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ABSTRACT
The theory of generalized locally Toeplitz (GLT) sequences is a pow-
erful apparatus for computing the asymptotic singular value and
spectral distributions of matrices An arising from virtually any kind
of numerical discretization of differential equations (DEs). Indeed,
when the mesh fineness parameter n tends to infinity, these matri-
cesAn give rise to a sequence {An}n, which often turns out to be aGLT
sequence. In this paper, we provide an extension of the theory of GLT
sequences: we show that any sequence of diagonal sampling matri-
ces constructed from asymptotically uniform samples of an almost
everywhere continuous function falls in the class of GLT sequences.
We also detail a few representative applications of this result in the
context of finite difference discretizations of DEs with discontinuous
coefficients.
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1. Introduction

When a linear differential equation (DE) is discretized by a linear numerical method,
the computation of the numerical solution reduces to solving a linear system Anun = f n,
whose size dn increaseswith themeshfineness parametern.What is often observed in prac-
tice is that An enjoys an asymptotic spectral distribution in the limit of mesh refinement
n → ∞. More precisely, it often turns out that, for a large class of test functions F,

lim
n→∞

1
dn

dn∑
j=1

F(λj(An)) = 1
μk(D)

∫
D
F(κ(y)) dy,

where λj(An), j = 1, . . . , dn, are the eigenvalues of An, μk is the Lebesgue measure in Rk,
and κ : D ⊂ Rk → C. In this scenario, the function κ is referred to as the spectral symbol
of the sequence {An}n and we write {An}n ∼λ κ . We refer the reader to Remark 2.1 for the
informal meaning behind the spectral distribution {An}n ∼λ κ and to [1, Chapter 1] for a
list of practical uses of the spectral symbol κ .

The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for
computing the spectral symbol κ . Indeed, the sequence of discretization matrices {An}n
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turns out to be a GLT sequence for virtually any kind of DEs and numerical methods.
Nowadays, themain references for the theory ofGLT sequences and related applications are
the books [1, 2] and the review papers [3–5].We, therefore, refer the reader to these works,
especially [1], for a comprehensive treatment of the topic. For a more concise introduction
to the subject, we recommend the papers [6–9], whereas for recent advanced theoretical
developments, we recommend the works [10–13].

In the main result of this paper (Theorem 3.1), we provide an extension of the the-
ory of GLT sequences. To explain the novelty of Theorem 3.1, we point out that the three
main examples of GLT sequences, also known as the ‘building blocks’ of the theory of GLT
sequences, are given by zero-distributed sequences, Toeplitz sequences and sequences of
diagonal sampling matrices constructed from uniform samples of an almost everywhere
(a.e.) continuous function (see Section 2 for the corresponding definitions). While the for-
mer two classes of sequences are maximal and cannot be expanded further, the latter class
can and should be expanded in order to increase the application potential of the theory of
GLT sequences. In Theorem 3.1, we show that the latter class can indeed be expanded to
include sequences of diagonal samplingmatrices constructed from asymptotically uniform
samples of an a.e. continuous function (see Section 3 for the precise meaning of ‘asymp-
totically uniform’). As illustrated in Section 4, Theorem 3.1 can be applied whenever it is
necessary to compute the spectral symbol of sequences of matrices {An}n arising from the
discretization of DEs with discontinuous coefficients (see also the discussion in Section 5).

The paper is organized as follows. In Section 2, we overview the basics of the theory of
GLT sequences. In Section 3,we state andprove themain result (Theorem3.1). In Section 4,
we detail a few representative applications of the main result in the context of finite differ-
ence (FD) discretizations of DEs with discontinuous coefficients. In Section 5, we collect
some final remarks, where we also mention further applications of Theorem 3.1.

2. Overview of the theory of GLT sequences

In this section, we overview the basics of the theory of (multilevel) GLT sequences.

2.1. Multi-index notation

A multi-index i of size d, also called a d-index, is a row vector in Zd; its components
are denoted by i1, . . . , id. 0, 1, 2, . . . are the vectors of all zeros, all ones, all twos, . . .
(their size will be clear from the context). For any vectorm ∈ Rd, we setN(m) = ∏d

j=1mj

and we write m → ∞ to indicate that min(m) → ∞. If h, k ∈ Rd, an inequality such as
h ≤ k means that hj ≤ kj for all j = 1, . . . , d. If h, k are d-indices such that h ≤ k, the d-
index range {h, . . . , k} is the set {j ∈ Zd : h ≤ j ≤ k}. We assume for this set the standard
lexicographic ordering:[

. . .
[
[ (j1, . . . , jd) ]jd=hd ,...,kd

]
jd−1=hd−1,...,kd−1

. . .
]
j1=h1,...,k1

.

For instance, in the case d = 2, the ordering is

(h1, h2), (h1, h2 + 1), . . . , (h1, k2), (h1 + 1, h2), (h1 + 1, h2 + 1), . . . , (h1 + 1, k2),

. . . . . . . . . , (k1, h2), (k1, h2 + 1), . . . , (k1, k2).
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When a d-index j varies in a d-index range {h, . . . , k} (this is often written as j = h, . . . , k),
it is understood that j varies from h to k following the lexicographic ordering. For instance,
if m ∈ Nd and x = [xi]mi=1, then x is a vector of size N(m) whose components xi, i =
1, . . . ,m, are ordered in accordance with the lexicographic ordering: the first component
is x1 = x(1,...,1,1), the second component is x(1,...,1,2), and so on until the last component,
which is xm = x(m1,...,md). Similarly, if X = [xij]mi,j=1, then X is an N(m) × N(m) matrix
whose components are indexed by a pair of d-indices i, j, both varying in {1, . . . ,m} fol-
lowing the lexicographic ordering. If h, k are d-indices with h ≤ k, the notation

∑k
j=h

indicates the summation over all j in {h, . . . , k}. Operations involving d-indices (or gen-
eral vectors with d components) that have no meaning in the vector space Rd must
always be interpreted in the componentwise sense. For instance, jh = (j1h1, . . . , jdhd),
i/j = (i1/j1, . . . , id/jd), etc. If a, b ∈ Rd with a ≤ b, we denote by (a, b] the d-dimensional
rectangle (a1, b1] × · · · × (ad, bd]. Similar meanings have the notations for the open
d-dimensional rectangle (a, b) and the closed d-dimensional rectangle [a, b].

