W} \in \mathbb{R}^{m \times r}$  and a vector w such that  $\widetilde{X} \approx w + \widetilde{W}H$  where H is column stochastic

- 1: Use PCA to reduce  $\widetilde{X} = w + UX$  with  $X \in \mathbb{R}^{r-1 \times n}$
- 2: Initialize  $v_1 = Xe/n$ , p = 1 and  $\Theta \in \mathcal{N}(0,1)^{r-1 \times r}$
- 3: while not converged: p=1 or  $\frac{\|\mathbf{v_p}-\mathbf{v_{p-1}}\|_2}{\|\mathbf{v_{p-1}}\|_2}>0.01$  do
- 4: Solve

$$\arg\max_{\Theta\in\mathbb{R}^{r-1 imes r}} Vol(\Theta): \Theta^T(X-v_pe^T) \leq 1$$

via alternating optimization on the columns of  $\Theta$ 

- 5: Recover W by computing the polar of  $Conv(\Theta)$
- 6: Let  $v_{p+1} \leftarrow We/r$ , and p = p + 1
- 7: end while
- 8: Compute  $\widetilde{W} = UW$

Cost: PCA  $\mathcal{O}(mnr)$  plus Maximization problem solver for a single column  $\mathcal{O}(nr^2)$  times the number of iterations

#### Maximum Volume in Dual

#### Algorithm 2 Maximum Volume in the Dual (MV-Dual)

**Input:** Data matrix  $\widetilde{X} \in \mathbb{R}^{m \times n}$  and a factorization rank r

**Output:** A matrix  $\widetilde{W} \in \mathbb{R}^{m \times r}$  and a vector w such that  $\widetilde{X} \approx w + \widetilde{W}H$  where H is column stochastic

- 1: Use PCA to reduce  $\widetilde{X} = w + UX$  with  $X \in \mathbb{R}^{r-1 \times n}$
- 2: Initialize  $v_1 = Xe/n$ , p = 1 and  $\Theta \in \mathcal{N}(0,1)^{r-1 \times r}$
- 3: while not converged: p=1 or  $\frac{\|v_p-v_{p-1}\|_2}{\|v_{p-1}\|_2}>0.01$  do
- 4: Solve

$$\arg\max_{\Theta\in\mathbb{R}^{r-1 imes r}} Vol(\Theta): \Theta^T(X-v_pe^T) \leq 1$$

via alternating optimization on the columns of  $\Theta$ 

- 5: Recover W by computing the polar of  $Conv(\Theta)$
- 6: Let  $v_{p+1} \leftarrow We/r$ , and p = p + 1
- 7: end while
- 8: Compute  $\widetilde{W} = UW$

Cost : PCA  $\mathcal{O}(mnr)$  plus Maximization problem solver for a single column  $\mathcal{O}(nr^2)$  times the number of iterations

#### Maximum Volume in Dual

#### Algorithm 3 Maximum Volume in the Dual (MV-Dual)

**Input:** Data matrix  $\widetilde{X} \in \mathbb{R}^{m \times n}$  and a factorization rank r

**Output:** A matrix  $\widetilde{W} \in \mathbb{R}^{m \times r}$  and a vector w such that  $\widetilde{X} \approx w + \widetilde{W}H$  where H is column stochastic

- 1: Use PCA to reduce  $\widetilde{X} = w + \mathit{UX}$  with  $X \in \mathbb{R}^{r-1 \times n}$
- 2: Initialize  $v_1 = Xe/n$ , p = 1 and  $\Theta \in \mathcal{N}(0,1)^{r-1 \times r}$
- 3: while not converged: p = 1 or  $\frac{\|v_p v_{p-1}\|_2}{\|v_{p-1}\|_2} > 0.01$  do
- 4: Solve

$$\arg\max_{\Theta\in\mathbb{R}^{r-1}\times r,\Delta\in\mathbb{R}^{r\times n}} Vol(\Theta)^2 - \lambda \|\Delta\|_F^2: \Theta^T(X-v_\rho e^T) \leq 1 + \Delta^T$$

