
2260 IEEE TRANSACTIONS ON SIGNAL PROCESSING

On Properties and Structure of the Analytic
Singular Value Decomposition

Stephan Weiss , Senior Member, IEEE, Ian K. Proudler , Giovanni Barbarino ,
Jennifer Pestana , and John G. McWhirter

Abstract—We investigate the singular value decomposition
(SVD) of a rectangular matrix A(z) of functions that are
analytic on an annulus that includes at least the unit circle. Such
matrices occur, e.g., as matrices of transfer functions representing
broadband multiple-input multiple-output systems. Our analysis
is based on findings for the analytic SVD applicable to continuous
time systems, and on the analytic eigenvalue decomposition.
Using these, we establish two potentially overlapping cases where
analyticity of the SVD factors is denied. Firstly, from a structural
point of view, multiplexed systems require oversampling by
the multiplexing factor in order to admit an analytic solution.
Secondly, from an algebraic perspective, we state under which
condition spectral zeros of any singular value require additional
oversampling by a factor of two if an analytic solution is to
be found. In all other cases, an analytic matrix admits an
analytic SVD, whereby the singular values are unique up to a
permutation, and the left- and right-singular vectors are coupled
through a joint ambiguity w.r.t. an arbitrary allpass function.
We demonstrate how some state-of-the-art polynomial matrix
decomposition algorithms approximate this solution, motivating
the need for dedicated algorithms.

Index Terms—Singular value decomposition, analytic func-
tions, transfer function matrices, diagonalisation.

I. INTRODUCTION

FOLLOWING its inception and proof of existence by var-
ious mathematicians in the 18th and 19th century [1]

and the development of powerful algorithms [2], the singular
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value decomposition (SVD) has been playing a central role in
providing various optimum solutions to signal processing prob-
lems [3], [4], [5]. This includes, e.g., applications such as rank
determination for source enumeration, subspace identification
for angle of arrival and frequency-estimation tasks, or source
separation. In the context of communications, the construction
of precoder and equaliser matrices that are optimal in various
senses for a multiple-input multiple-output (MIMO) channel
matrix of complex gain factors [6] relies on the SVD. For broad-
band problems, where, instead of complex gain factors, impulse
responses form the channel matrix entries, such a matrix de-
composition can only decouple a matrix for one particular time
instance, or one frequency if operating in the Fourier domain.
Generally for any of the above applications, while it is possible
to decompose a broadband problem into a number of discrete
Fourier transform (DFT)-bins, independent bin-wise processing
neglects spectral coherence and typically leads to suboptimal
solutions [7], [8], [9].

To address problems such as H∞ control [10] for matrices
A(t) that are functions in a real, continuous variable t, de Moor
& Boyd [11] and Bunse-Gerstner et al. [12] have proven the
existence of an SVD, where for an analytic A(t), the factorisa-
tion A(t) =U (t)Σ(t)V H(t) on some real interval t1 < t < t2
is satisfied by analytic left- and right-singular vectors in U (t)
and V (t). For Σ(t) to be analytic, the singular values on its
diagonal must not be restricted to be nonnegative. A number
of algorithms have been developed to address such an analytic
SVD [13], [14], [15], [16].

More recently, several algorithms for a polynomial SVD
(PSVD) have been developed for a rectangular matrix A[n],
where n ∈ Z is the discrete time index. This was initially per-
formed by first computing two polynomial matrix eigenvalue
decompositions (PEVD) of parahermitian (or palindromic)
matrices. The PEVD performs an approximate factorisation
into Laurent-polynomial matrices. Two algorithm families for
approximating the PEVD have been developed — second or-
der sequential best rotation (SBR2) [17], [18] and sequential
matrix diagonalisation (SMD) algorithms [19], [20], [21]. Sub-
sequently, a number of related decomposition algorithms have
emerged, whereby a PSVD is evaluated either via a number
of polynomial QR operations [22] or directly [23]. These al-
gorithms possess proven convergence in the sense that they
monotonically minimise a given cost function, even though it
is unclear what solution they attain. These algorithms behave
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similarly in that they (i) approximate a diagonalisation, and
(ii) encourage (or even guarantee [24]) spectral majorisation,
such that the identified singular values are ordered at every
frequency [25]. While spectral majorisation can be useful in the
context of e.g. optimal coding [19] or communications [26],
it can lead to functions that are only piece-wise analytic and
therefore require a much higher approximation order than their
analytic counterparts [27], [28]. The use of PSVD algorithms
extends from generic problems [17], [29] to a variety of prac-
tical applications including, e.g., MIMO communications [26],
[30], [31], [32], [33], [34], the equalisation of filter bank-based
multi-carrier systems [35], [36], broadband beamforming [37]
or the construnction of paraunitary matrices and lossless filter
banks [38], [39].

Despite the fact that the algorithms in [17], [18], [19], [20],
[21] are proven to converge to a diagonalised matrix, it is
unclear what this matrix is, if an exact solution exists, and
whether potential solutions are unique. Therefore, the purpose
of this paper is to investigate the existence and uniqueness of the
SVD of a matrix A[n] ∈ C

M×N , whose z-transform A(z) =∑
n A[n]z−n, or for short A(z) •—◦A[n] [40], is analytic in

z within some region of convergence that includes |z|= 1. We
are interested in whether the SVD

A(z) =U (z)Σ(z)V P(z) (1)

exists with a diagonal, analytic Σ(z) that is real-valued on the
unit circle, i.e., Σ(ejΩ) ∈ R, and paraunitary, analytic matri-
ces U (z) and V (z). Paraunitarity implies that U (z)U P(z) =
U P(z)U (z) = I, with the parahermitian operator {·}P per-
forming a time reversal and complex conjugation, U P(z) =
UH(1/z∗) [41]. The existence of analytic factors in (1) is
important as this guarantees the absolute convergence of their
time domain equivalents. This in turn means that U[n] ◦—•
U (z) and V[n] ◦—•V (z) can be well approximated by the
polynomial matrices (or filter banks with finite impulse re-
sponses) that the PSVD algorithms in [17], [22], [23], [29]
are seeking.

To investigate the existence of an analytic solution, we re-
strict ourselves to an analysis on the unit circle for z = ejΩ,
where a matrix in a real-valued parameter Ω results. Exploiting
findings in [11], [12], we must permit singular values to become
negative in order to maintain analyticity. Further, we investigate
the particular implications that a periodicity in the continuous
parameter Ω brings. We will show that the demand for Σ(ejΩ)
to be restricted to real-valued singular values potentially has
algebraic consequences for the analyticity; in contrast, we will
see that if A(z) emerges from multiplexing — such as in
multiplexed transmission or block filtering [41], [42], [43], [44]
— a structural loss of analyticity emerges. To understand the ex-
istence and uniqueness of the left- and right-singular vectors in
U (z) and V (z), we rely on combining the existence of analytic
singular values with the findings on the analytic parahermitian
matrix EVD in [45], [46], [47].

The contribution of this paper — against the backdrop
of milestones in developing the analytic SVD on a real in-
terval [11], [12] accompanied by algorithms, and the de-
sign of practical algorithms for a polynomial SVD in the

complex domain [17] — therefore lies in providing the theo-
retical foundations for an analytic SVD. While the design of
algorithms is beyond the scope of this paper, we demonstrate
how these results relate to the PSVD, for which the spectral
majorisation property can obstruct finding the analytic solution
to (1). While recent analytic parahermitian matrix EVD algo-
rithms in [27] provide a solution that is closer to (1), the find-
ings motivate the need for analytic SVD extraction algorithms
akin to [23], [27], [28]. These could then address many of the
broadband extensions of the SVD applied to or sought for the
narrowband problems above.

In the following, Sec. II reviews the standard SVD, and uses
the analytic SVD of a matrix in a continuous, real parameter
[11], [12] to define a general approach to the analytic SVD of
a matrix A(z) with z ∈ C. Two exceptions to the analyticity of
the SVD factors are elaborated in Secs. III and IV for algebraic
and structural reasons, respectively. The existence of an analytic
SVD of A(z), and the uniqueness and ambiguity of its analytic
factors are defined in Sec. V. Sec. VI demonstrates some results
based on existing algorithms before Sec. VII draws conclusions.

II. ANALYTIC SINGULAR VALUE DECOMPOSITION

A. Singular Value Decomposition

Any matrix A ∈ C
M×N admits a singular value decomposi-

tion [48]

A=UΣVH, (2)

where Σ ∈ R
M×N is a diagonal matrix containing the non-

negative, unique singular values σi, i= 1, . . . ,K with K =
min(M,N), and U ∈ C

M×M and V ∈ C
N×N are unitary ma-

trices containing the left- and right-singular vectors of A.
The majorised ordering of the singular values,

σ1 ≥ σ2 ≥ . . .≥ σK ≥ 0, (3)

ensures that Σ is unique. If there are C identical, non-zero sin-
gular values σi = . . .= σi+C−1 > 0, with associated left- and
right-singular vectors, ui, . . . , ui+C−1 and vi, . . . , vi+C−1,
then u′

i, . . .u
′
i+C−1 and v′

i, . . .v
′
i+C−1 are also valid left- and

right-singular vectors where

[u′
i, . . .u

′
i+C−1] = [ui, . . .ui+C−1] ·Φ (4)

[v′
i, . . .v

′
i+C−1] = [vi, . . .vi+C−1] ·Φ, (5)

and Φ ∈ C
C×C is an arbitrary unitary matrix. This means that

either the C left- or right-singular vectors can be selected arbi-
trarily within a C-dimensional subspace, which then ties down
the corresponding C right- or left-singular vectors, respectively.
In case C = 1, Φ= ejϕ with ϕ arbitrary; if A is restricted to
be real-valued, this leads to the well-known sign-ambiguity of
the SVD, see e.g. [49].