2.2. Matrix norms

Given 1 ≤ p ≤ ∞, we use the notation | · |p for both the p-norm of vectors and the asso-
ciated operator norm for matrices. The 2-norm | · |2 is also known as the Euclidean (or
spectral) norm and is preferably denoted by ‖ · ‖. The Schatten p-norm of a matrix X is
denoted by ‖X‖p and is defined as the p-norm of the vector formed by the singular values
of X. The Schatten 2-norm ‖X‖2 coincides with the Frobenius norm of X. The Schatten
∞-norm ‖X‖∞ is the largest singular value σmax(X) and coincides with the spectral norm
‖X‖. The Schatten 1-norm ‖X‖1 is the sum of the singular values of X and is also known
as the trace-norm of X. For more on Schatten p-norms, see [14].

2.3. Tensor products

If X ∈ Cm1×m2 and Y ∈ C�1×�2 , the tensor (Kronecker) product of X and Y is them1�1 ×
m2�2 matrix defined by

X ⊗ Y = [
xijY

]
i=1,...,m1
j=1,...,m2

=

⎡
⎢⎣

x11Y · · · x1m2Y
...

...
xm11Y · · · xm1m2Y

⎤
⎥⎦ .

Here is a list of properties satisfied by tensor products [2, Section 2.5]. In what follows, the
conjugate transpose of a matrix X is denoted by X∗.

P1. Associativity: (X ⊗ Y) ⊗ Z = X ⊗ (Y ⊗ Z) for all matrices X, Y, Z.
P2. Bilinearity: for each fixedmatrixX, the map Y �→ X ⊗ Y is linear onC�1×�2 for every

�1, �2 ∈ N; for each fixedmatrixY, themapX �→ X ⊗ Y is linear onCm1×m2 for every
m1,m2 ∈ N.

P3. (X ⊗ Y)∗ = X∗ ⊗ Y∗ and (X ⊗ Y)T = XT ⊗ YT for all matrices X, Y.
P4. If Xr ∈ Cmr×mr for r = 1, . . . , d andm = (m1, . . . ,md), then

(X1 ⊗ X2 ⊗ · · · ⊗ Xd)ij = (X1)i1j1(X2)i2j2 · · · (Xd)idjd , i, j = 1, . . . ,m.
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2.4. Singular value and spectral distributions of a sequence ofmatrices

A sequence of matrices is a sequence of the form {An}n, where n varies in some infi-
nite subset of N and An is a square matrix of size dn such that dn → ∞ as n → ∞. Let
μk be the Lebesgue measure in Rk. Throughout this paper, all the terminology coming
from measure theory (such as ‘measurable set’, ‘measurable function’, ‘a.e.’, etc.) always
refers to the Lebesgue measure. Let Cc(R) (respectively, Cc(C)) be the space of continuous
complex-valued functions with bounded support defined on R (respectively, C). The sin-
gular values and eigenvalues of a matrix A ∈ Cm×m are denoted by σ1(A), . . . , σm(A) and
λ1(A), . . . , λm(A), respectively.

Definition 2.1: Let {An}n be a sequence ofmatrices, withAn of size dn, and κ : D ⊂ Rk →
C be a measurable function defined on a set D with 0 < μk(D) < ∞.

• We say that {An}n has a spectral (or eigenvalue) distribution described by κ , and we
write {An}n ∼λ κ , if

lim
n→∞

1
dn

dn∑
i=1

F(λi(An)) = 1
μk(D)

∫
D
F(κ(y)) dy, ∀ F ∈ Cc(C). (1)

In this case, κ is called the spectral (or eigenvalue) symbol of {An}n.
• We say that {An}n has a singular value distribution described by κ , and we write

{An}n ∼σ κ , if

lim
n→∞

1
dn

dn∑
i=1

F(σi(An)) = 1
μk(D)

∫
D
F(|κ(y)|) dy, ∀ F ∈ Cc(R). (2)

In this case, κ is called the singular value symbol of {An}n.

Remark 2.1: The informal meaning behind spectral distribution (1) is the following [1,
p. 46]: assuming that κ is continuous a.e., the eigenvalues of An, except possibly for o(dn)
outliers, are approximately equal to the samples of κ over a uniform grid in the domain
D (for n large enough). A completely analogous meaning can be given for singular value
distribution (2).

2.5. Special sequences ofmatrices

We now introduce some special sequences of matrices that play a central role in the theory
of GLT sequences.
d-level matrix-sequences.A d-level matrix-sequence is a special sequence of matrices of the
form {An}n, where

• n varies in some infinite subset of N,
• n = n(n) ∈ Nd and n → ∞ (i.e. min(n) → ∞) as n → ∞,
• An is a square matrix of size N(n).
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Zero-distributed sequences. A sequence of matrices {Zn}n such that {Zn}n ∼σ 0 is referred
to as a zero-distributed sequence. In other words, {Zn}n is zero-distributed if and only if

lim
n→∞

1
dn

dn∑
i=1

F(σi(Zn)) = F(0), ∀ F ∈ Cc(R),

where dn is the size of Zn. The following property can be found in [1, Chapter 3].

Z1. We have {Zn}n ∼σ 0 if and only if Zn = Rn + Nn with limn→∞(dn)−1rank(Rn) =
limn→∞ ‖Nn‖ = 0, where dn is the size of Zn.

