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Summary
This article concerns the spectral analysis of matrix-sequences which can be
written as a non-Hermitian perturbation of a given Hermitian matrix-sequence.
The main result reads as follows. Suppose that for every n there is a Hermi-
tian matrix Xn of size n and that {Xn}n ∼𝜆 f, that is, the matrix-sequence {Xn}n

enjoys an asymptotic spectral distribution, in the Weyl sense, described by a
Lebesgue measurable function f ; if ||Yn||2 = o(

√
n)with || ⋅ ||2 being the Schatten

2 norm, then {Xn + Yn}n ∼𝜆 f. In a previous article by Leonid Golinskii and the
second author, a similar result was proved, but under the technical restrictive
assumption that the involved matrix-sequences {Xn}n and {Yn}n are uniformly
bounded in spectral norm. Nevertheless, the result had a remarkable impact
in the analysis of both spectral distribution and clustering of matrix-sequences
arising from various applications, including the numerical approximation of par-
tial differential equations (PDEs) and the preconditioning of PDE discretization
matrices. The new result considerably extends the spectral analysis tools pro-
vided by the former one, and in fact we are now allowed to analyze linear PDEs
with (unbounded) variable coefficients, preconditioned matrix-sequences, and
so forth. A few selected applications are considered, extensive numerical exper-
iments are discussed, and a further conjecture is illustrated at the end of the
article.

K E Y W O R D S

approximation of PDEs, perturbation results, preconditioning, spectral distribution in the Weyl
sense

1 INTRODUCTION

A matrix-sequence {An}n is an ordered collection of complex matrices such that An ∈ Cn×n and n belongs to N+ or to an
infinite subset of N+, with C being the complex field and N+ being the set of positive integers. It is often observed in practice
that matrix-sequences arising from the numerical discretization of linear differential equations possess a spectral symbol,
that is, a measurable function f ∶ D ⊆ Rq → C, q ≥ 1 describing the asymptotic distribution of the matrices eigenvalues
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in the Weyl sense,1–3 meaning that

lim
n→∞

1
n

n∑
i=1

F(𝜆i(An)) =
1

𝜇q(D)∫D
F(f (x)) dx

holds for every continuous function F ∶ C → C with compact support, where D is a measurable set with finite Lebesgue
measure 𝜇q(D) > 0 and 𝜆i(An) are the eigenvalues of An. In this case we write

{An}n ∼𝜆f .

In this article, we prove new results regarding the spectral symbols of matrix-sequences which can be written as a
non-Hermitian perturbation of a given Hermitian matrix-sequence. We remind that the knowledge of the spectral sym-
bol has a practical impact in obtaining fine estimates on the convergence speed of Krylov methods,4,5 when we face
the problem of the efficient computation of the solution of large linear systems. Furthermore, especially in the con-
text of generalized locally Toeplitz (GLT) matrix-sequences2,6,7 arising in the approximation of PDEs, the computation
and analysis of the spectral symbol8–11 have been used for designing efficient solvers combining preconditioning and
multigrid/multiiterative methods (see References 12–16 and references therein).

From the point of view of the applications the main result of this article is the following.

Theorem 1. Let {Xn}n be a matrix-sequence such that each Xn is Hermitian and {Xn}n ∼𝜆 f, where f is a measurable function
defined on a subset of Rq for some q, with finite and positive Lebesgue measure. If ||Yn||2 = o(

√
n), with || ⋅ ||2 being the

Frobenius norm, then {Xn + Yn}n ∼𝜆 f.

In a previous article by Leonid Golinskii and the second author, a similar result was proved17,theorem 3.4, but under
the technical restrictive assumption that the involved matrix-sequences {Xn}n, {Yn}n are uniformly bounded in spectral
norm. Nevertheless, the result had a remarkable impact in the analysis of both spectral distribution and clustering of
matrix-sequences arising from various applications, including the study of the zeros of orthogonal polynomials18 and
the computation of the spectral symbol of matrix-sequences belonging to the algebra generated by Toeplitz sequences.19

However, the main application remains the numerical approximation of PDEs (and fractional PDEs) along with the pre-
conditioning of the related discretization matrices.12–14,20–24 Indeed, when the approximation of a differential operator
of order k is considered, the matrices coming from the discretization of the lower order operators are usually of negligi-
ble norm and hence, in general, {skAn}n is exactly a sequence that can be written as a Hermitian dominant part plus a
perturbation, where sk = 1 if k is even and sk is the imaginary unit if k is odd.

The new result (Theorem 1) extends in a substantial way the spectral analysis tools delivered by the former one,17

and in fact we are now allowed to analyze linear PDEs with (unbounded) variable coefficients. Recent studies have also
shown that this result is needed when studying the perturbations caused by nonregular domains and hence variation of
the discretization that describes the PDEs near the boundary. Furthermore, Theorem 1 has an impact on the GLT theory,
because it allows a generalization of property GLT2 in References 2, p. 4 and 7, p. 6 (see also Section 3). We remind that the
GLT matrix-sequences form a ∗-algebra of matrix-sequences including Toeplitz sequences generated by L1 symbols,1 their
algebra, and virtually any kind of matrix-sequences arising from the approximation by local methods (finite differences,
finite elements, finite volumes, isogeometric analysis,25 etc.) of variable-coefficient differential and fractional operators.