#### via alternating optimization on the columns of $\Theta, \Delta$

- 5: Recover W by computing the polar of  $Conv(\Theta)$
- 6: Let  $v_{p+1} \leftarrow We/r$ , and p = p+1
- 7: end while
- 8: Compute  $\widetilde{W} = UW$

Cost : PCA  $\mathcal{O}(mnr)$  plus Maximization problem solver for a single column  $\mathcal{O}(nr^2)$  times the number of iterations

Experiments

$$W^*, H^* \text{ ground truth } ERR = \min_{\pi} \frac{\|W^* - W_{\pi}\|_F}{\|W^*\|_F} \text{ purity } p = \max_{i,j} |H_{i,j}^*| = \eta + (1 - \eta)^2_r$$

$$ERR \text{ for } r = 3, \ n = 30r$$

$$ERR \text{ for } r = 4, \ n = 30r$$

$$ERR \text{ for } r = 5, \ n = 30r$$

$$ERR \text{ for } r = 4, \ n = 30r$$

$$ERR \text{ for } r = 4, \ n = 30r$$

$$ERR \text{ for } r = 5, \ n = 30r$$

$$ERR \text{ for } r = 5, \ n = 30r$$

$$ERR \text{ for } r = 5, \ n = 30r$$

$$ERR \text{ for } r = 5, \ n = 30r$$

$$ERR \text{ for } r = 5, \ n = 30r$$

$$ERR \text{ for } r = 5, \ n = 30r$$

$$ERR \text{ for } r = 5, \ n = 30r$$

$$ERR \text{ for } r = 5, \ n = 30r$$

$$ERR \text{ for } r = 5, \ n = 30r$$

$$ERR \text{ for } r = 5, \ n = 30r$$

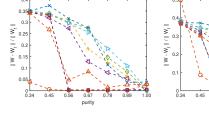
$$ERR \text{ for } r = 5, \ n = 30r$$

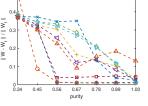
$$ERR \text{ for } r = 5, \ n = 30r$$

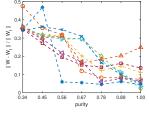
$$W^*, H^* \text{ ground truth } ERR = \min_{\pi} \frac{\|W^* - W_{\pi}\|_F}{\|W^*\|_F} \text{ purity } p = \max_{i,j} |H_{i,j}^*| = \eta + (1 - \eta)^{\frac{2}{r}}$$

$$\frac{1}{r} \int_{0.5}^{0.5} \frac{1}{0.59} \int_{0.57}^{0.57} \frac{1}{0.78} \int_{0.84}^{0.84} \frac{1}{0.92} \int_{0.51}^{0.59} \frac{1}{0.59} \int_{0.57}^{0.77} \frac{1}{0.78} \int_{0.89}^{0.84} \frac{1}{0.92} \int_{0.51}^{0.59} \frac{1}{0.59} \int_{0.57}^{0.77} \frac{1}{0.78} \int_{0.89}^{0.84} \frac{1}{0.92} \int_{0.51}^{0.59} \frac{1}{0.59} \int_{0.57}^{0.77} \frac{1}{0.78} \int_{0.89}^{0.84} \frac{1}{0.92} \int_{0.57}^{0.78} \frac{1}{0.59} \int_{0.57}^{0.79} \frac{1}{0.79} \int_{0.89}^{0.84} \frac{1}{0.92} \int_{0.57}^{0.79} \frac{1}{0.79} \int_{0.89}^{0.89} \frac{1}{0.99} \int_{0.57}^{0.79} \frac{1}{0.79} \int_{0.89}^{0.79} \frac{1}{0.99} \int_{0.57}^{0.79} \frac{1}{0.99} \int_{0.57}^{0.79} \frac{1}{0.79} \int_{0.89}^{0.79} \frac{1}{0.99} \int_{0.57}^{0.79} \frac{1}{0.79} \int_{0.89}^{0.79} \frac{1}{0.99} \int_{0.57}^{0.79} \frac{1}{0.99} \int_{0.57}^{0.79} \frac{1}{0.79} \int_{0.89}^{0.79} \frac{1}{0.99} \int_{0.57}^{0.79} \frac{1$$