Sequences of diagonal sampling matrices. If n ∈ Nd and a : [0, 1]d → C, the nth (d-level)
diagonal sampling matrix generated by a is the N(n) × N(n) diagonal matrix given by

Dn(a) = diag
i=1,...,n

a
(
i
n

)
.

Each d-level matrix-sequence of the form {Dn(a)}n, with n = n(n) → ∞ as n → ∞, is
referred to as a sequence of (d-level) diagonal sampling matrices generated by a.
Toeplitz sequences. If n ∈ Nd and f : [−π ,π]d → C is a function in L1([−π ,π]d), the nth
(d-level) Toeplitz matrix generated by f is the N(n) × N(n) matrix given by

Tn(f ) = [fi−j]ni,j=1,

where the numbers fk are the Fourier coefficients of f,

fk = 1
(2π)d

∫
[−π ,π]d

f (θ) e−ik·θ dθ , k ∈ Zd.

Each d-level matrix-sequence of the form {Tn(f )}n, with n = n(n) → ∞ as n → ∞, is
referred to as a (d-level) Toeplitz sequence generated by f. The following properties can be
found in [2, Chapter 3].

T1. For every n ∈ Nd the map Tn(·) : L1([−π ,π]d) → CN(n)×N(n) is linear.
T2. If f1, f2, . . . , fd ∈ L1([−π ,π]) and n ∈ Nd then

Tn(f1 ⊗ f2 ⊗ · · · ⊗ fd) = Tn1(f1) ⊗ Tn2(f2) ⊗ · · · ⊗ Tnd(fd),

where (f1 ⊗ f2 ⊗ · · · ⊗ fd)(θ) = f1(θ1)f2(θ2) · · · fd(θd) for all θ ∈ [−π ,π]d.

Approximating classes of sequences. Let {An}n be a matrix-sequence and {{Bn,m}n}m be a
sequence ofmatrix-sequences, withAn andBn,m of the same size dn.We say that {{Bn,m}n}m
is an approximating class of sequences (a.c.s.) for {An}n, and we write {Bn,m}n a.c.s.−→ {An}n,
if the following condition holds: for everym there exists nm such that, for n ≥ nm,

An = Bn,m + Rn,m + Nn,m, rank(Rn,m) ≤ c(m)dn, ‖Nn,m‖ ≤ ω(m),

where nm, c(m), ω(m) depend only on m, and limm→∞ c(m) = limm→∞ ω(m) = 0.
Roughly speaking, {{Bn,m}n}m is an a.c.s. for {An}n if, for all sufficiently large m, the
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sequence {Bn,m}n approximates the sequence {An}n in the sense that An is eventually
equal to Bn,m plus a small-rank matrix (with respect to the matrix size dn) plus a small-
norm matrix. The convergence notation {Bn,m}n a.c.s.−→ {An}n is justified by the fact that
the a.c.s. notion is a notion of convergence in the space of matrix-sequences [1, 10, 15].
The following property can be found in [1]. Throughout this paper, we use the convention
1/∞ = 0.

ACS1. Let p ∈ [1,∞] and suppose for every m there exists nm such that ‖An −
Bn,m‖p ≤ ε(m, n)(dn)1/p for n ≥ nm, where dn is the size of An and Bn,m, and
limm→∞ lim supn→∞ ε(m, n) = 0. Then, {Bn,m}n a.c.s.−→ {An}n.

2.6. GLT sequences

A d-levelGLT sequence {An}n is a special d-levelmatrix-sequence equippedwith ameasur-
able function κ : [0, 1]d × [−π ,π]d → C called symbol (or kernel). We use the notation
{An}n ∼GLT κ to indicate that {An}n is a d-level GLT sequence with symbol κ . The symbol
of a d-level GLT sequence is unique in the sense that if {An}n ∼GLT κ and {An}n ∼GLT ξ

then κ = ξ a.e. in [0, 1]d × [−π ,π]d.

GLT1. If {An}n ∼GLT κ then {An}n ∼σ κ . If {An}n ∼GLT κ and eachAn is Hermitian then
{An}n ∼λ κ .

GLT2. If {An}n ∼GLT κ and An = Xn + Yn, where
• every Xn is Hermitian,
• ‖Yn‖2/

√
N(n) → 0 as n → ∞,

then {An}n ∼λ κ .
GLT3. Suppose n = n(n) ∈ Nd with n → ∞ as n → ∞. We have

• {Tn(f )}n ∼GLT κ(x, θ) = f (θ) if f ∈ L1([−π ,π]d),
• {Dn(a)}n ∼GLT κ(x, θ) = a(x) if a : Rd → C is continuous a.e.,
• {Zn}n ∼GLT κ(x, θ) = 0 if and only if {Zn}n ∼σ 0.

GLT4. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ then
• {A∗

n}n ∼GLT κ ,
• {αAn + βBn}n ∼GLT ακ + βξ for all α,β ∈ C,
• {AnBn}n ∼GLT κξ .

GLT5. {An}n ∼GLT κ if and only if there exist d-level GLT sequences {Bn,m}n ∼GLT κm

such that {Bn,m}n a.c.s.−→ {An}n and κm → κ in measure.