The article is organized as follows. The theory is developed in Section 2. Section 3 contains the essentials of the
GLT theory, for dealing with approximated differential operators. In Section 4, a few selected applications are consid-
ered. Extensive numerical experiments are discussed in Section 5 to show the correctness of the theory. A final Section 6
summarizes the findings of the article and a conjecture, supported by numerical experiments, is illustrated.

2 PERTURBATION RESULTS

In order to prove our main result, we need to introduce two distances on the space of matrix-sequences and cite some
famous bounds. First, we recall a known theorem due to Hoffman and Wielandt.26,theorem VI.4.1 It shows that the Schatten
2-norm (also called Frobenius norm) of the difference of normal matrices is bounded both from above and from below
by the 2-norm of their eigenvalue differences in some order. Due to this result, we can prove a second lemma where the
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case A is Hermitian and B is any matrix that is taken into consideration. In what follows, we denote by Sn the collection
of all permutations 𝜎 of the set {1,… ,n}.

Theorem 2 (Hoffman-Wielandt). Let A,B ∈ Cn×n be normal matrices. If 𝛼1, 𝛼2,… , 𝛼n and 𝛽1, 𝛽2,… , 𝛽n are the eigenval-
ues of A and B, respectively, then

min
𝜎∈Sn

n∑
i=1
|𝛼i − 𝛽𝜎(i)|2 ≤ ||A − B||22 ≤ max

𝜎∈Sn

n∑
i=1
|𝛼i − 𝛽𝜎(i)|2.

Moreover, if A is Hermitian, 𝛼1 ≥ 𝛼2 ≥ · · · ≥ 𝛼n and ℜ(𝛽1) ≥ ℜ(𝛽2) ≥ · · · ≥ ℜ(𝛽n), then

n∑
i=1
|𝛼i − 𝛽i|2 ≤ ||A − B||22 ≤

n∑
i=1
|𝛼i − 𝛽n−i|2.

Lemma 1. Let A be a Hermitian matrix and let B be any matrix with eigenvalues 𝛼1, 𝛼2,… , 𝛼n and 𝛽1, 𝛽2 … , 𝛽n, respectively.
Suppose that 𝛼1 ≥ 𝛼2 ≥ · · · ≥ 𝛼n and ℜ(𝛽1) ≥ ℜ(𝛽2) ≥ · · · ≥ ℜ(𝛽n). In this case,( n∑

i=1
|𝛼i − 𝛽i|2)1∕2

≤√2||A − B||2.
Proof. By the Schur normal form, we are allowed to perform a unitary base change in order to transform the matrix B
into an upper triangular matrix. Indeed, such transformation does not change the eigenvalues, the Schatten 2-norm and
the Hermitian nature of A. With an abuse of notations, we will continue to denote with A,B the matrices after the base
change. We can thus decompose B into

B = D + iN + R,

where D,N are real diagonal matrices, and R is a strictly upper triangular matrix. Moreover, any square matrix Z can be
decomposed in terms of its real and imaginary parts as Z = ℜ(Z) + iℑ(Z), whereℜ(Z) = 1

2
(Z + Z∗) andℑ(Z) = 1

2i
(Z − Z∗).

Therefore we decompose A − B in terms of its real and imaginary parts, namely,

X ∶= ℜ(A − B) = A − D − R + R∗

2
, Y ∶= ℑ(A − B) = −N − R − R∗

2i
.

Notice that N,R, and R∗ are elementwise disjoint, since N is diagonal, R is strictly upper triangular, and R∗ is strictly lower
triangular. Moreover, if we decompose 𝛽i = 𝜇i + i𝜈i, where 𝜇i and 𝜈i are real numbers, then we obtain

N = diag(𝜈i)i=1,…,n, D = diag(𝜇i)i=1,…,n,

and, as a consequence, we have

||Y ||22 = ||N||22 + 1
4
(||R||22 + ||R∗||22) = n∑

i=1
𝜈2

i + 1
2
||R||22. (1)

Using the triangular property of the norm, we can state that

||X||2 ≥ ||A − D||2 − 1
2
||R + R∗||2 = ||A − D||2 − 1√

2
||R||2, (2)

and due to Theorem 2, we know that

||A − D||22 ≥
n∑

i=1
(𝛼i − 𝜇i)2. (3)
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In addition, we can use the property of the trace Tr(XY) = Tr(YX) in the following sequence of identities:

||A − B||22 = ||X + iY ||22
= Tr
[
(X + iY )∗(X + iY )

]
= Tr [(X − iY )(X + iY )]
= Tr(X2) + Tr(Y 2) − i [Tr(XY ) − Tr(YX)]
= ||X||22 + ||Y ||22. (4)

Finally, by exploiting Equations (1)–(4), we prove the result as follows:∑
i
|𝛼i − 𝛽i|2 =

∑
i
(𝛼i − 𝜇i)2 +

∑
i
𝜈2

i

≤ ||A − D||22 + ||N||22
≤
(||X||2 + 1√

2
||R||2)2

+ ||Y ||22 − 1
2
||R||22

= ||X||22 +√2||R||2||X||2 + ||Y ||22
≤ ||X||22 + 2||Y ||2||X||2 + ||Y ||22
≤ 2
(||X||22 + ||Y ||22)

= 2||A − B||22.
▪

2.1 Distances on sequences

The next definition introduces a pseudometric on Cn, which is known as the optimal matching distance26,p. 153.