Let S be the number of singular values equalling zero.
If M ≤N and J =N −M , then the rightmost S + J right-
singular vectors span the nullspace of A, and can form an
arbitrary orthonormal basis within this (S + J)-dimensional
space. Further, the S rightmost left-singular vectors can also

Authorized licensed use limited to: UNIVERSITY OF STRATHCLYDE. Downloaded on June 27,2024 at 16:24:56 UTC from IEEE Xplore.  Restrictions apply. 



2262 IEEE TRANSACTIONS ON SIGNAL PROCESSING

be arbitrarily selected within an S-dimensional subspace. For
M >N , the same considerations apply by inspecting AT

instead of A.
One way to calculate the SVD is via two EVDs of R1 =

AAH and R2 =AHA, such that

R1 =Q1Λ1Q
H
1 =UΣ2UH, (6)

R2 =Q2Λ2Q
H
2 =VΣ2VH. (7)

The singular values can therefore be obtained as the square root
of the eigenvalues in Λ1 or Λ2. In case of distinct eigenvalues,
from (6) we can deduce that U=Q1Φ1 where Φ1 is a diagonal
unitary matrix. Similarly we can write VH =ΦH

2 Q
H
2 . Hence

A=Q1Φ1Λ
1/2
1 ΦH

2 Q
H
2 =Q1Λ

1/2
1

(
Φ1Φ

H
2

)
QH

2 . Since Λ
1/2
1

is real we require
(
Φ1Φ

H
2

)
to also be real. In the case

of a C-fold algebraic multiplicity of eigenvalues, within a
C-dimensional invariant subspace there may be different but
equivalent bases — and therefore unitary matrices as in (4) and
(5) — implied in (6) and (7) that need to be reconciled.

B. Analytic SVD on a Real Interval

As established in [11], [12], we have:
Theorem 1 (Analytic SVD on a real interval): For an M ×N

matrix A(t) that is analytic in t ∈ R on some interval, a decom-
position A(t) =U (t)Σ(t)V H(t) exists with unitary U (t) and
V (t), and diagonal, real-valued Σ(t). The singular values in
Σ(t) can be analytic if (i) they are permitted to become negative
and (ii) their ordering is relaxed from the majorisation in (3) for
every t. If the singular values are chosen to be analytic, then the
left- and right-singular vectors in U (t) and V (t) can also be
selected to be analytic.

Proof: For the case of a real-valued matrix, please see the
proof of Theorem 1 in [12]. The complex-valued case is covered
in [11]. �

The key difference between the analytic SVD and (2) lies
in permitting singular values to become negative. Enforcing
a positive semi-definite constraint may lead to singular val-
ues σi(t), i= 1, . . . , K, that are continuous but not differ-
entiable. Therefore, implementations of the analytic SVD are
based on, e.g., checking the first derivative [11], the arc length
[12], or on Chebychev polynomials to enforce smoothness of
functions [16].

C. Periodicity of a Singular Value

For the analytic SVD of a matrix A(z) that is analytic on
an annulus containing at least the unit circle, we can restrict
our investigation to z = ejΩ [40]. We thus work with A(ejΩ),
which now is analytic in Ω ∈ R. Therefore, Theorem 1 guar-
antees a decomposition A(ejΩ) =U ′(Ω)Σ ′(Ω)V ′H(Ω) with
analytic but not necessarily periodic factors U ′(Ω), Σ ′(Ω), and
V ′(Ω). We will first contemplate the singular values σ′

i(Ω),
i= 1, . . . ,K, on the diagonal of Σ ′(Ω).

The 2π-periodicity of A(ejΩ) means that, similar to the case
of the eigenvalue decomposition of a self-adjoint R(ejΩ) in
[46], [47], Σ ′(Ω) has to equal, up to some permutation and
negation for individual singular values, Σ ′(Ω + 2πn) and its
derivatives w.r.t. Ω with n ∈ Z. Thus, the singular values are

composed of repeats of 2π segments. Let a ‘segment’ be that
part of a singular value between 0 and 2π, defined as ςi(Ω) =
σ′
i(Ω), Ω ∈ [0; 2π), i= 1, . . . ,K.
To record the repetition of segments that make up an analytic

singular value σi(Ω), we utilise an index sequence such as, e.g.,
{1, 2,−3, . . .} to indicate a concatenation of segments σ′

i =
[ς1, ς2,−ς3, . . . ]. A negative index refers to a negated segment.
We assume that there are K distinct singular values. Then, due
to the uniqueness theorem for analytic functions, there is only
one possibility for analytic continuation from one segment to
another. Hence, for a sequence {. . . , i, j, . . .} with a fixed index
i, there is exactly one unique index j, which can be either
positive or negative. Therefore, some simple rules follow:

(R1) If an index is repeated such as i in {. . . , i, j, . . . ,
i, �, . . .}, analytic continuation demands that ςi can
only be followed by one unique segment, such
that �= j.

(R2) Analytic continuation also demands that e.g. for
{. . . , j, i, . . . , �, i, . . .} the segment preceding ςi must
be unique, i.e. j = �.

(R3) For an index sequence {. . . , i, j, . . . ,−i, �, . . .} with
distinct indices i and j, ςi is analytically continued by
ςj ; therefore, −ςi must be analytically continued by
−ςj , i.e. �=−j.

Note that there are only a maximum number of K dis-
tinct segments that can be concatenated, hence two conse-
quences result:

(C1) The repeat of an index according to (R1) and (R2) after
k segments, 1≤ k ≤K, implies a 2kπ periodicity of
a singular value.

(C2) The repeat of a negated index after k segments means
that a sequence {. . . , i, j, . . . , �,−i, . . .} must con-
tinue according to rules (R3) and (R1) as {i, j, . . . , �,
−i,−j, . . . ,−�, i, . . . }, and thus leads to a 4kπ-
periodic singular value.

Therefore analytic singular values must be periodic, with a
maximum possible period of 4πK.

For a more detailed analysis of the periodicity, below we will
extract one analytic singular value, without loss of generality
σ′
1(Ω), from these segments. To start, for Ω ∈ [0; 2π), we set

σ′
1(Ω) = ς1(Ω), with an index sequence {1}. On the interval

Ω ∈ [2π; 4π), we find three possibilities to analytically continue
σ′
1(Ω), with the notation (Pξ.n) indicating the nth possibility for

segment (ξ + 1):
(P1.1) For σ′

1(Ω) = ς1(Ω− 2π), we have an index se-
quence {1, 1}, and due to (C1) have established
2π-periodicity.

(P1.2) For σ′
1(Ω) =−ς1(Ω− 2π), we have −σ′

1(Ω) =
σ′
i(Ω− 2π) and an index sequence {1,−1}; due to

(C2), the periodicity is 4π;
(P1.3) otherwise, ς1(Ω) must be followed by a different

segment; w.l.o.g. we assume this to be σ′
1(Ω) =

±ς2(Ω− 2π), and record an index sequence {1,±2}.
We have established periodicity with cases (P1.1) and
(P1.2). For case (P1.3), we continue to investigate the ana-
lytic continuation.

In general, for the interval Ω ∈ [2ξπ; 2(ξ + 1)π) with ξ =
1, 2, . . . , (K − 1), assuming we have not yet encountered a
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periodicity, we will assume w.l.o.g. that we have already used
the segments [1,±2, . . . ,±ξ]. Then we find the following pos-
sibilities for an analytic continuation:

(Pξ.1) With σ′
1(Ω) = ς1(Ω− 2ξπ), the index sequence

{1, . . . ,±ξ, 1} implies a periodicity of 2πξ according
to (C1).

(Pξ.2) For σ′
1(Ω) =−ς1(Ω− 2ξπ), the index sequence is

{1 . . . ,±ξ,−1}, and σ′
1(Ω) is 4πξ periodic accord-

ing to (C2).
Continuations σ′

1(Ω) =±ςi(Ω− 2ξπ), i ∈ {2, . . . , ξ} would
imply the repeat of a previous segment or negated segment
without repeating index 1. E.g. the index sequence {1, 2, 3, 2}
violates rule (R2), and cannot represent an analytic continua-
tion. Therefore:

(Pξ.3) The singular value σ′
1(Ω) must be followed by a

different, yet unused segment. Without loss of gener-
ality we assume this to be σ′

1(Ω) =±ςξ+1(Ω− 2ξπ),
with a resulting index sequence of {1,±2, . . . ,±ξ,
±(ξ + 1)}.

Unless a periodic repetion has been established via the cases
(Pξ.1) or (Pξ.2), ξ = 1, 2, . . . , (K − 1), via (Pξ.3) we finally
reach the interval Ω ∈ [2Kπ; 2(K + 1)π). We find:

(PK.1) Analytic continuation with σ′
1(Ω) = ς1(Ω) leads to

an index sequence {1,±2, . . . ,±K, 1} and 2Kπ
periodicity due to (C1).

(PK.2) Analytic continuation with σ′
1(Ω) =−ς1(Ω−

2Kπ) implies a sequence {1,±2, . . . ,±K,−1}
with 4Kπ periodicity due to (C2).