In GLT3 (second statement), it is understood that we are considering a(x) for x ∈
[0, 1]d, because the domain of the symbol of any d-level GLT sequence is always [0, 1]d ×
[−π ,π]d. We intentionally avoided stating the formal definition of GLT sequences for
two reasons. First, the definition is rather cumbersome as it requires to expound other
related (and complicated) concepts. Second, the knowledge of GLT1–GLT5 is practically
more helpful than the definition. We refer the reader to [2] for the formal definition
along with the proofs of GLT1 and GLT3–GLT5. The proof of GLT2 can be found
in [12].
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3. Main result

The second statement in GLT3 only concerns diagonal sampling matrices on the uniform
grid { i

n }i=1,...,n. This limitation negatively affects the overall applicability of the theory of
GLT sequences, as we shall see in Section 4. In ourmain result, we extendGLT3 to the case
where general asymptotically uniform grids are used. If n ∈ Nd, a : Rd → C and Gn =
{xi,n}i=1,...,n is a sequence of N(n) grid points in Rd, the nth (d-level) diagonal sampling
matrix generated by a corresponding to the grid Gn is the N(n) × N(n) diagonal matrix
given by

DGn
n (a) = diag

i=1,...,n
a(xi,n).

Each d-level matrix-sequence of the form {DGn
n (a)}n, with n = n(n) → ∞ as n → ∞, is

referred to as a sequence of (d-level) diagonal sampling matrices generated by a. We say
that the grid Gn is asymptotically uniform (a.u.) in [0, 1]d if

lim
n→∞

(
max

i=1,...,n

∣∣∣∣xi,n − i
n

∣∣∣∣∞
)

= 0.

Note that this condition does not imply that the grid points xi,n belong to [0, 1]d. In the
special case where Gn = { i

n }i=1,...,n, we drop the superscript and write Dn(a) as in GLT3.
Our main result is the following.

Theorem 3.1: Let a : Rd → C be continuous a.e., Gn = {xi,n}i=1,...,n be a.u. in [0, 1]d, and
n = n(n) ∈ Nd with n → ∞ as n → ∞. Then

{DGn
n (a)}n ∼GLT a(x). (3)

In the case where Gn = { i
n }i=1,...,n, the result is just GLT3. In the case where Gn =

{ i
n+1 }i=1,...,n, the result has been proved by Barbarino [3, Lemma 3.3]. We now prove the
result for a general grid Gn = {xi,n}i=1,...,n that is a.u. in [0, 1]d. The proof is based on the
same ideas as the proof of [3, Lemma 3.3], but it also avoids a somewhat artificial argu-
ment used therein by resorting to the more natural Lemma 3.1. In what follows, we say
that a function a : Rd → R is locally bounded on Rd if it is bounded on every compact
subset of Rd.

Lemma 3.1: Let a : Rd → R be continuous a.e. and locally bounded on Rd. For each n ∈
Nd, consider the partition of (0, 1]d given by the d-dimensional rectangles Ii,n = ( i−1

n , i
n ],

i = 1, . . . , n, and let Gn = {xi,n}i=1,...,n be a.u. in [0, 1]d. Then,

lim
n→∞

n∑
i=1

a(xi,n)χIi,n(x) = a(x) for a.e. x ∈ [0, 1]d (4)

and

lim
n→∞

1
N(n)

n∑
i=1

a(xi,n) =
∫
[0,1]d

a(x) dx. (5)
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Proof: Let R = [−1, 2]d. The grid Gn is a.u. in [0, 1]d and hence it is eventually contained
in R as n → ∞. Without loss of generality, we can assume that Gn ⊂ R for all n. Let x ∈
(0, 1]d be a continuity point of a and fix ε > 0. Then, there is a δ = δx,ε > 0 such that
|a(y) − a(x)| ≤ ε whenever y ∈ R and |y − x|∞ ≤ δ. Since Gn is a.u. in [0, 1]d, we can
choose nδ such that, for n ≥ nδ ,

max
i=1,...,n

∣∣∣∣xi,n − i
n

∣∣∣∣∞ ≤ δ

2
,

1
min(n)

≤ δ

2
.

For n ≥ nδ , if we call Ik,n the unique d-dimensional rectangle of the partition (0, 1]d =⋃n
i=1 Ii,n containing x, we have

|xk,n − x|∞ ≤
∣∣∣∣xk,n − k

n

∣∣∣∣∞ +
∣∣∣∣kn − x

∣∣∣∣∞ ≤ δ

2
+ δ

2
= δ

and ∣∣∣∣∣
n∑

i=1

a(xi,n)χIi,n(x) − a(x)

∣∣∣∣∣ = |a(xk,n) − a(x)| ≤ ε.

As a consequence,
∑n

i=1 a(xi,n)χIi,n(x) → a(x) whenever x ∈ (0, 1]d is a continuity point
of a. This implies (4), because a is continuous a.e. Since∣∣∣∣∣

n∑
i=1

a(xi,n)χIi,n

∣∣∣∣∣ ≤ ‖a‖∞,R < ∞,
1

N(n)

n∑
i=1

a(xi,n) =
∫
[0,1]d

( n∑
i=1

a(xi,n)χIi,n

)
,

limit (5) follows from (4) and the dominated convergence theorem. �

Proof of Theorem 3.1: For an arbitrary a.e. continuous function a : Rd → C, we canwrite
a = α+ − α− + iβ+ − iβ−, where α±,β± : Rd → [0,∞) are continuous a.e. and non-
negative. Hence, due toGLT4 and the linearity ofDGn

n (a) with respect to its argument a, it
suffices to prove (3) in the case where a : Rd → [0,∞) is continuous a.e. and non-negative.
The proof consists of three steps.
Step 1. First, we prove the result in the case where a is continuous on Rd. The grid Gn is
a.u. in [0, 1]d and hence we can fix a closed d-dimensional rectangle R that contains both
[0, 1]d and Gn for all n. Let ωa be the modulus of continuity of a over R:

ωa(δ) = sup
x,y∈R

|x−y|∞≤δ

|a(x) − a(y)|, δ > 0.

Note that

‖DGn
n (a) − Dn(a)‖ = max

i=1,...,n

∣∣∣∣a(xi,n) − a
(
i
n

)∣∣∣∣ ≤ ωa

(
max

i=1,...,n

∣∣∣∣xi,n − i
n

∣∣∣∣∞
)

n→∞−→ 0.