Definition 1. Given v,w ∈ Cn, the optimal matching distance is defined as

d(v,w) ∶= min
𝜎∈Sn

max
i=1,…,n

|vi − w𝜎(i)|.
We can modify the previous metric and introduce a new function d′ called modified optimal matching distance.

Definition 2. Given v,w ∈ Cn, the modified optimal matching distance is defined as

d′(v,w) ∶= min
𝜎∈Sn

min
i=1,…,n+1

{ i − 1
n

+ |v − w𝜎|↓i} ,
where

|v − w𝜎| = [|v1 − w𝜎(1)|, |v2 − w𝜎(2)|,… , |vn − w𝜎(n)|],
and |v − w𝜎|↓i is the ith largest element in |v − w𝜎|, with the convention |v − w𝜎|↓n+1 ∶= 0.

Given A ∈ Cn×n, let Λ(A) ∈ Cn be the vector of the eigenvalues. We can extend the distances d, d′ to matrices and
sequences in the following ways.

Definition 3. Let d(⋅, ⋅) and d′(⋅, ⋅) be as in Definitions 1 and 2, respectively. Given A,B ∈ Cn×n, we define

d(A,B) ∶= d(Λ(A),Λ(B)), d′(A,B) ∶= d′(Λ(A),Λ(B)).

Given two matrix-sequences {An}n, {Bn}n, we define

d({An}n, {Bn}n) ∶= lim sup
n→∞

d(An,Bn), d′({An}n, {Bn}n) ∶= lim sup
n→∞

d′(An,Bn).



BARBARINO and SERRA-CAPIZZANO 5 of 31

It was proved in References 27 that d′ induces a complete pseudometric on the space of matrix-sequences, and one of
the main result of the article is reported below.

Theorem 3. If {An}n ∼𝜆 f, then

d′({An}n, {Bn}n) = 0 ⇔ {Bn}n∼𝜆f .

Notice that d′({An}n, {Bn}n) ≤ d({An}n, {Bn}n) for every pair of sequences {An}n, {Bn}n, and hence we have the
following corollary.

Corollary 1. If {An}n ∼𝜆 f, then

d({An}n, {Bn}n) = 0 ⇒ {Bn}n∼𝜆f .

2.2 Proof of the main result

We are now ready to prove our main result (Theorem 1).

Proof of Theorem 1. Throughout this proof, the eigenvalues of Xn will be denoted by 𝜆1,… , 𝜆n and the eigenvalues of
Xn + Yn by 𝜇1,… , 𝜇n, where we suppose that 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆n and ℜ(𝜇1) ≥ ℜ(𝜇2) ≥ · · · ≥ ℜ(𝜇n). Due to Lemma 1, we
know that ( n∑

i=1
|𝜆i − 𝜇i|2)1∕2

≤√2||Xn − (Xn + Yn)||2 =
√

2||Yn||2.
If kn is the number of indices i ∈ {1,… ,n} such that |𝜆i − 𝜇i| > 𝜀 > 0, then

√
kn𝜀 ≤

( n∑
i=1
|𝜆i − 𝜇i|2)1∕2

≤√2||Yn||2 ⇒
kn

n
≤ 2

(||Yn||2√
n𝜀

)2
n→∞
−→ 0.

The last relation implies that

d′({Xn}n, {Xn + Yn}n) ≤ lim sup
n→∞

kn

n
+ 𝜀 = 𝜀

for every 𝜀 > 0, and Theorem 3 allows one to conclude that {Xn + Yn}n ∼𝜆 f. ▪

Corollary 2. Let {Xn}n be a matrix-sequence such that each Xn is Hermitian and {Xn}n ∼𝜆 f, where f is a measurable func-
tion defined on a subset of some Rq with finite and positive Lebesgue measure. Suppose that any of the following conditions
is met.

1. ||Yn||p = o(
√

n) with || ⋅ ||p being the Schatten p-norm for some 1 ≤ p ≤ 2.
2. ||Yn|| = o (1).

Then {Xn + Yn}n ∼𝜆 f.

Proof.

1. For any matrix A, we have ||A||p ≥ ||A||2 whenever 1 ≤ p ≤ 2. Hence,

||Yn||p = o(
√

n) ⇒ ||Yn||2 = o(
√

n),

and the thesis follows from Theorem 1.
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2. By definition of Schatten 2-norm,

||Yn||2 ≤√n||Yn|| = o(
√

n),

and the thesis follows from Theorem 1.
▪

We remind the hypotheses on the sequences in Reference 17, theorem 3.4, that is, ||Xn||, ||Yn|| ≤ C and ||Yn||1 = o(n).
Consequently, it is evident that Corollary 2 is not a direct generalization of Reference 17, theorem 3.4, since we changed the
perturbation norm from ||Yn||1 = o(n) to ||Yn||1 = o(

√
n), even if it permits to eliminate the assumption of boundedness

for both sequences. Nevertheless, another corollary of Theorem 1 has the same order of perturbation for {Yn}n, but it
reintroduces the upper bound condition for ||Yn||.
Corollary 3. Let {Xn}n be a matrix-sequence such that each Xn is Hermitian and {Xn}n ∼𝜆 f, where f is a measurable func-
tion defined on a subset of some Rq with finite and positive Lebesgue measure. Suppose that both the following conditions are
met.

