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Simplex-Structured Matrix Factorization



Simplex Identification

Given X ∈ Rr−1×n can we find W ∈ Rr−1×r , H ∈ Rr×n such that

X = WH H(:, i) ∈ ∆r = {x ∈ Rr
+ : xT e = 1} ∀i

Since X (:, i) = WH(:, i) is a convex combination of the columns of W

Conv(X ) ⊆ Conv(W ) W ∈ Rr−1×r
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Conv(W ) = ∩r
i=1Si where Si := {x : θTi x ≤ 1}

Conv(X ) ⊆ Conv(W ) ⇐⇒ Θ =
(
θ1 . . . θr

)
ΘTX ≤ 1

MVIE Maximum Volume Inscribed Ellipsoid
Enumerates the facets of Conv(X ), very expensive
(Lin, Wu, Ma, Chi, Wang, 2018)

GFPI Greedy Facet-based Polytope Identification
Mixed integer programming, also expensive
(Abdolali, Gillis, 2021)

In order to deal with facets GFPI works in the Polar Space
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S ⊆ Rr−1 S∗ := {θ : θT x ≤ 1 ∀x ∈ S}

• Swaps points and hyperplanes

{x : θT x = 1}⇝ θ

• Sends simplexes into simplexes

• It is an involution for convex sets

• Reverses Containments

Conv(X ) ⊆ Conv(W ) ⇐⇒ Conv(W )∗ ⊆ Conv(X )∗

⇐⇒ ΘTX ≤ 1 where Conv(W )∗ = Conv(Θ)

We can thus seek the simplex Θ with maximum
volume inside Conv(X )∗ as in

max
θ∈Rr−1×r

Vol(Θ) : ΘTX ≤ 1 (MaxVol)
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Identifiability and η-Expansion

Theorem (M.A., G.B., N.G., 2023)

Let X = WH ∈ Rr−1×n SSC and for any v ∈ Rr−1 define

V(v) := max
Θ∈Rr−1×r

Vol(Θ) : ΘT (X − veT ) ≤ 1

Then V(v) is convex in v with unique minimum for v = We/r and Θ polar of W
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Maximum Volume in Dual

Algorithm 1 Maximum Volume in the Dual (MV-Dual)

Input: Data matrix X̃ ∈ Rm×n and a factorization rank r

Output: A matrix W̃ ∈ Rm×r and a vector w such that X̃ ≈ w + W̃H where H

is column stochastic

1: Use PCA to reduce X̃ = w + UX with X ∈ Rr−1×n

2: Initialize v1 = Xe/n, p = 1 and Θ ∈ N (0, 1)r−1×r

3: while not converged: p = 1 or ∥vp−vp−1∥2
∥vp−1∥2

> 0.01 do
4: Solve

arg max
Θ∈Rr−1×r

Vol(Θ) : ΘT (X − vpe
T ) ≤ 1

via alternating optimization on the columns of Θ
5: Recover W by computing the polar of Conv (Θ)

6: Let vp+1 ←We/r , and p = p + 1
7: end while
8: Compute W̃ = UW

Cost : PCA O(mnr) plus Maximization problem solver for a single column
O(nr2) times the number of iterations
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ERR for r = 4, SNR = 30

MVDual GFPI min vol min vol min vol SNPA MVIE HyperCSI MVES
SNR λ = 0.1 λ = 1 λ = 5
30 0.56±0.11 7.76±3.51 0.12±0.01 0.13±0.01 0.14±0.02 0.01±0.001 5.28±0.23 0.01±0.004 0.30±0.04
40 0.45±0.06 4.18±1.12 0.10±0.01 0.11±0.01 0.13±0.01 0.01±0.00 4.96±0.12 0.005±0.004 0.30±0.05
60 0.42±0.06 1.47±0.45 0.07±0.01 0.08±0.01 0.09±0.01 0.01±0.00 3.78±0.12 0.001±0.00 0.26±0.07



Unmixing Hyperspectral Imaging

MRSA(x , y) = 100
π

cos−1
(

(x−x̄e)⊤(y−ȳ e)
∥x−x̄e∥2∥y−ȳ e∥2

)
ERR = minπ MRSA(W ∗

k ,Wπ(k))
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Projection of data points
and the symplex computed by MV-Dual

Abundance maps estimated by MV-Dual
From left to right: road, tree, soil, water

SNPA Min-Vol HyperCSI GFPI MV-Dual
MRSA 22.27 6.03 17.04 4.82 3.74

Time (s) 0.60 1.45 0.88 100∗ 43.51

Comparing the performances of MV-Dual with the state-of-the-art SSMF
algorithms on Jasper-Ridge data set. Numbers marked with * indicate that the

corresponding algorithms did not converge within 100 seconds.
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