Hence, {DGn
n (a) − Dn(a)}n ∼σ 0 by Z1 and {DGn

n (a)}n ∼GLT a(x) by GLT3–GLT4.
Step 2.Now, we prove the result in the case where a is continuous a.e. and locally bounded
on Rd. As before, fix a d-dimensional rectangle R that contains both [0, 1]d and Gn for
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all n. Let am be a sequence of continuous functions in Rd such that am → a in L1(R).
It is clear that {DGn

n (am)}n ∼GLT am(x) by Step 1 and am → a in measure on [0, 1]d. We
prove that {DGn

n (am)}n a.c.s.−→ {DGn
n (a)}n, after which the relation {DGn

n (a)}n ∼GLT a(x) fol-
lows from GLT5. Since am is continuous on Rd, |am − a| is continuous a.e. and locally
bounded on Rd. By Lemma 3.1,

lim
m→∞ lim

n→∞
‖DGn

n (am) − DGn
n (a)‖1

N(n)
= lim

m→∞ lim
n→∞

1
N(n)

n∑
i=1

|am(xi,n) − a(xi,n)|

= lim
m→∞ ‖am − a‖L1([0,1]d) = 0.

We can, therefore, write ‖DGn
n (am) − DGn

n (a)‖1 = ε(m, n)N(n) with limm→∞ limn→∞
ε(m, n) = 0, and ACS1 implies that {DGn

n (am)}n a.c.s.−→ {DGn
n (a)}n.

Step 3. Finally, we prove the result in the case where a is continuous a.e. in Rd. Let
am = min(a,m) be the truncation of a at levelm ∈ N. Note that am is continuous a.e. and
bounded in Rd. We have {DGn

n (am)}n ∼GLT am(x) by Step 2 and am → a in measure on
[0, 1]d because, by the continuity of the measure μd,

lim
m→∞ μd

{
x ∈ [0, 1]d : a(x) > m

}
= μd

( ∞⋂
m=1

{
x ∈ [0, 1]d : a(x) > m

})
= μd(∅) = 0.

We prove that {DGn
n (am)}n a.c.s.−→ {DGn

n (a)}n, after which the relation {DGn
n (a)}n ∼GLT a(x)

follows from GLT5. Consider a function Fm ∈ Cc(R) such that χ[0,m−1] ≤ Fm ≤ χ[−1,m].
We have

rank(DGn
n (am) − DGn

n (a))
N(n)

= #{i ∈ {1, . . . , n} : a(xi,n) > m}
N(n)

= 1 − #{i ∈ {1, . . . , n} : a(xi,n) ≤ m}
N(n)

= 1 − 1
N(n)

n∑
i=1

χ[−1,m](a(xi,n)) ≤ 1 − 1
N(n)

n∑
i=1

Fm(a(xi,n)).

Since Fm(a) is continuous a.e. and bounded on Rd, passing to the limit in the previous
inequality and using Lemma 3.1, we obtain

lim sup
n→∞

rank(DGn
n (am) − DGn

n (a))
N(n)

≤ 1 −
∫
[0,1]d

Fm(a(x)) dx ≤ 1 −
∫
[0,1]d

χ[0,m−1](a(x)) dx

= 1 − μd{x ∈ [0, 1]d : a(x) ≤ m − 1} = γ (m)
m→∞−→ 0.

As a consequence, for every m, we can find nm such that, for n ≥ nm, rank(DGn
n (am) −

DGn
n (a)) ≤ c(m)N(n), where c(m) = γ (m) + 1

m and limm→∞ c(m)=0. Thus, {DGn
n (am)}n

a.c.s.−→ {DGn
n (a)}n by definition of a.c.s. �
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4. Applications

In this section, we detail a few representative applications of our main result in the con-
text of FD discretizations of DEs with discontinuous coefficients. We focus on diffusion
equations for simplicity, and we address the unidimensional case in Section 4.1 and the
multidimensional case in Section 4.2.

4.1. FD discretization of diffusion equations: the unidimensional case

Consider the diffusion problem

{−(a(x)u′(x))′ = f (x), x ∈ (0, 1),
u(0) = u(1) = 0.

Let n ∈ N, set h = 1
n+1 and xj = jh for all j ∈ [0, n + 1]. Using the classical second-order

central FD formula, for j = 1, . . . , n, we have

(a(x)u′(x))′|x=xj ≈
a(xj+ 1

2
)u′(xj+ 1

2
) − a(xj− 1

2
)u′(xj− 1

2
)

h

≈ a(xj+ 1
2
)
u(xj+1) − u(xj)

h2
− a(xj− 1

2
)
u(xj) − u(xj−1)

h2
.

We then approximate u(xj) by uj for j = 0, . . . , n + 1, where u0 = un+1 = 0 and u =
(u1, . . . , un)T solves

− a(xj+ 1
2
)uj+1 + (a(xj+ 1

2
) + a(xj− 1

2
))uj − a(xj− 1

2
)uj−1 = h2f (xj), j = 1, . . . , n.

The matrix An of this linear system is the n × n tridiagonal symmetric matrix given by

An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 1
2

+ a 3
2

−a 3
2−a 3

2
a 3

2
+ a 5

2
−a 5

2

−a 5
2

. . . . . .

. . . . . . −an− 1
2−an− 1

2
an− 1

2
+ an+ 1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ai = a(xi) for all i ∈ [0, n + 1]. It is known that {An}n ∼GLT,σ ,λ a(x)(2 − 2 cos θ)

in the case where a : [0, 1] → R is continuous on [0, 1]; see e.g. [1, Section 10.5]. Using
Theorem 3.1, we now prove that the same result is true under themuchweaker assumption
that a : [0, 1] → R is continuous a.e. in [0, 1].

