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Empirical Mode Decomposition

Decomposition of non-stationary signals
into Intrinsic Mode Functions (IMF)

• Iterative Method

• Based on the computation of the
moving average of the signal

• Splits the signal into simple
oscillatory components

Numerous variants (EEMD, NA-MEMD,
FMEMD, etc.) have been proposed in the
years to deal with instability and mode
splitting/mixing, and to prove its conver-
gence



Empirical Mode Decomposition

The effect of the moving aver-
age is to flatten the highest fre-
quency component

A way to emulate the effect is
to use a filter on the signal



Iterative Filtering

Choose the filter k :

• Unit-norm, even, nonnegative and
compact supported

• k = ω ? ω

• Smooth

The IF method iteratively apply the filter
through convolution
S(f ) := f (x)−

∫
f (y)k(x − y)dy

IMF = IMF ∪ {S∞(s)}
s = s − S∞(s)

S∞(s) always converges and the method
is fast (cyclic matrix, FFT), but it is not
as flexible as EMD...
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ˆL(s) = ŝ(y) · k̂(y)

IF does not work with non-disjoint bands of frequencies



Adaptive Local Iterative Filtering



kx(y) := k(`(x)−1y)`(x)−1
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Adaptive Local Iterative Filtering

Given the signal s(x), fix the filter

kx(y) := k(`(x)−1y)`(x)−1

and apply iteratively the filter through
convolution
S(f ) := f (x)−

∫
f (y)kx(x − y)dy

IMF = IMF ∪ {S∞(s)}
s = s − S∞(s)

ALIF is now as flexible as EMD, and em-
pirically converges, but..

• No structure, not fast as IF (O(n2)

against O(n))

• Has no clean formal analysis

• S∞(s) is not always convergent (in
the discrete setting)



Discrete Setting

s = [s(h) s(2h) . . . s(1− h) s(1)] h = 1/N

s(x)−
∫ 1

0
s(y)kx(x−y)dy |x=ah ∼ sa−

1
N

N∑
b=1

k

(
(a− b)h

`(ah)

)
1

`(ah)
sb

S(s) := s −Ms = (I −M)s

• S∞(s) converges when

|λi (I −M)| < 1 ∨ λi (I −M) = 1

• Converges to the kernel of M

The kernel is the same in αM where
α ∈ R, so the real condition is

=(λi (M)) > 0 ∨ λi (M) = 0

Setting a stopping condition in the
iteration makes S∞(s) a near-kernel
vector

For big enough N and if `(x) is con-
tinuous, positive and

k(x) = ω(x) ? ω(x),

then the spectrum of M respects the
condition for almost every eigenvalue

There are artificial examples where M

has negative eigenvalues, so the con-
vergence is not always assured
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Stable ALIF

Given the ALIF matrix M, let

S(s) := s−MTMs = (I −MTM)s

• MTM Has the same kernel of M

• λi (M
TM) ≥ 0

As a consequence, S∞(s) always con-
verges, but the method is way slower

• The cost per iteration is doubled

• There are more eigenvalues close
to zero, so it takes more
iterations to extract the exact
component

N = 3000
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Given the ALIF matrix M, let
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Resampled Iterative Filtering



ALIF



ALIF



ALIF



ALIF



ALIF



Resampling



Resampling



Resampling



Resampling



Resampling



Resampling



Resampling



Resampling



Resampling Function G (x)

ALIF: S(s)(x) := s(x)−
∫
s(y)k

(
x−y
`(x)

)
1

`(x)dy

t = (x − y)/`(x) x = G (z)

S(s)(G (z)) := s(G (z))−
∫

s(G (z)− t`(G (z)))k (t) dt

G ′(z) = `(G (z)) G (z − t) ∼ G (z)− tG ′(z)

RIF: S(s)(G (y)) := s(G (y))−
∫
s(G (z − t))k (z) dz

ALIF is a "first order" RIF where

G−1(z) =

∫ z

0

1
`(x)

dx

ALIF 6= RIF except when `(x) = ` and both are IF
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Resampled Iterative Filtering

Given the signal s(x), compute the resam-
pling
sr (x) := s(G (x)) G−1(z) =

∫ z

0

1
`(x)

dx

and apply iteratively the filter through con-
volution
S(f ) := f (x)−

∫
f (y)k(x − y)dy

IMF = IMF ∪ {S∞(sr )(G
−1(x))}

s = s − S∞(sr )(G
−1(x))

At the cost of two interpolations per IMF,
we have an algorithm that is

• As flexible as ALIF

• Fast as IF, the resampling is outside
the iterations

• S∞(sr ) is always convergent



Numerical Experiments



Experiment 1

N = 8000
h1(x) = cos(20 cos(4πt)− 160πt)
h2(x) = cos(20 cos(4πt)− 280πt)
h3(x) = cos(2πt)
h(x) = h1(x) + h2(x) + h3(x)



ALIF SALIF RIF

Time err1 err2 err3 Niter1 Niter2
ALIF 4.0860 0.070388 0.071158 0.008549 18 2
SALIF 19.7919 0.010054 0.010055 0.000161 353 5
RIF 1.4724 0.003426 0.003292 0.000908 81 11
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IF

RIF



Future Work

• More involved analysis (borders, length regularity, etc.)

• Multidimensional and Multi-Signals methods

• Direct computation of re-sampling

• Comparison with Synchroqueezing

• RIF/ALIF as denoising methods
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