1. ||Yn||1 = o(n) with || ⋅ ||1 being the Schatten 1-norm.
2. ||Yn|| = O(1).

Then {Xn + Yn}n ∼𝜆 f.

Proof. The condition ||Yn|| = O(1) ensures the existence of a constant C such that ||Yn|| < C for every n. If we fix 𝜀 > 0,
we can consider the number kn of singular values of Yn greater than 𝜀. The first condition leads to

kn𝜀 ≤ ||Yn||1 = o(n) ⇒ kn = o(n),

and therefore

||Yn||2√
n

≤
√

C2kn + 𝜀2(n − kn)√
n

=
√

(C2 − 𝜀2)kn

n
+ 𝜀2 = 𝜀 + o(1).

The last relation holds for every 𝜀 > 0, so we can conclude that ||Yn||2 = o(
√

n) and the thesis follows from Theorem 1. ▪

3 GLT SEQUENCES

Along with the concept of spectral symbol already introduced, we need to recall the notion of singular values sym-
bol, that is, a measurable function describing the asymptotic distribution of the singular values of a matrix-sequence.
Given a matrix-sequence {An}n, a singular value symbol associated with {An}n is a measurable function f ∶ D ⊆ Rq → C

satisfying

lim
n→∞

1
n

n∑
i=1

F(𝜎i(An)) =
1

𝜇q(D)∫D
F(|f (x)|) dx

for every continuous function F ∶ R → C with compact support, where D is a measurable set with finite Lebesgue measure
𝜇q(D) > 0 and 𝜎i(An) are the singular values of An. In this case we write

{An}n ∼ 𝜎f .

In order to understand the applications that we will present below, we need to introduce a handy tool devised for solving
the problem of computing/analyzing the spectral distribution of matrices arising from the numerical discretization of
integrodifferential equations. It is often observed in practice that matrix-sequences {An}n arising from the discretization
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of such equations belong to the class of the so-called GLT sequences, and in particular they enjoy an asymptotic singular
value and eigenvalue distribution as n → ∞; we refer the reader to Reference 28 for a nice introduction to this subject and
to References 2,3,7, and 29–33 for more advanced studies. Here we simply summarize the main properties of the theory
of GLT sequences, both in the case where the considered integrodifferential equation is univariate and multivariate.

3.1 Unidimensional case

A GLT sequence {An}n is a special matrix-sequence equipped with one of its singular values symbols𝜅, which is referred to
as the GLT symbol of {An}n and is defined over the domain D = [0, 1] × [−𝜋, 𝜋]. A point of D is often denoted by (x, 𝜃), and
we use the notation {An}n ∼GLT 𝜅 to indicate that {An}n is a GLT sequence with symbol 𝜅. The symbol of a GLT sequence
is unique in the sense that if {An}n ∼GLT 𝜅 and {An}n ∼GLT 𝜉 then 𝜅 = 𝜉 almost everywhere (a.e.) in [0, 1] × [−𝜋, 𝜋]. The
main properties of GLT sequences are summarized below.

GLT 1. If {An}n ∼GLT 𝜅 then {An}n ∼𝜎 𝜅. If {An}n ∼GLT 𝜅 and each An is Hermitian then {An}n ∼𝜆 𝜅.
GLT 2. If {An}n ∼GLT 𝜅 and An = Xn + Yn, where

• every Xn is Hermitian,
• ||Xn||, ||Yn|| ≤ C for some constant C independent of n,
• n−1||Yn||1 → 0,
then {An}n ∼𝜆 𝜅.

GLT 3. Here we list three fundamental examples of GLT sequences.

• Given a function f in L1([−𝜋, 𝜋]), its associated Toeplitz sequence is {Tn(f)}n, where

Tn(f ) = [fi−j]n
i,j=1, fk = 1

2𝜋 ∫
𝜋

−𝜋
f (𝜃)e−ik𝜃 d𝜃.

{Tn(f)}n is a GLT sequence with symbol 𝜅(x, 𝜃) = f(𝜃).
• Given any a.e. continuous function a ∶ [0, 1] → C, its associated diagonal sampling sequence is {Dn(a)}n,

where

Dn(a) = diagi=1,…,na
( i

n

)
.

{Dn(a)}n is a GLT sequence with symbol 𝜅(x, 𝜃) = a(x).
• A zero-distributed sequence is a matrix-sequence such that {Zn}n ∼𝜎 0, that is,

lim
n→∞

1
n

n∑
i=1

F(𝜎i(An)) = F(0),

for every continuous function F ∶ R → C with compact support. Any zero-distributed sequence is a GLT
sequence with symbol 𝜅(x, 𝜃) = 0.

GLT 4. If {An}n ∼GLT 𝜅 and {Bn}n ∼GLT 𝜉, then

• {A∗
n}n ∼GLT𝜅, where A∗

n is the conjugate transpose of An,
• {𝛼An + 𝛽Bn}n ∼GLT 𝛼𝜅 + 𝛽𝜉 for all 𝛼, 𝛽 ∈ C,
• {AnBn}n ∼GLT 𝜅𝜉.