Theorem 4.1: If a : [0, 1] → R is continuous a.e. in [0, 1] then

{An}n ∼GLT,σ ,λ a(x)(2 − 2 cos θ).
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Proof: Write

An = D+
n K

+
n + D−

n K
−
n ,

where

K+
n =

⎡
⎢⎢⎢⎢⎢⎣

1 −1
1 −1

. . . . . .
1 −1

1

⎤
⎥⎥⎥⎥⎥⎦ = Tn(1 − e−iθ ),

K−
n =

⎡
⎢⎢⎢⎢⎢⎣

1
−1 1

. . . . . .
−1 1

−1 1

⎤
⎥⎥⎥⎥⎥⎦ = Tn(1 − eiθ ), (6)

and

D+
n = diag

j=1,...,n
aj+ 1

2
= diag

j=1,...,n
a(xj+ 1

2
),

D−
n = diag

j=1,...,n
aj− 1

2
= diag

j=1,...,n
a(xj− 1

2
).

It is clear that the gridsGn = {xj+ 1
2
}j=1,...,n andHn = {xj− 1

2
}i=1,...,n are a.u. in [0, 1]. Hence,

byTheorem3.1, {D+
n }n ∼GLT a(x) and {D−

n }n ∼GLT a(x).We then infer fromGLT3–GLT4
that

{An}n ∼GLT a(x)(1 − e−iθ ) + a(x)(1 − eiθ ) = a(x)(2 − 2 cos θ), (7)

and we finally obtain {An}n ∼σ ,λ a(x)(2 − 2 cos θ) by GLT1 and the symmetry of An. �

Remark 4.1: The grids Gn andHn in the proof of Theorem 4.1 are uniform and not just
a.u. Onemay therefore argue that Theorem 4.1 could be proved in some simpler way, with-
out resorting to Theorem 3.1. Actually, this is not the case: invoking Theorem 3.1 in the
proof of Theorem 4.1 is as necessary as in other more complicated contexts where one
has to deal with pure (non-uniform) a.u. grids. We can avoid invoking Theorem 3.1 in the
proof of Theorem 4.1 if (and only if) the function a is continuous on [0, 1]. In this case,
we can show by continuity arguments that ‖D+

n − Dn(a)‖ → 0 and ‖D−
n − Dn(a)‖ → 0

as n → ∞, so that {D+
n − Dn(a)}n and {D−

n − Dn(a)}n are zero-distributed, and the GLT
relation (7) follows from GLT3–GLT4 and the decomposition

An = D+
n K

+
n + D−

n K
−
n

= Dn(a)K+
n + Dn(a)K−

n + (D+
n − Dn(a))K+

n + (D−
n − Dn(a))K−

n .
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4.2. FD discretization of diffusion equations: themultidimensional case

Let A(x) = [aαβ(x)]dα,β=1 and consider the diffusion problem

{−∇ · A(x)∇u(x) = f (x), x ∈ (0, 1)d,

u(x) = 0, x ∈ ∂((0, 1)d),

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
d∑

α,β=1

∂

∂xα

(
aαβ(x)

∂u
∂xβ

(x)
)

= f (x), x ∈ (0, 1)d,

u(x) = 0, x ∈ ∂((0, 1)d).

Let n ∈ Nd, set h = 1
n+1 and xj = jh for j ∈ [0, n + 1]. Let e1, . . . , ed be the vectors of the

canonical basis ofRd. Using the classical second-order central FD formula, for j = 1, . . . , n
and α,β = 1, . . . , d with α �= β , we have

∂

∂xα

(
aαα(x)

∂u
∂xα

(x)
)∣∣∣∣

x=xj

≈
aαα(xj+ 1

2
eα )

∂u
∂xα

(xj+ 1
2
eα ) − aαα(xj− 1

2
eα )

∂u
∂xα

(xj− 1
2
eα )

hα

≈ aαα(xj+ 1
2
eα )

u(xj+eα ) − u(xj)
h2α

− aαα(xj− 1
2
eα )

u(xj) − u(xj−eα )

h2α
,

∂

∂xα

(
aαβ(x)

∂u
∂xβ

(x)
)∣∣∣∣

x=xj

≈
aαβ(xj+eα )

∂u
∂xβ

(xj+eα ) − aαβ(xj−eα )
∂u
∂xβ

(xj−eα )

2hα

≈ aαβ(xj+eα )
u(xj+eα+eβ ) − u(xj+eα−eβ )

4hαhβ

− aαβ(xj−eα )
u(xj−eα+eβ ) − u(xj−eα−eβ )

4hαhβ

.

We then approximate u(xj) by uj for j = 0, . . . , n + 1, where uj = 0 if j �∈ {1, . . . , n} and
u = (u1, . . . , un)T solves

−
d∑

α=1

[
aαα(xj+ 1

2
eα )

uj+eα − uj
h2α

− aαα(xj− 1
2
eα )

uj − uj−eα
h2α

]

−
d∑

α,β=1
α �=β

[
aαβ(xj+eα )

uj+eα+eβ − uj+eα−eβ

4hαhβ

− aαβ(xj−eα )
uj−eα+eβ − uj−eα−eβ

4hαhβ

]

= f (xj), j = 1, . . . , n.
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The matrix An of this linear system is an N(n) × N(n) matrix that can be decomposed as
follows:

An =
d∑

α=1

1
h2α

[
D+
n,ααK

+
n,αα + D−

n,ααK
−
n,αα

] +
d∑

α,β=1
α �=β

1
hαhβ

[
D+
n,αβK

+
n,αβ + D−

n,αβK
−
n,αβ

]
,

(8)

where, for every α,β = 1, . . . , d with α �= β ,

D+
n,αα = diag

j=1,...,n
aαα(xj+ 1

2
eα ), D−

n,αα = diag
j=1,...,n

aαα(xj− 1
2
eα ), (9)