Any other continuation violates rules (R1) and (R2), and cannot
yield an analytic function. Thus, the above scheme for analytic
continuation either ends with (Pk.1) and a periodicity of 2kπ,
or with (Pk.2) and a periodicity of 4kπ, k = 1, . . . ,K, for this
singular value.

D. Properties of the Singular Value Matrix

Sec. II-C has established the periodicity of a singular value.
We now explore the properties of Σ ′(Ω), and therefore of all
the singular values.

Let us assume that a first analytic singular value σ′
1(Ω)

has been investigated as outlined in Sec. II-C. Assume it
has a repeat pattern via case (Pk1.1), with a sequence
{1,±2, . . . ,±k1, 1} and a periodicity of 2k1π. Since all seg-
ments have to be used in a given [2nπ, 2(n+ 1)π) range,
then another analytic singular value starts with the segment
±k1. Because of the arguments in Sec. II-C, its sequence
must be {±k1, 1,±2,±3, . . . ,±k1, 1, . . .} i.e. a shifted ver-
sion of σ′

1(Ω). This consideration continues similarly for the
singular values that start with the segment ±�(2≤ � < k1).
Therefore, σ′

1(Ω) is part of a set of k1 frequency-shifted sin-
gular values, all with a 2k1π-periodicity. If we establish a
pattern via (Pk1.2), then the investigated singular value is also
part of a set of k1 singular values related by a frequency
shift but with a periodicity of 4k1π. Note in this case that
a shift by more than k1 in the index sequence only leads
to a negated value, e.g. {1, . . . ,±k1,−1, . . . ,∓k1, 1} would

produce {−1, . . . ,∓k1, 1, . . . ,±k1,−1}. Overall, we therefore
find that

σ′
ν(Ω) = σ′

1(Ω− 2(ν − 1)π), ν = 1, . . . , k1. (8)

The periodicity of these singular values is 2k1κ1π, whereby
κ1 = 1 in case of (Pk1.1) and κ1 = 2 for (Pk1.2).

From the remaining (K − k1) singular values of A(ejΩ),
we pick another singular value and iterate the investigation of
Sec. II-C. This will lead to a pattern via (Pk2.1) or (Pk2.2),
with k2 ∈ {1, . . . ,K − k1}, establishing a set of k2 singular
values of periodicity 2k2κ2π. We repeat this until all K an-
alytic singular values are addressed, whereby we have P sets
of frequency-shifted singular values. The p-th set contains kp
frequency-shifted singular values with a periodicity 2kpκpπ
where κp ∈ {1, 2} depending on the inclusion of a negated seg-
ment in the singular value. Note that

∑P
ν=1 kp =K. Since all

singular values are periodic, we can write σm(ejΩ/L) = σ′
m(Ω)

or overall

Σ(ejΩ/L) =Σ ′(Ω), (9)

whereby L= lcm{k1κ1, k2κ2, . . .}, i.e. the period of Σ ′(Ω)
is the least common multiple (lcm) of the periods of all the
singular values of A(ejΩ).

E. Analytic SVD on the Unit Circle

Theorem 2: (Analytic SVD on the unit circle): For an analytic
matrix A(ejΩ), Ω ∈ R, the analytic SVD on the unit circle can
be formulated as

A(ejΩ) =U (ejΩ/L)Σ(ejΩ/L)V H(ejΩ/L), (10)

where the diagonal matrix Σ(ejΩ/L) and unitary matrices
U (ejΩ/L) and V (ejΩ/L) can be analytic in Ω for some L ∈ N.

Proof: We can state the SVD of A(z) on the unit cir-
cle generally as A(ejΩ) =U ′(Ω)Σ ′(Ω)V ′H(Ω). Starting with
the singular values, based on Theorem 1 and the reasoning in
Secs. II-C and II-D, we know that Σ ′(Ω) must be 2Lπ-periodic
for some L ∈ N, see (9).

For the left- and right-singular vectors in U ′(Ω) and V ′(Ω),
Theorem 1 guarantees analyticity of their elements, but their
periodicity still needs to be shown. For this, we formulate
the parahermitian matrices R1(z) =A(z)AP(z) and R2(z) =
AP(z)A(z). For the analytic EVD on the unit circle we po-
tentially require oversampling such that analytic 2π-periodic
eigenvalues [46] exist for Ri(z

Li), i= 1, 2, Li ∈ N. Further,
analytic eigenvectors that match the periodicity of the eigen-
values also exist [47]. We therefore have

R1(e
jΩ) =Q1(e

jΩ/L1)Λ1(e
jΩ/L1)QH

1 (e
jΩ/L1) (11)

R2(e
jΩ) =Q2(e

jΩ/L2)Λ2(e
jΩ/L2)QH

2 (e
j/L2). (12)

Inserting the SVD A(ejΩ) =U ′(Ω)Σ(ejΩ/L)V ′H(Ω) into the
definition of R1(e

jΩ) and R2(e
jΩ), we obtain

R1(e
jΩ) =U ′(Ω)Σ(ejΩ/L)ΣH(ejΩ/L)U ′H(Ω) (13)

R2(e
jΩ) =V ′(Ω)ΣH(ejΩ/L)Σ(ejΩ/L)V ′H(Ω). (14)
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The analytic eigenvalues of a parahermitian matrix are unique
up to a permutation [45]. Assuming appropriate ordering, we
find that

Λ1(e
jΩ) =Σ(ejΩL1/L)ΣH(ejΩL1/L) (15)

Λ2(e
jΩ) =ΣH(ejΩL2/L)Σ(ejΩL2/L), (16)

and hence L1 = L2 = L1. Comparing (11) with (13) and
(12) with (14), and allowing for the ambiguities discussed
in Sec. II-A, we may set U ′(Ω) =Q1(e

jΩ/L) and V ′(Ω) =
Q2(e

jΩ/L)Ψ ′(Ω). The unitary matrix Ψ ′(Ω) links the ambigu-
ities of the left- and right-singular vectors as per Sec. II-A. For
distinct singular values it is a diagonal matrix of allpass func-
tions, i.e. functions with unit magnitude but variable phase re-
sponse [40]. Inserting these expressions for U ′(Ω) and V ′(Ω)
into the SVD of A(ejΩ), we find

A(ejΩ) =Q1(e
jΩ/L)Σ(ejΩ/L)Ψ ′H(Ω)QH

2 (e
jΩ/L). (17)

This leaves Ψ ′(Ω) as the only factor on the r.h.s. of (17)
whose periodicity is unknown. Since A(ej(Ω+2Lπ)) =A(ejΩ),
expanding both sides according to (17) and exploiting
the paraunitarity and hence invertibility of Q1(e

jΩ/L) =
Q1(e

j(Ω/L+2π)) and Q2(e
jΩ/L) =Q2(e

j(Ω/L+2π)), we arrive
at Σ(ej(Ω/L+2π))Ψ ′H(Ω + 2Lπ) =Σ(ejΩ)Ψ ′H(Ω). Since
Σ(ej(Ω/L+2π)) =Σ(ejΩ/L), we obtain

Σ(ejΩ/L)
{
Ψ ′H(Ω + 2Lπ)−Ψ ′H(Ω)

}
= 0. (18)

Therefore, assuming that Σ(ejΩ/L) has only the trivial null
space, Ψ ′(Ω) =Ψ ′H(Ω + 2Lπ) and is thus 2Lπ-periodic i.e.
we can write Ψ ′(Ω) =Ψ(ejΩ/L). If Σ(ejΩ/L) has a nontrivial
null space, the properties of Ψ ′(Ω) in that null space are moot
as it always appears multiplied by a zero portion of Σ(ejΩ/L).
Then we also have that V ′(Ω) is at least 2Lπ-periodic as
well. Hence A(ejΩ) has the SVD as in (10) where U (ejΩ/L) =
Q1(e

jΩ/L) and V (ejΩ/L) =Q2(e
jΩ/L)Ψ(ejΩ/L). �

Example 1: As an example for the case L > 1, consider the
matrix A1(z) = [1, 1; z−1, 1]. This matrix can be shown to
possess on the unit circle singular values σ′

1(Ω) = 2 cos(Ω/4)
and σ′

2(Ω) = 2 sin(Ω/4) = σ′
1(Ω− 2π) that are analytic in Ω ∈

R and 8π periodic as shown in Fig. 1, such that w.r.t. (10),
L= 4. Note that for e.g. Ω= 0, Ω= 2π, Ω= 4π and Ω= 6π
the moduli of the singular values are identical, as indicated
in Fig. 1.

The considerations according to Sec. II-C end with case
(2.2), and we find that the sequences of segment indices are
{1, 2,−1,−2, 1 . . .} and {−2, 1, 2,−1,−2, . . .}, and so k1 =
κ1 = 2 and L= 4. The singular values in Fig. 1 are 2π-shifted
versions of each other and are 2Lπ = 8π periodic. �

The discussion in Sec. II-D was based on the extraction of
functions that are analytic in Ω ∈ R with a 2πL periodicity.
Thus, while e.g.Σ(ejΩ/L) in (9) is analytic in the real parameter
Ω, the same function may not be analytic in the complex pa-
rameter z [47]. W.r.t. Example 1, while σ′

1(Ω) = 2 cos(Ω/4) =
ejΩ/4 + e−jΩ/4 is analytic in Ω on the unit circle, the resub-
stitution with z = ejΩ leading to σ1(z) = z1/4 + z−1/4 is not

1If the singular values contain sign changes, it may be possible to even
halve the periodicity, such that L1 = L2 = L/2.

