Dual Simplex Volume Maximization for Simplex-Structured Matrix Factorization

Maryam Abdolali ¹ Giovanni Barbarino ² Nicolas Gillis ²

SOCN Study Day 29 September 2024

¹K.N.Toosi University, Tehran, Iran

²Université de Mons. Belgium

Simplex-Structured Matrix Factorization

Given $X \in \mathbb{R}^{r-1 \times n}$ can we find $W \in \mathbb{R}^{r-1 \times r}$, $H \in \mathbb{R}^{r \times n}$ such that

$$X = WH \qquad H(:,i) \in \Delta^r = \{x \in \mathbb{R}^r_+ : x^T e = 1\} \quad \forall i$$

Given $X \in \mathbb{R}^{r-1 \times n}$ can we find $W \in \mathbb{R}^{r-1 \times r}$, $H \in \mathbb{R}^{r \times n}$ such that

$$X = WH \qquad H(:,i) \in \Delta^r = \{x \in \mathbb{R}^r_+ : x^T e = 1\} \quad \forall i$$

Given $X \in \mathbb{R}^{r-1 \times n}$ can we find $W \in \mathbb{R}^{r-1 \times r}$, $H \in \mathbb{R}^{r \times n}$ such that

$$X = WH \qquad H(:,i) \in \Delta^r = \{x \in \mathbb{R}^r_+ : x^T e = 1\} \quad \forall i$$

Given $X \in \mathbb{R}^{r-1 \times n}$ can we find $W \in \mathbb{R}^{r-1 \times r}$, $H \in \mathbb{R}^{r \times n}$ such that

$$X = WH \qquad H(:,i) \in \Delta^r = \{x \in \mathbb{R}^r_+ : x^T e = 1\} \quad \forall i$$

Given $X \in \mathbb{R}^{r-1 \times n}$ can we find $W \in \mathbb{R}^{r-1 \times r}$, $H \in \mathbb{R}^{r \times n}$ such that

$$X = WH \qquad H(:,i) \in \Delta^r = \{x \in \mathbb{R}^r_+ : x^T e = 1\} \quad \forall i$$

Since X(:, i) = WH(:, i) is a *convex combination* of the columns of W

 $Conv(X) \subseteq Conv(W)$ $W \in \mathbb{R}^{r-1 \times r}$

$Conv(X) \subseteq Conv(W)$ $W \in \mathbb{R}^{r-1 \times r}$

An Application to Hyperspectral Imaging

$${\it Conv}(X)\subseteq {\it Conv}(W)\qquad W\in \mathbb{R}^{r-1 imes r}$$

Exists? Yes... but it is far from being Unique

This is a problem for the Interpretability of the solution

$${\it Conv}(X)\subseteq {\it Conv}(W)\qquad W\in \mathbb{R}^{r-1 imes r}$$

$${\it Conv}(X)\subseteq {\it Conv}(W)\qquad W\in \mathbb{R}^{r-1 imes r}$$

Jasper Ridge Data set

$${\it Conv}(X)\subseteq {\it Conv}(W)\qquad W\in \mathbb{R}^{r-1 imes r}$$

Jasper Ridge Data set

Spectral signatures of each consitutive material

$${\it Conv}(X)\subseteq {\it Conv}(W)\qquad W\in \mathbb{R}^{r-1 imes r}$$

$${\it Conv}(X)\subseteq {\it Conv}(W)\qquad W\in \mathbb{R}^{r-1 imes r}$$

$$X = X(:, \mathcal{K})H$$
 $|\mathcal{K}| = r$ i.e. $Conv(X) \equiv Conv(W)$

$$X = X(:, \mathcal{K})H$$
 $|\mathcal{K}| = r$ i.e. C

$$Conv(X) \equiv Conv(W)$$

- Robust to perturbation
- ✓ Uniqueness of solution (up to permutations)
- ✓ Immediate Interpretability
- imes Very strong assumption

In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = X(:, \mathcal{K})H$$
 $|\mathcal{K}| = r$ i.e.

$$Conv(X) \equiv Conv(W)$$

Polytime algorithm

- Robust to perturbation
- ✓ Uniqueness of solution (up to permutations)
- Immediate Interpretability
- \times Very strong assumption

In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = X(:, \mathcal{K})H$$
 $|\mathcal{K}| = r$ i.e. $Conv(X) \equiv Conv(W)$

Polytime algorithm

- Robust to perturbation
- ✓ Uniqueness of solution (up to permutations)
- Immediate Interpretability
- imes Very strong assumption

In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = X(:, \mathcal{K})H$$
 $|\mathcal{K}| = r$ i.e. $Conv(X) \equiv Conv(W)$