$$W^*, H^* \text{ ground truth} \quad \textit{ERR} = \min_{\pi} \frac{\|W^* - W_{\pi}\|_F}{\|W^*\|_F} \quad \text{ purity } p = \max_{i,j} |H^*_{i,j}| = \eta + (1 - \eta)^2_r$$







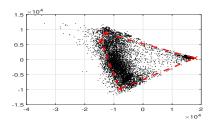
ERR for r = 4, SNR = 60 ERR for r = 4, SNR = 40

ERR for r = 4, SNR = 30

|     | MVDual    | GFPI      | min vol         | min vol       | min vol       | SNPA      | MVIE      | HyperCSI         | MVES      |
|-----|-----------|-----------|-----------------|---------------|---------------|-----------|-----------|------------------|-----------|
| SNR |           |           | $\lambda = 0.1$ | $\lambda = 1$ | $\lambda = 5$ |           |           |                  |           |
|     |           |           |                 |               |               |           |           | 0.01±0.004       |           |
|     |           |           |                 |               |               |           |           | 0.005±0.004      |           |
| 60  | 0.42±0.06 | 1.47±0.45 | 0.07±0.01       | 0.08±0.01     | 0.09±0.01     | 0.01±0.00 | 3.78±0.12 | $0.001 \pm 0.00$ | 0.26±0.07 |

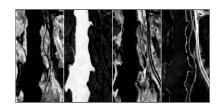
## **Unmixing Hyperspectral Imaging**

$$MRSA(x,y) = \frac{100}{\pi} \cos^{-1} \left( \frac{(x - \bar{x}e)^{\top} (y - \bar{y}e)}{\|x - \bar{x}e\|_2 \|y - \bar{y}e\|_2} \right)$$



Projection of data points and the symplex computed by MV-Dual

 $\textit{ERR} = \min_{\pi} \mathsf{MRSA}(W_k^*, W_{\pi(k)})$ 



Abundance maps estimated by MV-Dual From left to right: road, tree, soil, water

|          |       |      | HyperCSI |      |       |
|----------|-------|------|----------|------|-------|
| MRSA     | 22.27 | 6.03 | 17.04    | 4.82 | 3.74  |
| Time (s) | 0.60  | 1.45 | 0.88     | 100* | 43.51 |

Comparing the performances of MV-Dual with the state-of-the-art SSMF algorithms on Jasper-Ridge data set. Numbers marked with \* indicate that the corresponding algorithms did not converge within 100 seconds.

# Thank You!

- Abdolali M., Barbarino G., and Gillis N. **Dual simplex volume maximization** for simplex-structured matrix factorization. *Arxiv*, 2024.
- Abdolali M. and Gillis N. Simplex-structured matrix factorization:

  Sparsity-based identifiability and provably correct algorithms. SIAM Journal on Mathematics of data Science, 3(2):593–623, 2021.
- Fu X., Ma W.K., Huang K., and Sidiropoulos N.D. Blind separation of quasi-stationry sources: exploiting convex geometry in covariance domain.

  IEEE Transactions on Signal Processing, 63(9):2306–2320, 2015.
- Zu F. Hyperspectral unmixing: ground truth labeling, datasets, benchmark performances and survey. *Arxiv*, 2017.
- Lin C.H., Wu R., Ma W.K., Chi C.Y., and Wang Y. Maximum volume inscribed ellipsoid: A new simplex-structured matrix factorization framework via facet enumeration and convex optimization. SIAM Journal on Imaging Sciences, 11(2):1651–1679, 2018.