Fig. 1. Example of 8π-periodic singular values of A1(ejΩ) that are analytic
in Ω ∈ R; ◦ indicates the repeat of the singular values at Ω= 0, • signifies a
repeat of such a singular value with a sign change. To be analytic in z ∈ C,
these functions have to be oversampled by L= 4.

analytic in the complex plane. E.g. the term z−1/4 represents a
fractional delay; its time domain equivalent is a sampled sinc
function [50], which is not absolutely convergent, and hence
z−1/4 is not analytic. We can however obtain analytic singular
values in the complex plane if we analyse A1(z

4) instead of
A1(z), i.e. if we oversample the matrix A1(z) by a factor of
L= 4, and thus avoid fractional delays.

In the following two sections, we will explore in more detail
when and why cases with L > 1 occur; first, in Sec. III we
consider the algebraic aspect that causes a sign change in a
singular value. Thereafter, we focus on the case of frequency-
shifted —or in the time domain modulated— singular values
in Sec. IV.

III. UNMODULATED SINGULAR VALUES

This section addresses the case where singular values σ′
k(Ω),

k = 1, . . . ,K are not frequency-shifted — or equivalently,
σk[n] ◦—• σ′

k(Ω) are not modulated — versions of one another,
but can be 4π-periodic instead of the 2π-periodic functions re-
quired for analyticity of the singular values. For this, we initially
focus on the degenerate case of a 1× 1 matrix A(z) = γ(z) :
C→ C in Sec. III-A. We then explore how for multiple distinct
singular values, their zero-crossings determine their periodicity
in Secs. III-B and III-C.

A. Factorising 2π-Periodic Complex-Valued Functions

For a function γ(z) : C→ C that is analytic in z, we initially
evaluate the SVD on the unit circle for z = ejΩ,

γ(ejΩ) = u′(Ω) · σ′(Ω) · v′∗(Ω), (19)

which factorises γ(ejΩ) into a real-valued and two complex-
valued components. The function σ′(Ω) represents the real-
valued analytic singular value and the complex-valued analytic
left- and right-singular vectors u′(Ω) and v′(Ω) reduce to all-
pass filters. W.l.o.g., we set v′(Ω) = 1, i.e., we mandate that
the frequency-dependent phase change has to be performed
by u′(Ω).

As long as σ′(Ω)> 0 ∀Ω, the SVD performs a split into a
magnitude and a phase term. Since we only have one singular
value, no shifted versions can appear; further, since there is no
sign change, and given that σ′(Ω) = σ′(Ω− 2π), then σ′(Ω)
must be 2π-periodic. Therefore, according to Theorem 2, the
terms in (19) can be analytic, such that γ(z) = u(z)σ(z)vP(z).
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(a) (b)

Fig. 2. For γ(z) = 1 + jz−1 − 1
2
z−2 = u(z)σ(z) in Example 2, (a) sin-

gular value σ[n] ◦—• σ(z), and (b) decay of both σ[n] and u[n] ◦—• u(z).

The same argument applies if σ′(Ω)< 0 ∀Ω, as the sign can be
incorporated into u′(Ω), and an analytic 2π-periodic solution
is also possible.

Example 2: The function γ(z) = 1 + jz−1 + 1
2z is not para-

hermitian, i.e. γP(z) 
= γ(z), and therefore γ(ejΩ) /∈ R, but sat-
isfies |γ(ejΩ)|> 0. Its singular value decomposition leads to the
analytic singular value σ(z) and an allpass u(z) characterised
in Fig. 2. Note from Fig. 2(a) that σ[n] = σ∗[−n] is Hermitian.
Both σ[n] and u[n] are (potentially infinite) Laurent series, but
due to their analyticity are absolutely convergent and hence
decay at least exponentially, as seen in Fig. 2(b). While thus
the support of σ(z) has increased w.r.t. γ(z), the exponential
decay is sufficient for analyticity, which in turn guarantees that
σ(z) can be approximated arbitrarily closely by a finite length
Laurent polynomial [27], [28]. �

The remainder of Sec. III considers the case where σ′(Ω)
is not strictly positive or negative, i.e. σ′(Ω) = 0 for some Ω,
and we aim to understand under which circumstances a 2π or
a 4π periodicity arises. We further expand the scope from a
single function σ′(Ω) to multiple singular values σ′

k(Ω), k =
1, . . . ,K, that are not shifted versions of each other.

B. Sign Changes of Singular Values

Since we have excluded the case of modulated singular val-
ues, following the discussions of Sec. II-C we only look at
repetitions of a single segment. The index sequence {k, k, . . .}
for the kth singular value means that σ′

k(Ω) = σ′
k(Ω− 2π), i.e.

a 2π periodicity. In contrast for the sequence {k,−k, k, . . .}
we have σ′

k(Ω) =−σ′
k(Ω− 2π) and 4π periodicity. The latter

must include at least a sign change within a 2π interval of
σ′
k(Ω), which must be connected with zeros, i.e. values where

σ′
k(Ω) = 0. Such zeros on the unit circle are also referred to as

spectral zeros.

C. Numbers and Multiplicities of Spectral Zeros

We next explore under which conditions a singular value does
or does not experience a sign change over a 2π-interval, i.e.
whether σ′

k(Ω) is 2π-periodic. Assume that a function σ′
k(Ω)

possesses zeros at I distinct frequencies Ωi, i= 1, . . . , I , within
the interval 0≤ Ω< 2π, where each has multiplicity Ci. We

(a)

(b)

Fig. 3. (a) Moduli of singular values σ′
k(Ω), with zeros indicated by circles

together with their multiplicities Ci; (b) singular values with 2π-periodicity
for k = 1, 2 and 4π periodicity for k = 3 that are analytic in Ω ∈ R.

will show below that the absence or presence of a sign change
over a 2π interval can be tied to whether the condition

mod2

{
I∑

i=1

Ci

}

= 0 (20)

holds true. This motivates the following theorem.
Theorem 3 (Non-existence of an analytic singular value due

to spectral zeros): If a singular value σ′
k(Ω) is not a frequency

shifted version of another singular value, and possesses zeros
at I distinct frequencies in [0, 2π) with multiplicities Ci, i=
1, . . . , I , and (20) is satisfied, then σ′

k(Ω) is 2π-periodic, and
an analytic σ′

k(z) exists. If (20) does not hold, then σ′
k(Ω) must

be 4π-periodic.
Proof: For an even Ci, σ′

k(Ω) will only tangentially touch
zero at Ω= Ωi without crossing. Hence there will not be a sign
change if all the Ci are even. If there is one odd Ci then the sin-
gular value will change sign once within Ω0 ≤ Ω< Ω0 + 2π,
with Ω0 ∈ [0, 2π) and σ′

k(Ω0) 
= 0. This means that σ′
k(Ω0)

and σ′
k(Ω0 + 2π) will have different signs and so σk(Ω) is 4π

periodic. If, on the other hand, there are two odd Ci then the sin-
gular value will change sign twice within Ω0 ≤ Ω< Ω0 + 2π.
So although σ′

k(Ω) becomes negative at some point, we have
that σ′

k(Ω0) and σ′
k(Ω0 + 2π) will have identical signs and

σ′
k(Ω) is 2π periodic. More generally, 2π-periodicity results if

the number of zeros with an odd order of multiplicities is even,
as established by (20). �

Example 3: Fig. 3(a) shows the moduli of three singular val-
ues σ′

k(Ω), k = 1, 2, 3, that all take on a value of zero for some
Ω. The multiplicity Ci of these zeros is also indicated in the
graph. With two zeros, each of multiplicity two, σ′

1(Ω) satisfies
(20) and hence is 2π-periodic and analytic. The function σ′

2(Ω)
possesses two single zeros, and the modulus is not differentiable
at Ω= 0 and Ω= 7

4π. An analytic, 2π-periodic function σ′
2(Ω)

can be created by allowing the singular value to be negative on
the interval 7

4π ≤ Ω< 2π, as shown in Fig. 3(b). The singular
value σ′

3(Ω) in Fig. 3(a) has two zeros, one with an even
multiplicity and one odd, thus violating (20). Simply letting
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σ′
3(Ω) be negative on the interval 1

4π ≤ Ω< 3
2π will result in an

analytic continuation at Ω= 1
4π, but causes the non-existence

of derivatives above first order at Ω= 3
2π (even though this

may not be directly evident from Fig. 3(b)), and therefore does
not create an analytic function. An analytic function can only
be created with a 4π periodicity, as shown in Fig. 3(b). Over-
all, Fig. 3(b) illustrates the resulting analytic functions, which
for zeros of even multiplicity Ci only tangentially touch zero,
but which for odd multiplicities Ci possess a crossing point
at zero. �

In summary, spectral zeros can lead to a 4π-periodicity in-
stead of a 2π periodicity of the singular values on the unit circle.
If condition (20) is not met by all singular values, and if these
singular values are not modulated, then analytic singular values
can only be obtained for A(z2).