GLT 5. If {An}n ∼GLT 𝜅 and 𝜅 ≠ 0 a.e., then {A†
n}n ∼GLT𝜅

−1, where A†
n is the Moore–Penrose pseudoinverse of An.

GLT 6. If {An}n ∼GLT 𝜅 and each An is Hermitian, then {f(An)}n ∼GLT f(𝜅) for all continuous functions f ∶ C → C.
GLT 7. {An}n ∼GLT 𝜅 if and only if there exist GLT sequences {Bn,m}n ∼GLT 𝜅m such that 𝜅m converges to 𝜅 in measure

and {Bn,m}n
a.c.s.
−→ {An}n as m → ∞.
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GLT 8. Suppose {An}n ∼GLT 𝜅 and {Bn,m}n ∼GLT 𝜅m, where both An and Bn,m have the same size. Then, {Bn,m}n
a.c.s.
−→ {An}n

as m → ∞ if and only if 𝜅m converges to 𝜅 in measure.
GLT 9. If {An}n ∼GLT 𝜅 then there exist functions ai,m, fi,m, i = 1,… ,Nm, such that

• ai,m ∈ C∞([0, 1]) and fi,m is a trigonometric polynomial,
•
∑Nm

i=1 ai,m(x)fi,m(𝜃) converges to 𝜅(x, 𝜃) a.e.,

•
{∑Nm

i=1 Dn(ai,m)Tn(fi,m)
}

n

a.c.s.
−→ {An}n as m → ∞.

It will not be necessary to introduce the a.c.s. convergence used in GLT 7–GLT 9, but we refer the reader to Reference
34 for the original definition and to References 2, chap 5, 33, and 35 for a detailed exploration of the topic.

3.2 Multidimensional case

Similarly to the one-dimensional case, a multilevel GLT sequence {An}n is a sequence of matrices with increasing size,
equipped with one of its singular values symbols 𝜅, which is referred to as the GLT symbol and is defined over a domain
D of the form [0, 1]q × [−𝜋, 𝜋]q, q ≥ 1. A point of D = [0, 1]q × [−𝜋, 𝜋]q is usually denoted by (x,𝜽), where x = (x1,… , xq)
and 𝜽 = (𝜃1,… , 𝜃q) are vectors of variables.

When dealing with multilevel sequences, matrices, and vectors, we will use the multiindex notation. A multiindex
i ∈ Zq, also called a q-index, is simply a vector in Zq; its components are denoted by i1,… , iq.

• 0, 1, 2, … are the vectors of all zeros, all ones, all twos, … (their size will be clear from the context).
• For any q-index m, N(m) =

∏q
j=1 mj and m → ∞ means that min(m) = min

j=1,…,q
mj → ∞.

• If h,k are q-indices, h ≤ k means that hr ≤ kr for all r = 1,… , q, while h ≰ k means that hr > kr for at least one r ∈
{1,… , q}.

• If h,k are q-indices such that h ≤ k, the multiindex range h,… ,k is the set {j ∈ Zq ∶ h ≤ j ≤ k}. We assume for the
multiindex range h,… ,k the standard lexicographic ordering:

[
…
[ [

(j1,… , jq)
]

jq=hq,…,kq

]
jq−1=hq−1,…,kq−1

…
]

j1=h1,…,k1

. (5)

For instance, in the case q = 2 the ordering is

(h1, h2), (h1, h2 + 1), … , (h1, k2), (h1 + 1, h2), (h1 + 1, h2 + 1), … , (h1 + 1, k2),
… , (k1, h2), (k1, h2 + 1), … , (k1, k2).

• When a q-index j varies over a multiindex range h,… ,k (this is sometimes written as j = h,… ,k), it is understood that j
varies from h to k following the specific ordering (5). For instance, if m ∈ Nd and if we write x = [xi]m

i=1, then x is a vector
of size N(m) whose components xi, i = 1,… ,m, are ordered in accordance with Equation (5): the first component is
x1 = x(1,… ,1,1), the second component is x(1,… ,1,2), and so on until the last component, which is xm = x(m1,…,mq). Similarly,
if X = [xij]m

i,j=1, then X is a N(m) × N(m) matrix whose components are indexed by two d-indices i, j, both varying from
1 to m according to the lexicographic ordering (5).

• Operations involving q-indices that have no meaning in the vector space Zq must always be interpreted in the
componentwise sense. For instance, ij = (i1j1,… , iqjq), i∕j = (i1∕j1,… , iq∕jq), and so forth.

In this context, by a sequence of matrices (or matrix-sequence), we mean a sequence of the form {An}n, where n =
(n1,… ,nd) depends on n and n → ∞ as n → ∞. In many cases, it is natural to assume that n = nc, where c is a vector of
rational constants and n diverges to infinity. It is always understood that a matrix An parameterized by a q-index n has
dimension N(n) = n1 ⋅… ⋅ nq; its entries will be indexed by two q-indices i, j.
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The main theoretical properties of one-dimensional GLT sequences GLT 1–GLT 9 still hold in the multidimensional
context, upon substituting the sequences {An}n with the multilevel sequences {An}n. The only exception is GLT 3, that
has to be rewritten in order to include q-level Toeplitz matrices generated by an L1 q-variate function and q-level diagonal
sampling matrices associated with an a.e. continuous q-variate function.