- Robust to perturbation
- Uniqueness of solution (up to permutations)
- Immediate Interpretability
- \times Very strong assumption

In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = X(:, \mathcal{K})H$$
 $|\mathcal{K}| = r$ i.e. $Conv(X) \equiv Conv(W)$

- Robust to perturbation
- Uniqueness of solution (up to permutations)
- Immediate Interpretability
- imes Very strong assumption

In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = X(:, \mathcal{K})H$$
 $|\mathcal{K}| = r$ i.e. $Conv(X)$

$$Conv(X) \equiv Conv(W)$$

- Robust to perturbation
- Uniqueness of solution (up to permutations)
- ✓ Immediate Interpretability
- \times Very strong assumption

In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = X(:, \mathcal{K})H$$
 $|\mathcal{K}| = r$ i.e. $Conv(X) \equiv Conv(W)$

- Robust to perturbation
- Uniqueness of solution (up to permutations)
- ✓ Immediate Interpretability
- \times Very strong assumption

In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = X(:, \mathcal{K})H$$
 $|\mathcal{K}| = r$ i.e. $Conv(X) \equiv Conv(W)$

- Robust to perturbation
- Uniqueness of solution (up to permutations)
- ✓ Immediate Interpretability
- \times Very strong assumption

In the Hyperspectral Imaging it means that for each material there exists a single pixel composed entirely of that material (called pure pixels)

$$X = WH$$
 is SSC if $C \subset Conv(H)$

Sufficiently Scattered Condition

$$X = WH$$
 is SSC if $C \subset Conv(H)$

× Robustness to perturbation not understood

$$X = WH$$
 is SSC if $C \subset Conv(H)$

× Non-convex

 \times Robustness to perturbation not understood

$$X = WH$$
 is SSC if $C \subset Conv(H)$

× Non-convex

× Robustness to perturbation not understood

$$X = WH$$
 is SSC if $C \subset Conv(H)$

× Non-convex

× Robustness to perturbation not understood

$$X = WH$$
 is SSC if $C \subset Conv(H)$

- × Non-convex
- × Robustness to perturbation not understood

$$X = WH$$
 is SSC if $C \subset Conv(H)$

- × Non-convex
- × Robustness to perturbation not understood

Facet Identification

$$Conv(W) = \cap_{i=1}^{r} S_i$$
 where $S_i := \{x : \theta_i^T x \leq 1\}$

$$Conv(X) \subseteq Conv(W) \quad \iff \quad \Theta = (\theta_1 \ \dots \ \theta_r) \quad \Theta^T X \leq 1$$

MVIE Maximum Volume Inscribed Ellipsoid
Enumerates the facets of Conv(X), very expensive
(Lin, Wu, Ma, Chi, Wang, 2018)

GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive (Abdolali, Gillis, 2021)

$$Conv(W) = \cap_{i=1}^{r} S_i$$
 where $S_i := \{x : \theta_i^T x \leq 1\}$

$$Conv(X) \subseteq Conv(W) \quad \iff \quad \Theta = \begin{pmatrix} \theta_1 & \dots & \theta_r \end{pmatrix} \quad \Theta^T X \leq 1$$

MVIE Maximum Volume Inscribed Ellipsoid Enumerates the facets of Conv(X), very expensive (Lin, Wu, Ma, Chi, Wang, 2018)

GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive (Abdolali, Gillis, 2021)

$$Conv(W) = \cap_{i=1}^{r} S_i$$
 where $S_i := \{x : \theta_i^T x \leq 1\}$

$$Conv(X) \subseteq Conv(W) \quad \iff \quad \Theta = \begin{pmatrix} \theta_1 & \dots & \theta_r \end{pmatrix} \quad \Theta^T X \leq 1$$

GFP1 Greedy Facet-based Polytope Identification Mixed integer programming, also expensive (Abdolali, Gillis, 2021)

$$Conv(W) = \cap_{i=1}^{r} S_i$$
 where $S_i := \{x : \theta_i^T x \leq 1\}$

$$Conv(X) \subseteq Conv(W) \quad \iff \quad \Theta = \begin{pmatrix} \theta_1 & \dots & \theta_r \end{pmatrix} \quad \Theta^T X \leq 1$$

- MVIE Maximum Volume Inscribed Ellipsoid Enumerates the facets of Conv(X), very expensive (Lin, Wu, Ma, Chi, Wang, 2018)
- GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive (Abdolali, Gillis, 2021)

$$Conv(W) = \cap_{i=1}^{r} S_i$$
 where $S_i := \{x : \theta_i^T x \leq 1\}$

$$Conv(X) \subseteq Conv(W) \quad \iff \quad \Theta = \begin{pmatrix} \theta_1 & \dots & \theta_r \end{pmatrix} \quad \Theta^T X \leq 1$$