IV. MODULATED SINGULAR VALUES

This section explores under which circumstances an analytic
matrix A(z) will not admit an analytic SVD due to modulated
singular values. Following preliminaries in Sec. IV-A, we first
show how particular matrix structures are necessarily linked to
modulated singular values: a single set of modulated singular
values is linked to pseudo-circulant matrices in Sec. IV-B, while
block-pseudo circulant matrices are connected to multiple sets
of modulated singular values of the same cardinality in Sec.
IV-C. For general sets of modulated singular values, Sec. IV-D
shows that the corresponding matrices necessarily and suf-
ficiently must be linked to multiplexing operations, but that
structural evidence such as the pseudo-circulant property of a
matrix, can be obscured by arbitrary paraunitary operations.

A. Preliminaries

This section explores under which circumstances an analytic
matrix A(z) will not admit an analytic SVD due to modulated
singular values. As a basic building block, we want to consider
a matrix A(z) : C→ C

M×N , whose singular values at a κF -
times oversampled rate are F frequency-shifted or modulated
versions of a single function σ(z),

Σ(z) = diag
{
σ(z), σ

(
zej

2π
κF

)
, . . . , σ

(
zej(F−1) 2π

κF

)}
.

(21)

The parameter F is introduced for later consistency but here
we have F =K, and κ accounts for Theorem 3: in case (20)
is satisfied, we have κ= 1, otherwise we require κ= 2 for
Σ(z) to be analytic. Note that any matrix produced under
left- and right-multiplication of Σ(z) with arbitrary parauni-
tary operators U (z) : C→ C

M×M and V P(z) : C→ C
N×N ,

respectively, will have the same singular values.

B. Pseudo-Circulant Matrices

We initially restrict ourselves to a square matrix A(z) : C→
C

M×M and thus F =K =M , and investigate under which
conditions it will possess modulated singular values as defined
in (21). From multirate signal processing, it is known that for

Fig. 4. System matrix A(z) : C→ C
2×2 created by multiplexing across a

single-input single-output system H(z).

a pseudo-circulant matrix [25]

A(z) =

⎡

⎢
⎢
⎢
⎢
⎣

H0(z) H1(z) . . . HF−1(z)

z−1HF−1(z) H0(z)
...

... . . . . . .
...

z−1H1(z) . . . z−1HF−1(z) H0(z)

⎤

⎥
⎥
⎥
⎥
⎦
,

(22)

the expanded matrix A(zF ) is diagonalised by a paraunitary
operation W (z),

W (z) =D(z)T, (23)

where D(z) = diag
{
1, z−1, . . . z−F+1

}
and T represents an

F -point DFT matrix scaled to be unitary [18], [51]. This yields
a factorisation A(zF ) =W (z)Γ (z)W P(z), where

Γ (z) = diag
{
H(z), H(zej

2π
F ), . . . , H

(
zej

2π(F−1)
F

)}
. (24)

The elements Hm(z), m= 0, . . . , (F − 1), in (22) are com-
monly known as the F polyphase components of some sys-
tem H(z) =

∑F−1
m=0 z

−mHm(zF ). This system and its (F − 1)
modulated versions form the diagonal entries of the matrix
Γ (z) in (24). Importantly, the connection between pseudo-
circulance in (22) and the diagonalisation involving modulated
functions in (24) is both necessary and sufficient [43].

The elements H(zej
2πi
F ) relate to the entries of Σ(z) as

follows. As per (19) and allowing for a spectral zero (see
Sec. III-C) we can write the SVD of H(zκ) as H(zκ) =
ϕ(z)σ(z) where ϕ(z) is an allpass filter and σ(ejΩ) ∈ R. Then
overall we have

A(zκF ) =U (z)Σ(z)V P(z), (25)

where

U (z) =W (zκ)diag
{
ϕ(z), . . . , ϕ

(
zej

2π(F−1)
κF

)}
(26)

Σ(z) = diag
{
σ(z), . . . , σ

(
zej

2π(F−1)
κF

)}
(27)

V (z) =W (zκ). (28)

This necessarily and sufficiently connects a set of F modulated
singular values to an F × F pseudo-circulant matrix A(z), as
also observed in [47]. Hence, an analytic SVD does not exist for
a pseudo-circulant matrix A(z). In contrast, the oversampled
version A(zκF ) does have an analytic SVD.

Example 4: The matrix A1(z) from Example 1 is a pseudo-
circulant system arising from multiplexing data across a transfer
function H(z) = 1 + z−1 with F = 2 as shown in Fig. 4. In this
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multiplexed operation, the input of H(z) arises from interleav-
ing of two lower rate signals by means of expansion and delay,
while at the output a deinterleaver or serial-to-parallel converter
extracts two signals sampled at a lower rate via delay and deci-
mation operations [41], [42], [43], [44]. The paraunitary W (z)
in (23) indeed diagonalises A1(z

2) with F = 2, such that

A1(z
2) =W (z)diag

{
H(z), H(zejπ)

}
W P(z), (29)

with H(zejπ) = 1− z−1. Since H(z) possesses a single spec-
tral zero at z =−1, (20) is violated and we have to oversample
by a further factor κ= 2 in order to extract analytic singular
values. By therefore expanding both H(z) and H(zejπ) by a
factor of κ= 2, we have

H(z2) = 1 + z−2 = z−1
︸︷︷︸
ϕ(z)

·(z + z−1

︸ ︷︷ ︸
σ1(z)

) (30)

H(z2ejπ) = 1− z−2 =−jz−1(jz − jz−1) (31)

= (zej
π
2 )−1

︸ ︷︷ ︸
ϕ(zej

π
2 )

·
(
zej

π
2 + (zej

π
2 )−1

)

︸ ︷︷ ︸
σ2(z)=σ1(ze

jπ
2 )

. (32)

Therefore, overall we have A1(z
4) =U 1(z)Σ1(z)V

P
1(z) with

U 1(z) =W (z2)

[
z−1

−jz−1

]

, (33)

V 1(z) =W (z2) and Σ1(z) = diag{σ1(z), σ2(z)}=
diag

{
σ1(z), σ1(ze

jπ2 )
}

. Thus, the terms ϕ(zej
π
2 ) =−jz−1

and σ1(ze
jπ2 ) are indeed modulated versions of ϕ(z) = z−1

and σ1(z) as per (26) and (27) with F = κ= 2. �

C. Block-Pseudo-Circulant Systems

As a first generalisation of Sec. IV-B, we consider non-square
matrices that possess modulated singular values. Assume a
multiple-input multiple-output system H (z) : C→ C

MH×NH ,
whereby its inputs and outputs are multiplexed and demulti-
plexed by a factor of F . Thus, in analogy to Fig. 4, a sys-
tem matrix A′(z) : C→ C

M×N with M = FMH and N =
FNH results, which for block sampling yields a matrix-valued
version of (22),

A′(z) =

⎡

⎢
⎢
⎢
⎢
⎣

H 0(z) H 1(z) . . . H F−1(z)

z−1H F−1(z) H 0(z)
...

... . . . . . .
...

z−1H 1(z) . . . z−1H F−1(z) H 0(z)

⎤

⎥
⎥
⎥
⎥
⎦
,

that is sometimes referred to as a generalised pseudo-circulant
matrix [52]. With a permutation matrix PQ = [IF � e1, IF �
e2, . . . , IF � eQ], where IF is an F × F identity matrix, �
the Kronecker product, and eq ∈ Z

Q a vector of zeros except
for a value of one as the qth element, we can define A(z) =
PMH

A′(z)PT
NH

,

A(z) =

⎡

⎢
⎣

A1,1(z) . . . A1,NH
(z)

...
. . .

...
AMH ,1(z) . . . AMH ,NH

(z)

⎤

⎥
⎦. (34)

The matrix A(z) in (34) possesses a block-pseudo-circulant
structure: the submatrices Ai,j(z) : C→ C

F×F , with

i= 1, . . . ,MH and j = 1, . . . , NH , are pseudo-circulant,
and emerge from F -fold multiplexing the element Hi,j(z) in
the ith row and jth column of H (z) analogously to (22).

While the diagonalisation of pseudo-circulant matrices [43]
and of block-circulant (i.e. non-polynomial) matrices [53], [54]
has been addressed in the literature, we are not aware of
any discussions of block-pseudo-circulant matrices. We there-
fore state:

Theorem 4 (Singular values of block-pseudo-circulant
matrices): If a system A(z) emerges from F -fold multiplexing
of a system H(z), then the singular values of A(z) will be F -
fold modulated versions of those of H (z).

Proof: To investigate the singular values of A(z),
we define

W l(z) = blockdiag
{
W (z), . . . , W (z)
︸ ︷︷ ︸

MH

}
(35)

W r(z) = blockdiag
{
W (z), . . . , W (z)
︸ ︷︷ ︸

NH

}
, (36)

with W (z) as in (23). With paraunitary matrices Q l(z) : C→
C

MHF×MHF and Qr(z) : C→ C
NHF×NHF , we initially pos-

tulate the decomposition

A(zF ) =W l(z)Q l(z)Γ (z)QP
r(z)W

P
r(z), (37)

and let Γ (zκ) =Ψ(z)Σ(z), where Ψ(z) : C→ C
MHF×MHF

and Γ (zκ),Σ(z) : C→ C
MHF×NHF are diagonal matrices.

First consider the structure of

S(z) =W P
l(z)A(zF )Wr(z). (38)

This matrix S(z) can be subdivided into F × F subblocks
S i,j(z), i= 1, . . . , MH , j = 1, . . . , NH , such that

S(z) =

⎡

⎢
⎣

S1,1(z) . . . S1,NH
(z)

...
. . .

