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Pareto Singular Values

min
u ≥ 0, ‖u‖ = 1,
v ≥ 0, ‖v‖ = 1,

u>Av A ∈ Rm×n Ξ(A) := {stationary points of the o.p.}

"Simple" Case: A ≥ 0

Theorem (Seeger, S. 2023)

A ≥ 0 ⇐⇒ Ξ(A) = {‖B‖ : B E A}

Theorem (Seeger, S. 2023)

The set of matrices A ∈ Rm×n
+ for which all the submatrices have different norms,

is dense, open and its complementary has measure zero on the space of
nonnegative matrices

=⇒ A generic nonnegative matrix has exponentially many Pareto Singular Values

Still it does say nothing on the complexity of recovering the minimum, since

A ≥ 0 =⇒ min Ξ(A) = min
i,j

Ai,j
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Conic Angles

min
u ∈ P, ‖u‖ = 1,
v ∈ Q, ‖v‖ = 1,

u>v P,Q ⊆ Rn non trivial polyhedral cones

"Simple" Case:

min
u ∈ P, ‖u‖ = 1,
v ∈ Q, ‖v‖ = 1,

u>v ≥ 0 =⇒ u, v are vertices of P,Q

If one of u, v in the antipodal pair is a vertex then the problem is
Polynomial in n and the number of generators of P,Q

Theorem (B., G., S. 2024)
Let (u, v) be a stationary point and let u ∈ int(Fu), v ∈ int(Fv ) where Fu, Fv are
facets of P,Q. If dim(Fu) + dim(Fv ) > n and v 6= ±u, then (u, v) is a saddle point

Corollary (B., G., S. 2024)
If (u, v) is a local minimum in dimension n ≤ 3, then at least one among u, v is a
vertex
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Conic Angles

• dim(Fu) + dim(Fv ) > n then (u, v) is a saddle point

• (u, v) local minimum, n ≤ 3, then u or v is a vertex

Idea of proof:

- If dim(Fu) + dim(Fv ) > n then 0 6= z ∈ Span(Fu) ∩ Span(Fv )

- The local minima of the restriction to Span(u, v , z) are on the border of Fu or Fv

Counterexample for n ≥ 4:

P = 〈


1 1
−1 1
0 0
0 0

〉 Q = 〈


−1 −1
0 0
1 1
−1 1

〉 u =


1
0
0
0

 v =
1√
2


−1
0
1
0


dim(Fu) = dim(Fv ) = 2 u>v = − 1√

2
< 0

(u, v) is an antipodal pair in the interior part of P and Q
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Lemma (B., G., S. 2024)

Any matrix A ∈ Rm×n of spectral norm 1 and m ≥ n can be decomposed as
A = UTV where U,V ∈ R(m+n)×n are matrices with orthonormal columns

Proof: Let

A = UTV U =

(
I

0

)
∈ R(m+n)×m V :=

(
A

C

)
∈ R(m+n)×m

Given the SVD A = WΣZ> let C = (I − Σ>Σ)1/2Z> so that

V>V = A>A + Z(I − Σ>Σ)Z> = ZZ> = I

i.e. all columns of V are orthogonal to each other and with unitary norm

Notice:

The columns of U are a subset of the canonical basis



Lemma (B., G., S. 2024)

Any matrix A ∈ Rm×n of spectral norm 1 and m ≥ n can be decomposed as
A = UTV where U,V ∈ R(m+n)×n are matrices with orthonormal columns

Proof: Let

A = UTV U =

(
I

0

)
∈ R(m+n)×m V :=

(
A

C

)
∈ R(m+n)×m

Given the SVD A = WΣZ> let C = (I − Σ>Σ)1/2Z> so that

V>V = A>A + Z(I − Σ>Σ)Z> = ZZ> = I

i.e. all columns of V are orthogonal to each other and with unitary norm

Notice:

The columns of U are a subset of the canonical basis



Lemma (B., G., S. 2024)

Any matrix A ∈ Rm×n of spectral norm 1 and m ≥ n can be decomposed as
A = UTV where U,V ∈ R(m+n)×n are matrices with orthonormal columns

Proof: Let

A = UTV U =

(
I

0

)
∈ R(m+n)×m V :=

(
A

C

)
∈ R(m+n)×m

Given the SVD A = WΣZ> let C = (I − Σ>Σ)1/2Z> so that

V>V = A>A + Z(I − Σ>Σ)Z> = ZZ> = I

i.e. all columns of V are orthogonal to each other and with unitary norm

Notice:

The columns of U are a subset of the canonical basis



Reduction

min
u,v

u>Av : ‖u‖ = ‖v‖ = 1 u ∈ P = 〈G〉 ⊆ Rn v ∈ Q = 〈R〉 ⊆ Rn

min
x,y

(Gx)>A(Ry) : ‖Gx‖ = ‖Ry‖ = 1 x , y ≥ 0

‖A‖min
x,y

(Gx)>U>V (Ry) : ‖Gx‖ = ‖Ry‖ = 1 x , y ≥ 0

‖A‖min
x,y

(Gx)>U>V (Ry) : ‖UGx‖ = ‖VRy‖ = 1 x , y ≥ 0

‖A‖min
ũ,ṽ

ũ>ṽ : ‖ũ‖ = ‖ṽ‖ = 1 ũ ∈ P ′ = 〈UG〉 ⊆ Rn+m ṽ ∈ Q ′ = 〈VR〉 ⊆ Rn+m

From Conical SV to Conic Angles
The minimum conical singular value of dimension n with number of
generators a, b for G ,R reduces polynomially to the maximum angle between
cones of dimension n + m with number of generators a, b for UG ,VR
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ũ,ṽ
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Reduction from Maximum Edge Biclique to Minimal Pareto Singular Value

Theorem (Seeger, S. 2023)
Let (σ0, u, v) be the optimal solution of

σ0 = min
u,v≥0

u>Av : ‖u‖ = ‖v‖ = 1

If A has at least one negative entry then (x , y) =
√
−σ0(u, v) is optimal for

min
x,y≥0

‖ − A− xy>‖2F

This shows that the Minimal Pareto Singular Value is at least as hard as the
Nonnegative Rank 1 Approximation problem

Theorem (G., Glineur 2013)

Let B ∈ {0, 1}m×n be the bi-adjacency matrix of a bipartite graph (N1,N2,E) where
Bi,j = 1 iff node i in N1 and node j in N2 are connected and d ≥ max{m, n}.

min
x,y≥0

‖B − d(1− B)− xy>‖2F

is solved by binary vectors x , y that identify the fully connected subsets S1 ⊆ N1 and
S2 ⊆ N2 corrisponding to the Maximum Edge Biclique, i.e they maximise |S1| · |S2|
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• minx,y≥0 ‖B − d(1− B)− xy>‖2F identifies the Maximum Edge Biclique

Idea of Proof:

All the Maximal Bicliques (S1,S2) are local minima of ‖B − d(1− B)− xy>‖2F
where x = χ(S1), y = χ(S2) because any extension of S1 × S2 gets a −d and

(−d − ε)2 = d2 + 2dε+ ε2

with the error going up by dε that is way more then what we gain by removing ε
from all the ones in a row/column

As a consequence xy> has zeros in correspondence of the −d of M and the rest
nonzero entries equal to 1, meaning that local minima x , y are indicator for the
maximal bicliques
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Everything is Hard

Theorem (Peeters 2003)
The Maximal Edge Biclique problem is NP-hard
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Recall:

min
u ≥ 0, ‖u‖ = 1,
v ≥ 0, ‖v‖ = 1

〈u,Av〉 = ‖A‖ min
u ≥ 0, ‖Uu‖ = 1,
v ≥ 0, ‖Vv‖ = 1

〈Uu,Vv〉 = ‖A‖ min
x ∈ P, ‖x‖ = 1,
y ∈ Q, ‖y‖ = 1

〈x , y〉,

with U> =
(
I 0

)
Theorem (B., G., S. 2024)
The maximum angle between convex closed cones problem

min
x ∈ P, ‖x‖ = 1,
y ∈ Q, ‖y‖ = 1

〈x , y〉

with P being generated by a subset of the canonical basis is NP-hard

Conjecture (B., G., S. 2024)
The maximum angle between the positive orthant and another convex closed cone

min
x ≥ 0, ‖x‖ = 1,
y ∈ Q, ‖y‖ = 1

〈x , y〉 = − max
y∈Q, ‖y‖=1

‖y−‖

is NP-hard
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Quadratic Programming with Gurobi



(Not) a Gurobi AD



(Not) a Gurobi AD

X Interfaces with C, C++,
Python, Java, Matlab, .NET,
R

x Proprietary, not Open Source

X Free for Academic use

x Slower than approximating
iterative solvers

X Solve the problem exactly even
in the indefinite case

Uses McCormick Relaxation:

min
(u,v)∈K

〈u,Av〉 = min
(u,v)∈K

∑
i,j

Ai,juivj = min
(u,v)∈K ,ui vj=wi,j

∑
i,j

Ai,jwi,j ≥ min
(ui ,vj ,wi,j )∈Ki,j

∑
i,j

Ai,jwi,j

where Ki,j = Conv((ui , vj ,wi,j) : wi,j = uivj , ui ≤ ui ≤ ui , vj ≤ vj ≤ vj) is a convex
polyhedron with at most 4 faces in R3 and if (u∗i , v