- MVIE Maximum Volume Inscribed Ellipsoid Enumerates the facets of Conv(X), very expensive (Lin, Wu, Ma, Chi, Wang, 2018)
- GFPI Greedy Facet-based Polytope Identification Mixed integer programming, also expensive (Abdolali, Gillis, 2021)

$\mathcal{S} \subseteq \mathbb{R}^{r-1}$ $\mathcal{S}^* := \{\theta : \theta^T x \le 1 \ \forall x \in \mathcal{S}\}$

• Swaps points and hyperplanes

 $\{x: \theta^T x = 1\} \rightsquigarrow \theta$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

 $Conv(X) \subseteq Conv(W) \iff Conv(W)^* \subseteq Conv(X)^*$ $\iff \Theta^T X \le 1 \quad \text{where} \quad Conv(W)^* = Conv(\Theta)$

We can thus seek the simplex Θ with maximum volume inside $Conv(X)^*$ as in

$$\mathcal{S} \subseteq \mathbb{R}^{r-1}$$
 $\mathcal{S}^* := \{\theta : \theta^T x \le 1 \ \forall x \in \mathcal{S}\}$

• Swaps points and hyperplanes

$$\{x: \theta^T x = 1\} \rightsquigarrow \theta$$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

 $Conv(X) \subseteq Conv(W) \iff Conv(W)^* \subseteq Conv(X)^*$ $\iff \Theta^T X \le 1 \quad \text{where} \quad Conv(W)^* = Conv(\Theta)$

We can thus seek the simplex ⊖ with **maximum** volume inside *Conv*(*X*)^{*} as in

$$\mathcal{S} \subseteq \mathbb{R}^{r-1}$$
 $\mathcal{S}^* := \{\theta : \theta^T x \le 1 \ \forall x \in \mathcal{S}\}$

• Swaps points and hyperplanes

$$\{x:\theta^T x=1\} \rightsquigarrow \theta$$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

 $Conv(X) \subseteq Conv(W) \iff Conv(W)^* \subseteq Conv(X)^*$ $\iff \Theta^T X < 1 \quad \text{where} \quad Conv(W)^* = Conv(\Theta)$

We can thus seek the simplex Θ with **maximum volume** inside *Conv*(*X*)^{*} as in

$$\mathcal{S} \subseteq \mathbb{R}^{r-1}$$
 $\mathcal{S}^* := \{\theta : \theta^T x \le 1 \ \forall x \in \mathcal{S}\}$

• Swaps points and hyperplanes

$$\{x:\theta^T x=1\} \rightsquigarrow \theta$$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

$$Conv(X) \subseteq Conv(W) \iff Conv(W)^* \subseteq Conv(X)^*$$

 $\iff \Theta^T X \le 1 \quad \text{where} \quad Conv(W)^* = Conv(\Theta)$

We can thus seek the simplex Θ with **maximum volume** inside *Conv*(*X*)^{*} as in

$$\mathcal{S} \subseteq \mathbb{R}^{r-1}$$
 $\mathcal{S}^* := \{\theta : \theta^T x \le 1 \ \forall x \in \mathcal{S}\}$

• Swaps points and hyperplanes

$$\{x:\theta^T x=1\} \rightsquigarrow \theta$$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

$$Conv(X) \subseteq Conv(W) \iff Conv(W)^* \subseteq Conv(X)^*$$

 $\iff \Theta^T X \le 1 \quad \text{where} \quad Conv(W)^* = Conv(\Theta)$

We can thus seek the simplex Θ with **maximum volume** inside *Conv*(*X*)^{*} as in

$$\mathcal{S} \subseteq \mathbb{R}^{r-1}$$
 $\mathcal{S}^* := \{\theta : \theta^T x \le 1 \ \forall x \in \mathcal{S}\}$

• Swaps points and hyperplanes

$$\{x:\theta^T x=1\} \rightsquigarrow \theta$$

- Sends simplexes into simplexes
- It is an involution for convex sets
- Reverses Containments

$$Conv(X) \subseteq Conv(W) \iff Conv(W)^* \subseteq Conv(X)^*$$

 $\iff \Theta^T X \le 1 \quad \text{where} \quad Conv(W)^* = Conv(\Theta)$

We can thus seek the simplex Θ with **maximum volume** inside $Conv(X)^*$ as in

$$\max_{\theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) \quad : \quad \Theta^T X \le 1 \qquad (MaxVol)$$