...
SMH ,1(z) . . . SMH ,NH

(z)

⎤

⎥
⎦, (39)

whereby

S i,j(z) =W P(z)Ai,j(z
F )W (z). (40)

Recall from (34) that Ai,j(z
F ) is a pseudo-circulant matrix de-

rived from F -fold multiplexing a system Hi,j(z). Thus S i,j(z)
is diagonal with modulated entries, such that

S i,j(z) = diag
{
Hi,j(z), . . . , Hi,j(ze

j2π(F−1)/F )
}
. (41)

We now focus on the structure of

S(z) =Q l(z)Γ (z)QP
r(z), (42)

which is sparse with only every F th sub-diagonal occupied by
potentially non-zero values. Using the earlier defined permuta-
tion matrices, the operation

S ′(z) =PMH
S(z)PT

NH
(43)

= blockdiag
{
H (z),H (zej2π

1
F ), . . . ,H

(
zej2π

F−1
F

)}

(44)

changes S(z) into a block-diagonal matrix.
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(a)

(b)

Fig. 5. Singular values of (a) H (z) and (b) A(z2) in Example 5.

From Theorem 2, H (zJ ) admits an analytic SVD for some
J ∈ Z, and the same can be said for all its shifted versions as

H (zJej2π
s
F ) =H ([zej2π

s
FJ ]J)

=U ′(zej
2πs
JF )Σ ′(zej

2πs
JF )V ′P(zej

2πs
JF ) (45)

for s= 0, . . . , (F − 1). Therefore, the paraunitary matrices

Q ′
l(z) = blockdiag

{
U ′(z),U ′(zej

2π
FJ ), . . .

. . . ,U ′
(
zej

2π(F−1)
FJ

)}
(46)

Q ′
r(z) = blockdiag

{
V ′(z),V ′(zej2

2π
FJ ), . . .

. . . ,V ′
(
zej

2π(F−1)
FJ

)}
(47)

are blockdiagonal and the matrix Σ(z
1
J ) =

blockdiag{Σ ′([zej2π
s
F ]

1
J )}s=0,...,F−1 contains the singular

values of H (z) and its F -fold modulated versions. From (37),
(38), (44), and (45), we have that

A(zF ) =Wl(z)P
T
MH

Q ′
l(z

1
J )Σ(z

1
J )Q ′P

r (z
1
J )PNH

W P
r(z),

(48)

thus proving that the singular values of A(z) are the F -fold
modulated versions of those of H (z), even if the latter contains
modulated singular values. If H (z) does not contain any further
modulated singular values, then indeed J = 1. The result in (48)
relates back to the postulated (37), with Ψ(z) absorbed into the
either left- or right-singular vectors. �

Example 5: Consider the system H (z) : C→ C
2×3,

H (z) =

[
1 + 2z−1 j jz−1

z−1 −2 j− jz−1

]

. (49)

By evaluating individual SVDs along the unit circle, we find
the singular values σH,m(ejΩ), m= 1, 2 of H (ejΩ) as shown
in Fig. 5(a). Note that both singular values satisfy (20), such
that κ= 1. For a system A(z) : C→ C

4×6 obtained by 2-fold
multiplexing H (z), we need to evaluate the twice oversam-
pled system A(z2). Its singular values σA,μ(e

jΩ) are shown
in Fig. 5(b). Note that in addition to matching singular values

σA,1(e
jΩ) = σH,1(e

jΩ) and σA,3(e
jΩ) = σH,2(e

jΩ), the mod-
ulated versions σA,2(e

jΩ) = σH,1(e
j(Ω−π)) and σA,4(e

jΩ) =
σH,2(e

j(Ω−π)) appear due to the multiplexing operation. �

D. General Multiplexed Systems

Sec. II-D has shown that for an analytic matrix A(z) : C→
C

M×N , M ≤N , we can generally have P sets of modulated
singular values, each of cardinality kp, p= 1, . . . , P , where∑

p kp =M . We now want to explore under which conditions
such singular values may occur in systems of transfer functions.
For simplicity, we exclude singular values with zero crossings,
so that κp = 1, resulting in (see after (9)) an overall 2πL peri-
odicity of singular values with L= lcm{k1, . . . , kP }.

Different from the preceding subsections, where we assumed
particular matrix structures, we start with the singular values of
some matrix A(z). Assume that the kp modulated singular val-
ues of periodicity 2πkp form the diagonal of the kp × kp matrix
Σ̄p(z

1/kp); the notation z1/kp reminds us that this function will
only be analytic once oversampled by integer multiples of kp.
The reasoning in Sec. II-D yields an overall M ×M matrix
Σ̄(z) of singular values, such that

Σ̄(z1/L) = blockdiag
{
Σ̄1(z

1/k1), . . . , Σ̄P (z
1/kP )

}
. (50)

Based on the analysis in Sec. IV-B we know that Σ̄1(z
1/k1)

can be related to an analytic pseudo-circulant matrix via
a paraunitary matrix Wkp

(z) (cf. (23)). Specifically
we have that Wkp

(z) =Dkp
(z)Tkp

with Dkp
(z) =

diag
{
1, z−1, . . . , z−kp−1

}
and Tkp

a kp-point DFT matrix.
By forming a block-diagonal matrix

W̄ (z1/L) = blockdiag
{
Wk1

(z1/k1), . . .WkP
(z1/kP )

}
,

(51)

we find that

Ā(z) = W̄ (z1/L)Σ̄(z1/L)W̄
P
(z1/L) (52)

is analytic in z, and is an M ×M block-diagonal matrix con-
sisting of P pseudo-circulant subblocks.

We now want to utilise these results to factorise the general
matrix A(z), such that sets of modulated singular values as in
(50) arise. We are therefore looking for a decomposition of

A(z) =U (z1/L)[Σ(z1/L) 0L×(N−L)]V
P(z1/L), (53)

where U (z1/L) : C→ C
M×M and V (z1/L) : C→ C

N×N are
matrices of left- and right-singular vectors that potentially must
be oversampled by integer multiples of L in order to be analytic.
Inserting nugatory factors W̄

P
(z1/L)W̄ (z1/L) and substitut-

ing (52), we obtain

A(z) =U (z
1
L )W̄

P
(z

1
L )

︸ ︷︷ ︸
Ū (z1/L)

Ā(z) [W̄ (z
1
L ) 0]V P(z

1
L )

︸ ︷︷ ︸
V̄P(z1/L)

. (54)

This means that A(z) consists of an inner system Ā(z),
representing P multiplexed systems of the type analysed in
Sec. IV-B, each with potentially different multiplexing fac-
tors kp, p= 1, . . . , P . Outer system components, the parau-
nitary Ū (z1/L) : C→ C

M×M and the matrix V̄ (z1/L) : C→
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C
N×M containing M columns of a paraunitary matrix, are as

defined in (54). These outer components may involve further
sampling rate changes, and can generally obscure the pseudo-
circulant property when inspecting A(z).

With the analysis of general multiplexed systems concluded
with (54), we briefly show how this result can be reconciled
with the block-pseudo-circulant systems of Sec. IV-C. In this
case, the cardinality of the different sets of modulated singular
values are the same, so that k1 = . . .= kP = L= F , such that
M = LP , i.e. we have P sets of L-fold modulated singular
values. Without any further modulations across the therefore
distinct sets of singular values, we can write the analytic SVD
with (48) as

A(zL) =W l(z)P
T
MH

Q ′
l(z)Σ(z)Q ′P

r (z)PNH
W P

r(z). (55)

In contrast, with (52) and (54),

A(zL) = Ū (z)W̄ (z)Σ̄(z)W̄
P
(z)V̄

P
(z). (56)

The square matrixΣ̄(z) contains potentially permuted singular
values, such that Σ(z) =PΣ,1[Σ̄(z) 0M×(N−M)]P

T
Σ,2, with

PΣ,1 and PΣ,2 suitable permutation matrices. Comparing (55)
and (56), and noting that W̄ (z) =W l(z), we find for the outer
systems as defined in (54)

Ū (z) =W l(z)P
T
MH

Q ′
l(z)PΣ,1W

P
l (z), (57)

V̄ (z) =W r(z)P
T
NH

Q ′
r(z)PΣ,2

[
IM

0(N−M)×M

]

W P
l (z).

(58)

Thus, a block-pseudo-circulant matrix can be viewed as a
special case of a more general matrix A(z) containing —
potentially hidden by outer operations, i.e. without obvious
pseudo-circulant or block-pseudo-circulant properties — mul-
tiplexing operations.

The following theorem summarises the findings of Sec. IV:
Theorem 5 (Modulated singular values): A matrix A(z)

analytic in z ∈ C that can be tied to a multiplexing operation via
paraunitary operations necessarily and sufficiently possesses
modulated singular values. Such singular values have a peri-
odicity of 2πL, L ∈ N that only become analytic for A(zL),
i.e. if A(z) is oversampled by a factor L.

Proof: The necessary and sufficient link between multi-
plexing and modulated singular values has been established
by (54). �

If A(z) is not pseudo-circulant or block-pseudo-circulant
then there is no known way of determining whether it can be
tied to a multiplexing operation by paraunitary operations Ū (z)
and V̄ (z) as in (54), except for the causality dilemma: we
would need to determine the analytic SVD, but it does not exist
unless A(z) is expanded. Interestingly, with some effort that is
beyond the scope of this paper, it can be shown that the outer,
paraunitary factors in (54) can be selected to be analytic, such
that any A(z) can be brought into a block-diagonal pseudo-
circulant representation without oversampling [56].