D+
n,αβ = diag

j=1,...,n
aαβ(xj+eα ), D−

n,αβ = diag
j=1,...,n

aαβ(xj−eα ), (10)

and thematricesK±
n,αα ,K

±
n,αβ are defined by their action on a generic vector u = [u�]n�=1 ∈

RN(n) as follows:

(K+
n,ααu)j = uj − uj+eα , (K−

n,ααu)j = uj − uj−eα , (11)

(K+
n,αβu)j = uj+eα−eβ − uj+eα+eβ

4
, (K−

n,αβu)j = uj−eα+eβ − uj−eα−eβ

4
, (12)

for j = 1, . . . , n. We remark that in (11)–(12) we use the convention ui = 0 for i �∈
{1, . . . , n}. The next theorem is the d-dimensional version of Theorem 4.1. We denote by
◦ the componentwise (Hadamard) product of matrices.

Theorem 4.2: Suppose that A(x) is symmetric for every x ∈ (0, 1)d and the coefficients aαβ :
[0, 1]d → R are continuous a.e. in [0, 1]d for all α,β = 1, . . . , d. Let ν ∈ Qd be a row vector
with positive components and assume that n + 1 = nν (it is understood that n varies in the
infinite subset of N such that n + 1 = nν ∈ Nd). Then

{n−2An}n ∼GLT,σ ,λ

d∑
α,β=1

νανβaαβ(x)Hαβ(θ) = ν(A(x) ◦ H(θ))νT ,

where H(θ) is the d × d symmetric matrix defined as follows:

Hαβ(θ) =
{
2 − 2 cos θα , if α = β ,

sin θα sin θβ , if α �= β .

When the coefficients aαβ are continuous on [0, 1]d, Theorem 4.2 can be proved by stan-
dard GLT arguments without resorting to Theorem 3.1; see e.g. [2, Section 7.3]. When
the coefficients are only continuous a.e., we need Theorem 3.1 and the following lem-
mas. In what follows, for every n ∈ N, we denote by K+

n and K−
n the matrices in (6),

by In = Tn(1) the identity matrix of size n, by J+n and J−n the Jordan matrices defined as
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J+n = In − K+
n = Tn(e−iθ ) and J−n = In − K−

n = Tn(eiθ ), and by Hn the n × nmatrix

Hn = 1
2

⎡
⎢⎢⎢⎢⎢⎣

0 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 0

⎤
⎥⎥⎥⎥⎥⎦ = −iTn(sin θ).

Lemma 4.1: For every α,β = 1, . . . , d with α �= β, we have

K+
n,αα =

(⊗α−1
r=1 Inr

)
⊗ K+

nα
⊗
(⊗d

r=α+1 Inr
)

= Tn(1 − e−iθα ), (13)

K−
n,αα =

(⊗α−1
r=1 Inr

)
⊗ K−

nα
⊗
(⊗d

r=α+1 Inr
)

= Tn(1 − eiθα ), (14)

K+
n,αβ =

⎧⎪⎨
⎪⎩

− 1
2

(⊗α−1
r=1 Inr

)
⊗ J+nα

⊗
(⊗β−1

r=α+1 Inr
)

⊗ Hnβ ⊗
(⊗d

r=β+1 Inr
)
, if α < β ,

− 1
2

(⊗β−1
r=1 Inr

)
⊗ Hnβ ⊗

(⊗α−1
r=β+1 Inr

)
⊗ J+nα

⊗
(⊗d

r=α+1 Inr
)
, if α > β ,

= i
2
Tn(e−iθα sin θβ), (15)

K−
n,αβ =

⎧⎪⎨
⎪⎩

1
2

(⊗α−1
r=1 Inr

)
⊗ J−nα

⊗
(⊗β−1

r=α+1 Inr
)

⊗ Hnβ ⊗
(⊗d

r=β+1 Inr
)
, if α < β ,

1
2

(⊗β−1
r=1 Inr

)
⊗ Hnβ ⊗

(⊗α−1
r=β+1 Inr

)
⊗ J−nα

⊗
(⊗d

r=α+1 Inr
)
, if α > β ,

= − i
2
Tn(eiθα sin θβ). (16)

Proof: Weonly prove (13) as the proofs of (14)–(16) are completely analogous. The second
equality in (13) follows directly from T2 and the equations In = Tn(1) and K+

n = Tn(1 −
e−iθ ). We prove the first equality by showing that the matrices on the left- and right-hand
sides act in the same way on a generic vector u ∈ RN(n). Using P4 and the convention
ui = 0 for i �∈ {1, . . . , n}, for every u = [u�]n�=1 ∈ RN(n) and every j = 1, . . . , n, we obtain

[((
α−1⊗
r=1

Inr

)
⊗ K+

nα
⊗
( d⊗
r=α+1

Inr

))
u

]
j

=
n∑

�=1

[(
α−1⊗
r=1

Inr

)
⊗ K+

nα
⊗
( d⊗
r=α+1

Inr

)]
j�

u�

=
n∑

�=1

u� (K+
nα

)jα�α

d∏
r=1
r �=α

(Inr)jr�r = uj − uj+eα = (K+
n,ααu)j,
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where the second-to-last equality follows from the fact that, when � varies from 1 to n,

(K+
nα

)jα�α

d∏
r=1
r �=α

(Inr)jr�r =
{
1, −1, if � = j, j + eα , respectively,

0, otherwise.

�

Lemma 4.2: If A(x) is symmetric for every x ∈ (0, 1)d then the matrix An is symmetric.