Theorem (M.A., G.B., N.G., 2023)

Let $X = WH \in \mathbb{R}^{r-1 \times n}$ SSC and for any $v \in \mathbb{R}^{r-1}$ define

$$\mathcal{V}(v) := \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) \quad : \quad \Theta^{T}(X - ve^{T}) \leq 1$$

Then $\mathcal{V}(v)$ is convex in v with unique minimum for v = We/r and Θ polar of W

Theorem (M.A., G.B., N.G., 2023)

Let $X = WH \in \mathbb{R}^{r-1 \times n}$ SSC and for any $v \in \mathbb{R}^{r-1}$ define

$$\mathcal{V}(v) := \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) \quad : \quad \Theta^{T}(X - ve^{T}) \leq 1$$

Then $\mathcal{V}(v)$ is convex in v with unique minimum for v = We/r and Θ polar of W

Theorem (M.A., G.B., N.G., 2023)

Let $X = WH \in \mathbb{R}^{r-1 \times n}$ SSC and for any $v \in \mathbb{R}^{r-1}$ define

$$\mathcal{V}(v) := \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) \quad : \quad \Theta^{T}(X - ve^{T}) \leq 1$$

Then $\mathcal{V}(v)$ is convex in v with unique minimum for v = We/r and Θ polar of W

Theorem (M.A., G.B., N.G., 2023)

Let $X = WH \in \mathbb{R}^{r-1 \times n}$ be η -expanded and suppose v = Wh, $h \in \mathbf{V}$. Then

$$\max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) \quad : \quad \Theta^{T}(X - ve^{T}) \leq 1$$

is solved uniquely by Θ polar of W

Theorem (M.A., G.B., N.G., 2023)

Let $X = WH \in \mathbb{R}^{r-1 \times n}$ SSC and for any $v \in \mathbb{R}^{r-1}$ define

$$\mathcal{V}(v) := \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) \quad : \quad \Theta^{T}(X - ve^{T}) \leq 1$$

Then $\mathcal{V}(v)$ is convex in v with unique minimum for v = We/r and Θ polar of W

Conjecture (M.A., G.B., N.G., 2023)

Let $X = WH \in \mathbb{R}^{r-1 \times n}$ be η -expanded and suppose v = Wh, $h \in \blacktriangle$. Then

$$\max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) \quad : \quad \Theta^{T}(X - ve^{T}) \leq 1$$

is solved uniquely by Θ polar of W

Algorithm 1 Maximum Volume in the Dual (MV-Dual)

Input: Data matrix $\widetilde{X} \in \mathbb{R}^{m \times n}$ and a factorization rank rOutput: A matrix $\widetilde{W} \in \mathbb{R}^{m \times r}$ and a vector w such that $\widetilde{X} \approx w + \widetilde{W}H$ where H is column stochastic

- 1: Use PCA to reduce $\widetilde{X} = w + UX$ with $X \in \mathbb{R}^{r-1 imes n}$
- 2: Initialize $v_1 = Xe/n, \ p = 1$ and $\Theta \in \mathcal{N}(0,1)^{r-1 imes r}$
- 3: while not converged: p = 1 or $\frac{\|v_p v_{p-1}\|_2}{\|v_{p-1}\|_2} > 0.01$ do

4: Solve

$$\arg \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) : \Theta^{T}(X - v_{p}e^{T}) \leq 1$$

via alternating optimization on the columns of $\boldsymbol{\Theta}$

5: Recover W by computing the polar of $Conv(\Theta)$

6: Let
$$v_{p+1} \leftarrow We/r$$
, and $p = p+1$

7: end while

8: Compute $\widetilde{W} = UW$

Algorithm 2 Maximum Volume in the Dual (MV-Dual)

Input: Data matrix $\widetilde{X} \in \mathbb{R}^{m \times n}$ and a factorization rank rOutput: A matrix $\widetilde{W} \in \mathbb{R}^{m \times r}$ and a vector w such that $\widetilde{X} \approx w + \widetilde{W}H$ where H is column stochastic

- 1: Use PCA to reduce $\widetilde{X} = w + UX$ with $X \in \mathbb{R}^{r-1 imes n}$
- 2: Initialize $v_1 = Xe/n, \ p = 1$ and $\Theta \in \mathcal{N}(0,1)^{r-1 imes r}$
- 3: while not converged: p = 1 or $\frac{\|v_p v_{p-1}\|_2}{\|v_{p-1}\|_2} > 0.01$ do