∗
j ,w

∗
i,j) is the relaxed solution,∑

i,j

Ai,ju
∗
i v
∗
j ≥ min

(u,v)∈K
〈u,Av〉 ≥

∑
i,j

Ai,jw
∗
i,j Err ≤

∑
i,j

|Ai,j |(ui − ui )(vj − vj)
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An Example: Schur Cone

Gurobi easily solves some angles problems, e.g., P = Rm
+ and Q = 〈H〉, or P = Q = 〈H〉

where H generates the Schur cone

H =



1 0 . . . 0
−1 1 . . . 0
0 −1 . . . 0
...

...
...

0 0 . . . 1
0 0 . . . −1


∈ Rn×n−1 〈H〉 ⊆ e⊥

In the first case, Gurobi returns

y = en ∈ P x = (a a . . . a b) ∈ Q a =

√
1

n(n − 1)
b = −

√
1− 1

n
= x>y

that can be proved being the maximum angle as

min
x ∈ Q, y ∈ P

‖x‖ = ‖y‖ = 1

x>y ≥ min
x ∈ e⊥, y ≥ 0
‖x‖ = ‖y‖ = 1

x>y = min
y≥0,‖y‖=1

−‖Pe⊥(y)‖ = −
√

1− 1
n
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Maximum Angle between PSD and Nonnegative Symmetric Matrices

Given the inner product 〈A,B〉 = Tr(A>B) on the space of n × n real symmetric
matrices Sn an open question is the maximum angle between the cone of PSD
matrices Pn and the cone of nonnegative symmetric matrices N n for n ≥ 5

γn := min
A ∈ Pn, B ∈ N n

‖A‖F = ‖B‖F = 1

〈A,B〉 = − max
A∈Pn,‖A‖F=1

‖A−‖F = −1
2

max
B∈N n,‖B‖F=1

‖B −
√
B2‖F

It is known that

n = 2, 3, 4 =⇒ γn = − 1√
2

= cos

(
3
4
π

)
lim

n→∞
γn ↓ −1 = cos(π)

This is a lower bound on the maximum angle in the cone of copositive matrices

Cn := {A ∈ Sn : x>Ax ≥ 0 ∀x ≥ 0}

All the algorithms to compute γn are iteratively converging to a critical angle, i.e. a
stationary point of the optimization problem

For n ≥ 5 we only have lower bounds on the minimum angle
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A Conjecture

Known Antipodal Couples:

n = 1: A1 = B1 = 1

n = 2: A2 =
1
2

(
1 −1
−1 1

)
B2 =

1√
2

(
0 1
1 0

)

n = 3, 4: An =

(
A2 0
0 0

)
Bn =

(
B2 0
0 0

)
n = 5: (Best Known Stationary Point) F5 is the Fourier matrix

An = F5


0

0
1√
2

1√
2

0

FH
5 Bn =

1√
10


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0



Conjecture
Every antipodal pair is block circulant
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Circulant Symmetric Matrices

The algebra of circulant real symmetric matrices SCn is the set of

a0 a1 a2 . . . a1

a1 a0 a1
. . .

...

a2 a1
. . .

. . . a2
...

. . .
. . . a0 a1

a1 . . . a2 a1 a0


= a0In + Fn diag

(∑
j>0

2aj cos(2πij/n)

)
i=0:n−1

FH
n

Properties:

• Both SCn ∩ Pn and SCn ∩N n are finitely generated cones with d n+1
2 e generators

• Given C ∈ SCn ∩ Pn its projection C ′ onto −N n is still in SCn, and the angle
between C ,−C ′ is the maximum angle between C and N n

• Given C ∈ SCn ∩N n its projection C ′ onto −Pn is still in SCn and the angle
between C ,−C ′ is the maximum angle between C and Pn

• An alternating algorithm using projections to minimize γn starting from a
C ∈ SCn will converge to a stationary point of the problem that is still in SCn
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Check with Gurobi

If n is odd and n = 1 + 2m

min
A ∈ SCn ∩ Pn, ‖A‖F = 1
B ∈ SCn ∩ N n, ‖B‖F = 1

〈A,B〉 = min
x ≥ 0, ‖x‖F = 1
y ≥ 0, ‖y‖F = 1

〈x ,My〉 M =
2√
n

[
cos

(
2π
n
ij

)]
i,j=1:m

A similar reduction holds for n even
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Left: Lower bounds on γn

Right:
- In black the exact angle
SCn ∩ Pn∠SCn ∩N n

- In blue if a previous angle
was bigger then the exact
solution
- In red if it is a lower
bound
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