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Simplex Identification

Given X € R™™%" can we find W € R™™Y*", H € R™" such that
X=WH H(,i)eA ={xeR, :x"e=1} Vi
Since X(:,7) = WH(:, i) is a convex combination of the columns of W

Conv(X) C Conv(W) WeR M
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Conv(X) C Conv(W) WeR M

Exists? Yes... but it is far from being Unique
This is a problem for the Interpretability of the solution
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Separability

X =X, K)H IK|=r ie. Conv(X) = Conv(W)
v/ Polytime algorithm ‘ N
v Robust to perturbation “ - . )
[ o o .

v Uniqueness of solution (up to . "t
permutations) /

v Immediate Interpretability [, -

Very strong assumption \

In the Hyperspectral Imaging it means that for each material there exists a

single pixel composed entirely of that material (called pure pixels)

We need more general assumptions with uniqueness guarantees
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Sufficiently Scattered Condition

X=WH isSSCif C C Conv(H)

Theorem (Fu, Ma, Huang, Sidiropoulos, 2015) u)un[
X = WH SSC is the unique solution to

min  Vol(W) : Conv(X) C Conv(W) ‘
WeRr-1xr ; oo

Non-convex

» Robustness to perturbation not understood

Notice: Separability = H contains | as submatrix = SSC

Change of Paradigm: Instead of looking for the vertices of Conv(W) let us
look for its Facets
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Facet Based Algorithms

Conv(W) = N_;S; where S;:={x:6x<1}
Conv(X) C Conv(W) <=  ©= (91 e,) o’x <1

Maximum Volume Inscribed Ellipsoid .
Enumerates the facets of Conv(X), very expensive .
(Lin, Wu, Ma, Chi, Wang, 2018) C TN

Greedy Facet-based Polytope Identification L
Mixed integer programming, also expensive o
(Abdolali, Gillis, 2021) :

In order to deal with facets GFPI works in the Polar Space
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SCR™ S :={#:0x<1VYxe S}
o Swaps points and hyperplanes
{x:0"x=1} ~0

o Sends simplexes into simplexes
e It is an involution for convex sets
o Reverses Containments
Conv(X) C Conv(W) <= Conv(W)* C Conv(X)"

POLAR
— O'X <1 where Conv(W)" = Conv(©)

We can thus seek the simplex © with maximum
volume inside Conv(X)* as in

max Vol(®) : ©'X<1 (MaxVol)

OcRr—1xr
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Let X = WH € R %" SSC and for any v € R"! define

V(v):= max Vol(®) : O’ (X—-ve')<1

OeRr—1xr

Then V(v) is convex in v with unique minimum for v = We/r and © polar of W

0-expanded ~ SSC n-expanded n € (0,1) 1-expanded = separable

(1,0,0) (1,0,0) (1,0,0)

bt}

(0T,0) - 10.0,1)

Let X = WH € R %" be n-expanded and suppose v = Wh, h € A. Then

max Vol(@) : ©'(X-ve')<1

@ER"‘iX’

is solved uniquely by © polar of W



Maximum Volume in Dual

Algorithm 1 Maximum Volume in the Dual (MV-Dual)

Input: Data matrix X € R™*" and a factorization rank r
Output: A matrix W € R™*" and a vector w such that X ~ w + WH where H

@ N o«

EE A A

is column stochastic

Use PCA to reduce X = w + UX with X € R"1%"

Initialize vi = Xe/n, p=1and © € AV/(0,1)""1*"

while not converged: p =1 or W > 0.01 do
Solve ’

arg max Vol(©): 07 (X —ve’) <1

OcRr—1xr

via alternating optimization on the columns of ©
Recover W by computing the polar of Conv (©)
Let vpi1 < We/r,and p=p+1

end while

Compute W = uw




Maximum Volume in Dual

Algorithm 2 Maximum Volume in the Dual (MV-Dual)

Input: Data matrix X € R™*" and a factorization rank r
Output: A matrix W € R™*" and a vector w such that X ~ w + WH where H

1:
2:
3:
4:

5:
6:
T:
8:

is column stochastic

Use PCA to reduce X = w + UX with X € R"1%"

Initialize vi = Xe/n, p=1and © € AV/(0,1)""1*"

while not converged: p =1 or W > 0.01 do
Solve ’

arg max Vol(©): 07 (X —ve’) <1
OcRr—1xr

via alternating optimization on the columns of ©
Recover W by computing the polar of Conv (©)
Let vpi1 < We/r,and p=p+1

end while

Compute W = uw

Cost : PCA O(mnr) plus Maximization problem solver for a single column

O(nr?) times the number of iterations
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Exact Case

W* H* ground truth ERR = min, % purity p = max;; |H ;| =n+ (1 — 77)%
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Noisy Case

W=, H* ground truth ERR = min, %

purity p = max;; [Hi;| =n+(1—n)2
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W*, H* ground truth ERR = min, W= = Walle

Tl © o purity p=maxi [Hij[ =+ (1—n)?
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ERR for r = 4, SNR = 30

SNRH A=01| A=1 | A=5

30 |/0.56+0.11|7.76+3.51|0.124+0.01 {0.13+0.01|0.1440.02 {0.014+0.001 | 5.284+-0.23 | 0.01+0.004 |0.30+0.04
40 {/0.45+0.06 |4.184+1.12|0.10+0.01|0.114-0.01|0.13£0.01 | 0.01£0.00 |4.96+0.12]0.005+-0.004 | 0.304-0.05
60 |/0.42+0.06 |1.4740.45|0.07+0.01|0.084-0.01|0.09+0.01 | 0.01+0.00 |3.78+0.12| 0.00140.00 |0.264-0.07

MVDuaI‘ GFPI ‘ min vol ‘ min vol | min vol ‘ SNPA ‘ MVIE ‘ HyperCSI ‘ MVES




Unmixing Hyperspectral Imaging

MRSA(x, y) = 12 cos? (M) ERR = min, MRSA(W;', Wi ()

[Ix—xell2lly—yell2

<10%

1.5

Projection of data points Abundance maps estimated by MV-Dual
and the symplex computed by MV-Dual From left to right: road, tree, soil, water

‘ SNPA  Min-Vol HyperCSI  GFPI  MV-Dual
MRSA 22.27 6.03 17.04 4.82 3.74
Time (s) | 0.60 1.45 0.88 100" 43.51

Comparing the performances of MV-Dual with the state-of-the-art SSMF
algorithms on Jasper-Ridge data set. Numbers marked with * indicate that the
corresponding algorithms did not converge within 100 seconds.
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