4: Solve

$$\arg \max_{\Theta \in \mathbb{R}^{r-1 \times r}} Vol(\Theta) : \Theta^{T}(X - v_{p}e^{T}) \leq 1$$

via alternating optimization on the columns of Θ

5: Recover W by computing the polar of $Conv(\Theta)$

6: Let
$$v_{p+1} \leftarrow We/r$$
, and $p = p+1$

7: end while

8: Compute $\widetilde{W} = UW$

Cost : PCA O(mnr) plus Maximization problem solver for a single column $O(nr^2)$ times the number of iterations

Experiments

Exact Case

 W^*, H^* ground truth $ERR = \min_{\pi} \frac{||W^* - W_{\pi}||_F}{||W^*||_F}$ purity $p = \max_{i,j} |H_{i,j}^*| = \eta + (1 - \eta)^{\frac{2}{r}}$

ERR for r = 3, n = 30r

ERR for r = 5, n = 30r

0.88 1.00

Noisy Case

 W^*, H^* ground truth $ERR = \min_{\pi} \frac{||W^* - W_{\pi}||_F}{||W^*||_F}$ purity $p = \max_{i,j} |H_{i,j}^*| = \eta + (1 - \eta)^{\frac{2}{r}}$

ERR for r = 3, SNR = 60 ERR for r = 3, SNR = 40

ERR for r = 3, SNR = 30

Noisy Case

ERR for r = 4, SNR = 60 ERR for r = 4, SNR = 40 ERR for r = 4, SNR = 30

	MVDual	GFPI	min vol	min vol	min vol	SNPA	MVIE	HyperCSI	MVES
SNR			$\lambda = 0.1$	$\lambda = 1$	$\lambda = 5$				
30	$0.56{\pm}0.11$	$7.76 {\pm} 3.51$	$0.12{\pm}0.01$	$0.13{\pm}0.01$	$0.14{\pm}0.02$	$0.01{\pm}0.001$	$5.28{\pm}0.23$	$0.01{\pm}0.004$	$0.30 {\pm} 0.04$
40	0.45 ± 0.06	$4.18 {\pm} 1.12$	0.10 ± 0.01	$0.11 {\pm} 0.01$	0.13 ± 0.01	$0.01 {\pm} 0.00$	$4.96{\pm}0.12$	$0.005 {\pm} 0.004$	$0.30{\pm}0.05$
60	0.42±0.06	$1.47 {\pm} 0.45$	0.07±0.01	$0.08 {\pm} 0.01$	0.09 ± 0.01	$0.01 {\pm} 0.00$	$3.78{\pm}0.12$	$0.001 {\pm} 0.00$	$0.26{\pm}0.07$

Unmixing Hyperspectral Imaging

$$\mathsf{MRSA}(x,y) = \frac{100}{\pi} \cos^{-1} \left(\frac{(x-\bar{x}e)^\top (y-\bar{y}e)}{\|x-\bar{x}e\|_2 \|y-\bar{y}e\|_2} \right)$$

 $ERR = \min_{\pi} MRSA(W_k^*, W_{\pi(k)})$

Projection of data points and the symplex computed by MV-Dual

Abundance maps estimated by MV-Dual From left to right: road, tree, soil, water

	SNPA	Min-Vol	HyperCSI	GFPI	MV-Dual
MRSA	22.27	6.03	17.04	4.82	3.74
Time (s)	0.60	1.45	0.88	100*	43.51

Comparing the performances of MV-Dual with the state-of-the-art SSMF algorithms on Jasper-Ridge data set. Numbers marked with * indicate that the corresponding algorithms did not converge within 100 seconds.

Thank You!

- Abdolali M., Barbarino G., and Gillis N. Dual simplex volume maximization for simplex-structured matrix factorization. *Arxiv*, 2024.
- Abdolali M. and Gillis N. Simplex-structured matrix factorization: Sparsity-based identifiability and provably correct algorithms. SIAM Journal on Mathematics of data Science, 3(2):593–623, 2021.
- Fu X., Ma W.K., Huang K., and Sidiropoulos N.D. Blind separation of quasi-stationry sources: exploiting convex geometry in covariance domain. IEEE Transactions on Signal Processing, 63(9):2306–2320, 2015.
- Zu F. Hyperspectral unmixing: ground truth labeling, datasets, benchmark performances and survey. *Arxiv*, 2017.
- Lin C.H., Wu R., Ma W.K., Chi C.Y., and Wang Y. Maximum volume inscribed ellipsoid: A new simplex-structured matrix factorization framework via facet enumeration and convex optimization. *SIAM Journal* on Imaging Sciences, 11(2):1651–1679, 2018.