GLT 3. Here we list three important examples of GLT sequences.
• Given a function f in L1([−𝜋, 𝜋]q), its associated Toeplitz sequence is {Tn(f)}n, where the elements are

multidimensional Fourier coefficients of f :

Tn(f ) = [fi−j]n
i,j=1, fk = 1

(2𝜋)q ∫
𝜋

−𝜋
f (𝜽)e−ik⋅𝜽 d𝜃.

{Tn(f)}n is a GLT sequence with symbol 𝜅(x,𝜽) = f(𝜽).
• Given an a.e. continuous function, a ∶ [0, 1]q → C, its associated diagonal sampling sequence {Dn(a)}n is

defined as

Dn(a) = diag
({

a
(

i
n

)}n

i=1

)
.

{Dn(a)}n is a GLT sequence with symbol 𝜅(x,𝜽) = a(x).
• Any zero-distributed sequence {Zn}n ∼𝜎 0 is a GLT sequence with symbol 𝜅(x,𝜽) = 0 .

In the next sections, we will see examples of matrix-sequences arising from relevant applications in which Theorem
1 is essential for deducing the eigenvalue distribution.

4 A FEW APPLICATIONS

The section is divided in four subsections. Subsections 4.1 and 4.2 deal with matrix-sequences coming from the approxi-
mation of the same second-order one-dimensional differential equation, by using basic finite differences and linear finite
elements, respectively. Subsections 4.3 and 4.4 are concerned with matrix-sequences coming from the approximation of
a d dimensional PDE and a preconditioning problem, respectively. We stress that a similar analysis can be performed in
several other approximation contexts, following the same steps and with the very same tools: higher order finite elements,
higher order finite differences, isogeometric analysis, finite volumes, and so forth. With regard to the finite volumes
approximation class, we recall that for convection dominated convection-diffusion-reaction problems, finite volumes
represent the most appropriate choice.

Notice that the applications presented here have all been discussed in previous works, as Reference 2, but with different
hypotheses on the coefficients of the PDEs. In particular, up till now, we had to suppose that the variable coefficients of
the differential equations were bounded, since we needed a bound to the spectral norm of the matrices. Thanks to the
powerful and more general hypotheses of Theorem 1, we are now able to find spectral properties of PDE discretizations
even with unbounded variable coefficients.

4.1 Finite differences: The one-dimensional setting

We consider the second-order differential equation with Dirichlet boundary conditions{
−(a(x)u′(x))′ + b(x)u′(x) + c(x)u(x) = f (x), x ∈ (0, 1),
u(0) = 𝛼, u(1) = 𝛽.

(6)

The well-posedness of the problem is guaranteed when a(x) ∈ C1(0, 1), and the uniqueness and existence of the solu-
tion are guaranteed in the case a(x) > 0, b(x) ≥ 0 and with continuous functions b(x), c(x) on [0, 1], and f(x) ∈ L2([0, 1]).36

Both the elliptic and the parabolic equations with unbounded coefficients have been analyzed recently by analytical and
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probabilistic methods. For a discussion about the conditions of existence and uniqueness, even in the multidimensional
case (18), we refer to References 37–40 and references therein. For the GLT analysis presented in this section, we only
require the following assumptions.

• a(x), c(x) are real-valued functions, continuous a.e., defined in [0, 1],
• b(x) is a real-valued function on [0, 1], such that |b(x)x𝛼| is bounded for some 𝛼 < 3∕2,

while f(x) is a general function.
We employ central second-order finite differences for approximating the given equation. We define the stepsize h =

1
n+1

and the points xk = kh for k belonging to the interval [0,n + 1]. For every j = 1,… ,n we have

−(a(x)u′(x))′|x=xj ≈ −
a
(

xj+ 1
2

)
u′
(

xj+ 1
2

)
− a
(

xj− 1
2

)
u′
(

xj− 1
2

)
h

≈ −
a
(

xj+ 1
2

)
u(xj+1)−u(xj)

h
− a
(

xj− 1
2

)
u(xj)−u(xj−1)

h

h

=
−a
(

xj+ 1
2

)
u(xj+1) +

(
a
(

xj+ 1
2

)
+ a
(

xj− 1
2

))
u(xj) − a

(
xj− 1

2

)
u(xj−1)

h2

b(x)u′(x)|x=xj ≈ b(xj)
u(xj+1) − u(xj−1)

2h
c(x)u(x)|x=xj = c(xj)u(xj).