Proof: In view of (8), it suffices to prove that, for every α,β = 1, . . . , d with α �= β ,

(D+
n,ααK

+
n,αα + D−

n,ααK
−
n,αα)T = D+

n,ααK
+
n,αα + D−

n,ααK
−
n,αα , (17)

(D+
n,αβK

+
n,αβ + D−

n,αβK
−
n,αβ)T = D+

n,βαK
+
n,βα + D−

n,βαK
−
n,βα . (18)

Actually, we only prove (18) as the proof of (17) is completely analogous. We show that the
matrices on the left- and right-hand side of (18) act in the same way on a generic vector
u ∈ RN(n). By Lemma 4.1, P3 and the equations (J+n )T = J−n and HT

n = −Hn, we have

(D+
n,αβK

+
n,αβ + D−

n,αβK
−
n,αβ)T = K−

n,αβD
+
n,αβ + K+

n,αβD
−
n,αβ .

Keeping in mind (9)–(12) and the usual convention ui = 0 for i �∈ {1, . . . , n}, for every
u = [u�]n�=1 ∈ RN(n) and every j = 1, . . . , n, we obtain[

(D+
n,αβK

+
n,αβ + D−

n,αβK
−
n,αβ)Tu

]
j

=
[
K−
n,αβD

+
n,αβu + K+

n,αβD
−
n,αβu

]
j

=
[
K−
n,αβ[aαβ(x�+eα )u�]n�=1 + K+

n,αβ[aαβ(x�−eα )u�]n�=1

]
j

= aαβ(xj+eβ )uj−eα+eβ − aαβ(xj−eβ )uj−eα−eβ

4

+ aαβ(xj−eβ )uj+eα−eβ − aαβ(xj+eβ )uj+eα+eβ

4
.

Similarly,
[
(D+

n,βαK
+
n,βα + D−

n,βαK
−
n,βα)u

]
j
= aβα(xj+eβ )uj+eβ−eα − aβα(xj+eβ )uj+eβ+eα

4

+ aβα(xj−eβ )uj−eβ+eα − aβα(xj−eβ )uj−eβ−eα

4
.

Since aβα(x) = aαβ(x) for all x ∈ (0, 1)d by the symmetry assumption on A(x), we con-
clude that [

(D+
n,αβK

+
n,αβ + D−

n,αβK
−
n,αβ)Tu

]
j
=
[
(D+

n,βαK
+
n,βα + D−

n,βαK
−
n,βα)u

]
j

for j = 1, . . . , n and u ∈ RN(n), which immediately gives (18). �
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Proof of Theorem 4.2: By decomposition (8) and the equation n + 1 = nν, we have

n−2An =
d∑

α=1
ν2α

[
D+
n,ααK

+
n,αα + D−

n,ααK
−
n,αα

] +
d∑

α,β=1
α �=β

νανβ

[
D+
n,αβK

+
n,αβ + D−

n,αβK
−
n,αβ

]
.

It is easy to check that the grids

G+
n,α = {xj+ 1

2
eα }j=1,...,n, G−

n,α = {xj− 1
2
eα }j=1,...,n,

H+
n,α = {xj+eα }j=1,...,n, H−

n,α = {xj−eα }j=1,...,n,

are a.u. in [0, 1]d. Hence, by Theorem 3.1,

{D+
n,αα}n ∼GLT a(x), {D−

n,αα}n ∼GLT a(x),

{D+
n,αβ}n ∼GLT a(x), {D−

n,αβ}n ∼GLT a(x).

We then infer from Lemma 4.1 and GLT3–GLT4 that

{n−2An}n ∼GLT

d∑
α=1

ν2α
[
a(x)(1 − e−iθα ) + a(x)(1 − eiθα )

]

+
d∑

α,β=1
α �=β

νανβ

[
a(x)

i
2
e−iθα sin θβ − a(x)

i
2
eiθα sin θβ

]

=
d∑

α=1
ν2α a(x)(2 − 2 cos θα) +

d∑
α,β=1
α �=β

νανβ a(x) sin θα sin θβ

=
d∑

α,β=1

νανβ a(x)Hαβ(θ) = ν(A(x) ◦ H(θ))νT ,

and we finally obtain {n−2An}n ∼σ ,λ ν(A(x) ◦ H(θ))νT byGLT1 and the symmetry ofAn,
which is a consequence of Lemma 4.2 and the symmetry assumption on A(x). �

5. Conclusions

We have extended the theory of GLT sequences by showing in Theorem 3.1 that any
sequence of diagonal sampling matrices constructed from a.u. samples of an a.e. continu-
ous function falls in the class of GLT sequences. We have also detailed a few representative
applications of Theorem 3.1 in the context of FD discretizations of DEs with coefficients
that are only supposed to be continuous a.e. We conclude by highlighting that the appli-
cability of Theorem 3.1 is not confined to FD discretizations. In this regard, it is worth
pointing out the following.

• Thepresent paperwas inspired by awork in progress regarding theGLT spectral analysis
of matrices arising from isogeometric Galerkin immersed methods [16]. Theorem 3.1



2024 G. BARBARINO AND C. GARONI

well applies in this framework, where one has to deal with grids Gn = {xi,n}i=1,...,n that
are a.u. in [0, 1]d but with some of the grid points xi,n lying outside [0, 1]d. We remark
that these ‘outliers’ belong to the computational domain where the physical domain is
immersed.

• When dealing with B-spline isogeometric collocation methods [17], a common choice
for the collocation points is given by the Greville abscissae associated with the con-
sidered B-splines. In this context, diagonal sampling matrices of the form DGn

n (a),
with Gn = {ξ i,n}i=1,...,n and ξ1,n, . . . , ξn,n being the used Greville abscissae, naturally
arise. The grid Gn is not uniform but it is a.u. in [0, 1]d according to our definition;
see [1, Section 10.7.1] for the unidimensional case d = 1 and [2, Section 7.5] for the
multidimensional case d>1. It is then clear that Theorem 3.1 applies even in this
framework.
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