Example 6: Consider B(z) = [1 + z−1, 2; 1− z−1, 0].
This matrix is not pseudo-circulant, but can be obtained as
B(z) =

√
2T2A(z), with A(z) the pseudo-circulant system of

Example 1, with which it therefore shares its modulated, 8π-
periodic singular values. In terms of an implementation, B(z)
can be constructed by attaching a 2-point DFT matrix to the
output of the system in Fig. 4. �

V. EXISTENCE OF THE ANALYTIC SVD

A. Existence

Recall that we want to establish under which conditions
a matrix A(z) : C→ C

M×N that is analytic in z ∈ C within
some region including the unit circle admits, without over-
sampling, an analytic SVD A(z) =U (z)Σ(z)V P(z) as in
(1) with analytic factors. The matrices U (z) : C→ C

M×M

and V (z) : C→ C
N×N are paraunitary matrices containing

the left- and right-singular vectors. For the diagonal matrix
Σ(z) : C→ C

M×N , we only demand that Σ(ejΩ) ∈ R
M×N ,

i.e., for the singular values to be real-valued on the unit circle
but not necessarily positive.

Theorem 6 (Existence of the analytic SVD): The decomposi-
tion of an analytic matrix A(z) with analytic factors in (1) exists
if and only if A(z) cannot be tied to a multiplexing operation,
and if on the unit circle the spectral zeros of its singular values
all satisfy (20).

Proof: We first evaluate on the unit circle. According to
Theorem 5, a matrix A(z)|z=ejΩ cannot be tied to a multi-
plexing operation if and only if its analytic singular values
are not modulated. Additionally, Theorem 3 guarantees 2π-
periodic singular values if and only if (20) is satisfied for all
singular values. Thus, we have L= 1, which with Theorem 2
also establishes 2π-periodic left- and right-singular vectors.
Resubstituting z = ejΩ means that the SVD factors in (1) are
analytic within a region of convergence that includes at least
the unit circle.

To show that the region of convergence extends beyond the
unit circle, we utilise (1) to write the EVDs

R1(z) =A(z)AP(z) =U (z)Σ(z)ΣP(z)U P(z) (59)

R2(z) =AP(z)A(z) =V (z)ΣP(z)Σ(z)V P(z). (60)

Since A(z) is unmultiplexed, R1(z) and R2(z) are neither tied
to multiplexing operations, and their EVDs are guaranteed to
exist with analytic eigenvalues and eigenvectors [46] whose
region of convergence extends beyond the unit circle. Hence
the factors Σ(z), U (z), and V (z), due to the uniqueness
theorem of analytic functions [55], must also have a region
of convergence extending beyond the unit circle, within which
they are analytic in z. �

If A(z) emerges from multiplexing and/or (20) is not satis-
fied, an analytic SVD can only be found for A(zL), for some
suitable integer L > 1.

Example 7: The two causes for a loss of analyticity can
occur simultaneously, as seen in Example 1, which involved
multiplexing by F = 2 and where the singular value violated
(20), such that κ= 2. An analytic SVD is only possible for
A(zL) with L= κF = 4. �

Corollary 1 (Existence of the Analytic SVD without
Oversampling): For an analytic matrix A(z) that neither can be
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tied to multiplexing operations nor possesses any singularities
for z = ejΩ, the analytic SVD as defined in (1) exists without
the need for oversampling of A(z).

Proof: If A(z) is not tied to any multiplexing operations,
then A(z) only denies the existence of an analytic SVD if and
only if its singular values violate (20). However, A(ejΩ) not
possessing any singularies implies that its singular values are
free of zero crossings, which is sufficient albeit not necessary
for (20) to be satisfied. �

B. Ambiguities

For the singular values, Sec. II-D has established that the
analytic solution is unique up to some ordering. While the
standard SVD is defined with majorised singular values ac-
cording to (3), such ordering is not meaningful for functions
that can intersect. For the following, we do however assume
that any identical singular values are ordered in groups, s.t.
σi(e

jΩ) = . . .= σi+C−1(e
jΩ)∀Ω in the case that there are C

identical singular values.
For the singular vectors, we assume w.l.o.g. that M ≤N , as

otherwise we can operate on the transpose matrix. Let Φ1(z) :
C→ C

M×M and Φ2(z) : C→ C
(N−M)×(N−M) be two para-

unitary matrices. The matrix Φ1(z) is block-diagonal with the
size of the blocks reflecting the groups of identical singular
values on the diagonal of the square matrix Σ̄(z). For M
distinct singular values, Φ1(z) is a diagonal matrix of arbi-
trary allpass filters. Note that Σ̄(z) and Φ1(z) commute. The
matrix Φ2(z) is an arbitrary paraunitary matrix. If A(z) is
rectangular with M <N and admits an analytic SVD then
A(z) =U (z)

[
Σ̄(z),0

]
V P(z). Inserting a nugatory factor

we have

A(z) =U (z)
[
Σ̄(z),0

]
[

Φ1(z) 0
0 Φ2(z)

]

·
[

ΦP
1(z) 0

0 ΦP
2(z)

]

V P(z)

=U (z)Φ1(z)Σ(z)

[
ΦP

1(z) 0

0 ΦP
2(z)

]

V P(z).

The matrix Φ1(z) represents a coupled ambiguity between the
left- and right-singular vectors is equivalent to (4) and (5) in the
case of a standard SVD. The matrix Φ2(z) permits the right-
singular vectors to form an arbitrary orthonormal basis within
the (N −M)-dimensional nullspace of A(z) without affecting
the decomposition.

VI. COMPUTATION USING SOME EXISTING ALGORITHMS

This section explores the computation of the analytic SVD in
(1) by means of existing algorithms. There are currently three
types of algorithm for calculating a polynomial SVD. The first
involves repeatedly applying a polynomial QRD algorithm [22].
The second method is an SBR2-style, direct diagonalisation of a
matrix A(z) [23]. The third one uses two EVDs as in Section V.
There are two classes of EVD algorithms: time domain and
frequency domain. The time-domain approaches include the
SBR2 [17], [18] or SMD [19], [20], [21] families of algorithms.

The SBR2 and SMD algorithms have either been explicitly
proven to converge to, or may encourage, a spectrally majorised
solution. In contrast, the frequency domain approaches [29],
[27], [28] seek to compute the analytic solution. The QRD and
direct diagonalization approaches are also based in the time
domain and yield results similar to SBR2- and SMD-based
methods. In the following, in order to compare the majorised vs
analytic approaches we utilise the “two EVD” approach using
either the SMD [19] or DFT domain algorithms in [27], [28] to
approximate (1).

A. Approach and Challenges

To attempt to calculate an analytic SVD via two parahermi-
tian matrix EVDs, we first compute

R1(z) =A(z)AP(z) =Q1(z)Λ1(z)Q
P
1(z), (61)

R2(z) =AP(z)A(z) =Q2(z)Λ2(z)Q
P
2(z). (62)

Assuming that the eigenvalues in Λ1(z) and Λ2(z) are dis-
tinct and similarly ordered, then comparing (61) to (59), we
set U (z) =Q1(z). Since the ambiguity of the eigenvectors in
Q2(z) is not coupled with the ambiguity of those in Q1(z),
with (61) and (60) we find that V (z) =Q2(z)Ψ(z), where
Ψ(z) is some diagonal matrix of allpass filters. Thus, equiv-
alently to (17), we have

Σ̂(z) =QP
1(z)A(z)Q2(z) =Σ(z)Ψ(z). (63)

As a result, (63) yields a Σ̂(z) with diagonal components
σ̂m(z),

σ̂m(z) = σm(z)ψm(z), m= 1, . . . ,K, (64)

where ψm(z) is some allpass filter. Thus, on the unit circle
we find that σ̂m(ejΩ) /∈ R in violation of the desired real-
valuedness of the singular values in (1). When using SBR2- or
SMD-based time domain methods, due to spectral majorisation
the resulting PEVD differs from the analytic solution in (61) and
(62) if singular values intersect. Then SBR2- and SMD-based
algorithms aim to approximate piecewise analytic functions,
resulting in approximation errors and incomplete diagonalisa-
tion of Σ̂(z). Nonetheless, the latter approach has been applied
widely, see e.g. [17], [26], [30], [31], [32], [33], [37].

To demonstrate some of the challenges using the above ap-
proach, we now consider two examples: one where the singular
values are majorised, and one where they are not.

B. Spectrally Majorised Singular Values

We want to diagonalise a matrix A(z) : C→ C
3×4 with

a known ground truth analytic SVD. The singular values in
Σ(z) : C→ C

3×4 are given by

σ1(z) =
1

4
z + 2 +

1

4
z−1, (65a)

σ2(z) =
j

4
z +

5

4
− j

4
z−1, (65b)

σ3(z) =
j

2
z +

1

4
− j

2
z−1, (65c)
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Fig. 6. Elements of Σ̂(z) in (63) obtained via two polynomial EVDs
implemented using the SMD algorithm [19] on a matrix A(z) with ground
truth spectrally majorised singular values.

and are spectrally majorised, such that σ1(e
jΩ)> σ2(e

jΩ)≥
σ3(e

jΩ) (as shown later by the grey underlaid lines in Fig. 8(a)
and (b)). The left-singular vectors are determined via parauni-
tary elementary operations [41],

U (z) =
2∏

i=1

{
I− (1− z−1)uiu

H
i

}
, (66)

where ui ∈ C
3, i= 1, 2 are random unit-norm vectors. The

matrix of right-singular vectors V (z) : C→ C
4×4 of order 2 is

defined analogously to (66) with a different set of random unit-
norm vectors. Thus, we assemble A(z) =U (z)Σ(z)V P(z).