Let ak ∶= a(x k
2
) for any k ∈ [0, 2n + 2] and set bj ∶= b(xj), cj ∶= c(xj), fj ∶= f(xj) for every j = 0,… ,n + 1. We compute

approximations uj of the values u(xj) for j = 1,… ,n by solving the following linear system

An

⎛⎜⎜⎜⎜⎝
u1
u2
⋮

un−1
un

⎞⎟⎟⎟⎟⎠
+ Bn

⎛⎜⎜⎜⎜⎝
u1
u2
⋮

un−1
un

⎞⎟⎟⎟⎟⎠
+ Cn

⎛⎜⎜⎜⎜⎝
u1
u2
⋮

un−1
un

⎞⎟⎟⎟⎟⎠
= h2

⎛⎜⎜⎜⎜⎝
f1 + 1

h2 a1𝛼 + 1
2h

b1𝛼

f2
⋮

fn−1
fn + 1

h2 a2n+1𝛽 − 1
2h

bn𝛽

⎞⎟⎟⎟⎟⎠
,

where

An =

⎛⎜⎜⎜⎜⎝
a1 + a3 −a3
−a3 a3 + a5 −a5

⋱ ⋱ ⋱
−a2n−3 a2n−3 + a2n−1 −a2n−1

−a2n−1 a2n−1 + a2n+1

⎞⎟⎟⎟⎟⎠
, (7)

Bn = h
2

⎛⎜⎜⎜⎜⎝
0 b1

−b2 0 b2
⋱ ⋱ ⋱

−bn−1 0 bn−1
−bn 0

⎞⎟⎟⎟⎟⎠
, Cn = h2diag(c1,… , cn). (8)

In the case where a(x) ≡ 1 and b(x) ≡ 1, in accordance with the notation of axiom GLT 3 in Subsection 3.1, we obtain
the basic Toeplitz structures

Kn = Tn(2 − 2 cos(𝜃)) =

⎛⎜⎜⎜⎜⎝
2 −1
−1 2 −1

⋱ ⋱ ⋱
−1 2 −1

−1 2

⎞⎟⎟⎟⎟⎠
, (9)
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Hn = Tn(i sin(𝜃)) = 1
2

⎛⎜⎜⎜⎜⎝
0 1
−1 0 1

⋱ ⋱ ⋱
−1 0 1

−1 0

⎞⎟⎟⎟⎟⎠
, (10)

with An = Kn and Bn = hHn. In this case, it is also useful consider the first-order noncentral discretization operators,
which, after a proper scaling, can be written as

K+
n = Tn(1 − e−i𝜃) =

⎛⎜⎜⎜⎜⎝
1 −1

1 −1
⋱ ⋱

1 −1
1

⎞⎟⎟⎟⎟⎠
,

K−
n = Tn(1 − ei𝜃) =

⎛⎜⎜⎜⎜⎝
1
−1 1

⋱ ⋱ ⋱
−1 1

−1 1

⎞⎟⎟⎟⎟⎠
. (11)

By setting

D+
n (a) ∶= diag(a3, a5,… , a2n+1), D−

n (a) ∶= diag(a1, a3,… , a2n−1),

the matrix-sequences {D+
n (a)}n and {D−

n (a)}n are GLT sequences with symbol a(x) and the proof is virtually identical to
that for showing {Dn(a)}n ∼GLT a(x).2 As a consequence of the algebra structure of GLT sequences, that is, using axioms
GLT 3 and GLT 4, we obtain

An = D+
n (a)K+

n + D−
n (a)K−

n ⇒ {An}n ∼GLTa(x)(2 − 2 cos(𝜃)).

Furthermore, regarding the matrices Cn, we have

{Dn(c)} ∼GLTc(x) {n−2In}n ∼GLT0 ⇒ {Cn}n = {n−2Dn(c)}n ∼GLT0,

which, again by axioms GLT 3 and GLT 4, implies that {An}n + {Cn}n ∼GLTa(x)(2 − 2 cos(𝜃)). By exploiting the real
symmetry of all the considered matrices and in view of axiom GLT 1, we obtain

{An}n + {Cn}n ∼ 𝜆a(x)(2 − 2 cos(𝜃)).

For the matrices Bn, taking into account Theorem 1, we are interested in estimating their Schatten 2-norm (Frobenius
norm in the numerical analysis community). Suppose that there exists a constant C > 0 such that |b(x)x𝛼| < C. If 𝛼 < 1,
then |b(x)x| ≤ |b(x)x𝛼| < C, so we analyze only the case 𝛼 ≥ 1. We have

||Bn||22 ≤ h2

2

n∑
i=1

b2
i = h2

2

n∑
i=1

b(ih)2 ≤ C2h2

2

n∑
i=1

(ih)−2𝛼 = C2h2−2𝛼

2

n∑
i=1

i−2𝛼. (12)

Since −2𝛼 ≤ −2, we can estimate the last sum with the integral of x2𝛼+1, in the following way

n∑
i=1

i−2𝛼 ≤ 1 + ∫
n

1
x−2𝛼 dx = 2𝛼 − n−2𝛼+1

2𝛼 − 1
. (13)

Substituting (13) into (12), we obtain
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||Bn||22 ≤ C2h2−2𝛼

2

n∑
i=1

i−2𝛼 ≤ C2𝛼

2𝛼 − 1
h2−2𝛼 − C2

4𝛼 − 2
h,

which implies

||Bn||2 = O(n𝛼−1). (14)

Observe that 3
2
> 𝛼 leads to ||Bn||2 = o(

√
n). By invoking Theorem 1, we simply conclude

{An}n + {Bn}n + {Cn}n ∼ 𝜆a(x)(2 − 2 cos(𝜃)),

with {Xn}n = {An}n + {Cn}n, {Yn}n = {Bn}n, and where the matrix-sequence {Bn}n is nonsymmetric.