Performing two polynomial EVDs using the SMD algorithm
[19] for a maximum of 400 iterations yields the matrix Σ̂(z)
via (63) shown in Fig. 6. The notation σ̂i,k[n] ◦—• σ̂i,k(z)
refers to the element in the ith row and kth column of Σ̂(z).
Firstly, note that the diagonal components σ̂i,i[n], i= 1, 2, 3,
are not symmetric, which implies that Σ̂(ejΩ) is not real valued.
Secondly, there are small non-zero components remaining in
off-diagonal elements. The diagonalisation metric

ρ=

∑
i,k,n |σ̂i,k[n]|2 −

∑
i,n |σ̂i,i[n]|2

∑
i,k,n |σ̂i,k[n]|2

(67)

measures the ratio between the energy in the off-diagonal terms
and the overall energy, which in the case of complete diago-
nalisation is zero. For the SMD approach, we obtain a value
of ρ= 1.1 · 10−2. For the left- and right-singular vectors, the
matrices extracted by SMD are of orders 8 and 10, respectively,
after trimming tails in these polynomials containing less than
0.01% of the energy in these paraunitary matrices [20].

Fig. 7 shows the result for Σ̂[n] ◦—• Σ̂(z) when using the
parahermitian matrix EVD algorithm in [27], which aims to
extract analytic factors. In this case, ρ= 9.0 · 10−10, and at
least the moduli of the extracted singular values show symme-
try. On inspection, because the analytic eigenvector extraction
pursues a minimum support for its solution, the matrices U (z)
and V (z), extracted with the correct ground truth polynomial
order of two, appear closely coupled: the allpass filters ψm(z)
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Fig. 7. Elements of Σ̂(z) in (63) obtained via two parahermitian matrix
EVDs implemented using the analytic EVD algorithm in [27], [28] on a matrix
A(z) with ground truth spectrally majorised singular values.

(a)

(b)

Fig. 8. Moduli of ground truth singular values σm(ejΩ) and of the estimated
quantities σ̂m(ejΩ), m= 1, 2, 3, using (a) SMD [19] and (b) the Fourier
domain approach in [27], [28], when applied to a matrix A(z) with ground
truth spectrally majorised singular values.

that couple the left- and right-singular vectors in (60) are ap-
proximately constant with ψ1(z)≈ 1, ψ2(z)≈ ej0.4755π , and
ψ3(z)≈ e−j0.1386π .

The evaluation of the singular values on the unit circle is
provided in Fig. 8(a) and 8(b) for the SMD [19] and the analytic
parahermitian matrix EVD [27], respectively. Both methods
approximate the ground truth singular values, underlaid in grey,
well, with the SMD approach demonstrating a slight deviation
for σ̂(ejΩ) at around Ω= 5

4π.

C. Spectrally Unmajorised Singular Values

We repeat the experiment in Sec. VI-B for a matrix A(z) that
possesses the same ground truth left- and right-singular vectors
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Fig. 9. Elements of Σ̂(z) in (63) obtained via two polynomial EVDs
implemented using the SMD algorithm [19] on a matrix A(z) with ground
truth spectrally unmajorised singular values.

in U (z) and V (z), but that now has the following spectrally
unmajorised singular values:

σ1(z) =
1

2
z +

5

4
+

1

2
z−1, (68a)

σ2(z) =−1

2
z +

5

4
− 1

2
z−1, (68b)

σ3(z) = jz +
1

2
− jz−1. (68c)

Their evaluation on the unit circle, σm(ejΩ) ∈ R, is depicted in
Fig. 11 as grey underlaid curves.

The extracted matrices Σ̂(z) are characterised in Figs. 9
and 10 for SMD [19] and the Fourier domain approach in [27],
[28], respectively. For SMD, the polynomial order of Σ̂(z)
has significantly increased w.r.t. the spectrally majorised case
in Fig. 6, and the diagonalisation in Fig. 9, with a metric
of ρ= 0.7 · 10−2, looks incomplete. Similarly, the polynomial
orders of the extracted left- and right-singular vectors have
significantly increase w.r.t. the spectrally majorised case and
now are 37 and 40, respectively. This is caused by the SMD
algorithm encouraging a spectrally majorised solution, which
causes permutations in the extracted singular values in Fig.
11(a). In these points, the SMD algorithm tries to approximate
non-differentiable functions, which requires high polynomial
orders and incurs poor convergence of an approximation [45].

The Fourier domain approach in [27], [28], extracting the
analytic solution, provides the Σ̂[n] in Fig. 10 with diag-
onalisation metric ρ= 9.0 · 10−16. This matrix is at least
symmetric w.r.t. the moduli of its coefficients. The extracted
left- and right-singular vectors match the polynomial order of
the ground truth. Further we find that ψ1(z)≈ 1, but have the
2nd and 3rd singular values permuted w.r.t. (68b) and (68c),
with σ̂2(z)≈ e−j0.0334πσ3(z) and σ̂3(z)≈ ej0.0103πσ2(z).

Figs. 11(a) and (b) characterise the extracted singular values
on the unit circle. The SMD approach, which favours spectral
majorisation, yields singular values that are indeed approxi-
mately spectrally majorised and hence deviate from the ground
truth. This has the benefit of concentrating as much energy
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Fig. 10. Elements of Σ̂(z) in (63) obtained via two parahermitian matrix
EVDs implemented using the analytic EVD algorithm in [27] on a matrix
A(z) with ground truth spectrally unmajorised singular values.

(a)

(b)

Fig. 11. Moduli of the ground truth singular values σm(ejΩ) and of the
estimated quantities σ̂m(ejΩ), m= 1, 2, 3, using (a) SMD [19] and (b) the
Fourier domain approach in [27], when applied to a matrix A(z) with ground
truth spectrally unmajorised singular values.

as possible in as few subchannels as necessary. Note that at
the permutation points, i.e. where the ground truth singular
values intersect, the spectrally majorised solution attempts to
approximate a piecewise analytic solution, which can be rather
poor. In contrast, the Fourier domain approach in Fig. 11(b),
targetting the analytic solution, provides a very accurate extrac-
tion of the singular values save for the allpass filters ψm(z),
m= 1, 2, 3 in (64).

VII. DISCUSSION AND CONCLUSION

In this paper, we have established under which circumstances
an analytic matrix A(z), for example consisting of transfer
functions of a multiple-input multiple-output system, admits an
analytic SVD, such that the extracted singular values, as well as
the left- and right-singular vectors, can be selected as analytic
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functions. An analytic solution is guaranteed to exist for the
oversampled A(zκF ), with κ, F ∈ N. There are two situations
that lead to κF 
= 1: (i) structurally, if A(z) can be tied to a
multiplexing operation by a factor F , such as in the case of
block filtering or multiplexed transmission; (ii) algebraically, if
any of the singular values of A(zF ) possesses spectral zeros
whose multiplicities sum to an odd integer. In the latter case,
we have κ= 2; otherwise, we have κ= 1. In the absence of
multiplexing, and as long as none of the singular values have
zeros with multiplicities that sum to be odd, we have proven that
an analytic singular value decomposition of A(z) exists. While
the analytic singular values are unique up to a permutation, there
is an ambiguity for the analytic singular vectors: corresponding
left- and right-singular vectors can be modified by the same
allpass function.

The implications of the existence of an analytic solution for
the singular values and the left- and right-singular vectors are
profound. Firstly, previous polynomial SVD algorithms have
been proven to converge in terms of yielding a diagonalisation
and spectral majorisation, but it was unclear to what values
these algorithms would converge. The analysis in this paper
provides this answer. Secondly, since the time domain equiv-
alents of analytic SVD factors are absolutely convergent, they
can be well approximated by Laurent polynomials. This favours
DFT-domain algorithms such as [27], [28], [29] over their time
domain counterparts [17], [18], [19], [20], [21]. The former
algorithms pursue the analytic solutions for the singular values,
even if they are not spectrally majorised on the unit circle.

The algorithmic pursuit of real-valued singular values may
be tempting in ‘correctly’ generalising the ordinary SVD, and
can be built into dedicated DFT-domain algorithms that not only
avoid a spectrally majorised solution in favour of the analytic
one, but may also yield singular values that are real-valued on
the unit circle. However, a real-valued rather than a complex-
valued solution for the singular values may come at the cost of
(i) an increased order of the analytic SVD factors (see Exam-
ple 2 and Fig. 2), and (ii) the need for oversampling by κ= 2
in case of spectral zeros whose multiplicities sum to an odd
value. It may therefore be advantageous to perform a modified
analytic SVD which permits complex-valued diagonal entries
as e.g. contemplated in [56]. Of particular interest may be the
combination of a dedicated SVD algorithm in [23] with an
analyticity-enforcing DFT-domain approach [27], [28]. Thus,
in addition to describing the existence, properties, and structure
of the analytic SVD, this paper motivates a number of new
algorithmic developments.
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