4.2 Finite elements: The one-dimensional setting

Let us consider the same Equation (6) as in the previous subsection, but with slightly different conditions on the variable
coefficients since we assume a(x), b(x), c(x) simply Lebesgue integrable, while f(x) is a generic function. We write it in
weak form {∫ 1

0 a(x)u′(x)w′(x) + b(x)u′(x)w(x) + c(x)u(x)w(x)dx = ∫ 1
0 f (x)w(x) dx, x ∈ (0, 1),

u(0) = 0, u(1) = 0,

where w(x) is allowed to belong to the Sobolev space H1
0([0, 1]). We set h = 1

n+1
and xk = kh for k integer in the interval

[0,n + 1]. We consider the so-called hat functions

𝜑i,n(x) =
1
h
[
(x − xi−1)𝜒[xi−1,xi)(x) + (xi+1 − x)𝜒[xi,xi+1)(x)

]
, i = 1,… ,n,

and assume that the functions u(x) and w(x) belong to the linear space spanned by 𝜑i(x), that is,

u(x) =
n∑

j=1
uj,n𝜑j,n(x), w(x) =

n∑
i=1

wi,n𝜑i,n(x).

By substituting these expressions in the weak form, we obtain that the integral

∫
1

0
a(x)u′(x)w′(x) + b(x)u′(x)w(x) + c(x)u(x)w(x) dx

is approximated by

n∑
i,j=1

uj,nwi,n ∫
1

0
a(x)𝜑′

i,n(x)𝜑
′
j,n(x) dx +

n∑
i,j=1

uj,nwi,n ∫
1

0
b(x)𝜑i,n(x)𝜑′

j,n(x) dx

+
n∑

i,j=1
uj,nwi,n ∫

1

0
c(x)𝜑i,n(x)𝜑j,n(x) dx,

while

∫
1

0
f (x)w(x) dx =

n∑
j=1

wi,n ∫
1

0
f (x)𝜑i,n(x) dx.

Therefore, if un denotes the vector of the unknowns ui,n, wn the vector of the values wi,n, and
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An =
(
∫

1

0
a(x)𝜑′

i,n(x)𝜑
′
j,n(x)dx

)
i,j
,

Bn =
(
∫

1

0
b(x)𝜑i,n(x)𝜑′

j,n(x)dx
)

i,j
,

Cn =
(
∫

1

0
c(x)𝜑i,n(x)𝜑j,n(x)dx

)
i,j
,

f n =
(
∫

1

0
f (x)𝜑i,n(x)dx

)
i
,

we deduce that the relationships

(wn)T(An + Bn + Cn)un = (wn)Tf n

have to be satisfied for every wn. The latter is clearly equivalent to the linear system

(An + Bn + Cn)un = f n.

We notice that

∫
1

0
a(x)𝜑′

i,n(x)𝜑
′
j,n(x) = (n + 1)2

⎧⎪⎪⎨⎪⎪⎩

0 |i − j| > 1
− ∫ xi+1

xi
a(x) dx j = i + 1

− ∫ xi
xi−1

a(x) dx i = j + 1
∫ xi+1

xi−1
a(x) dx i = j

∫
1

0
b(x)𝜑i,n(x)𝜑′

j,n(x) = (n + 1)

⎧⎪⎪⎨⎪⎪⎩

0 |i − j| > 1
− ∫ xi

xi−1
b(x)𝜑i,n(x) dx i = j + 1

∫ xi+1
xi

b(x)𝜑i,n(x) dx j = i + 1
∫ xi

xi−1
b(x)𝜑i,n(x) dx − ∫ xi+1

xi
b(x)𝜑i,n(x) dx i = j

Let us compute the Schatten 2-norm of Bn:

1
n + 1

||Bn||2 = 1
n + 1

√√√√ n∑
i,j=1

(Bn)2
i,j ≤ 1

n + 1

n∑
i,j=1
|(Bn)i,j|

=
n−1∑
i=1

|||||∫
xi+1

xi

b(x)𝜑i,n(x) dx
||||| +

n∑
i=2

|||||∫
xi

xi−1

b(x)𝜑i,n(x) dx
|||||

+
n∑

i=1

|||||∫
xi

xi−1

b(x)𝜑i,n(x) dx − ∫
xi+1

xi

b(x)𝜑i,n(x) dx
|||||

≤ ∫
x1

x0

|b(x)|𝜑1,n(x) dx + ∫
xn+1

xn

|b(x)|𝜑n,n(x) dx

+
n−1∑
i=1

∫
xi+1

xi

2|b(x)|(𝜑i+1,n(x) + 𝜑i,n(x)) dx

≤ 2
n∑

i=0
∫

xi+1

xi

|b(x)|dx = 2||b(x)||1. (15)

From the inequalities above, we have
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‖‖‖‖ 1
n + 1

Bn
‖‖‖‖2

= o(
√

n).

The matrices An and Cn are all real symmetric and, according to Reference 2, exercise 10.4, we already know that{ 1
n + 1

(An + Cn)
}

n
∼GLTa(x)(2 − 2 cos(𝜃))

and { 1
n + 1

(An + Cn)
}

n
∼ 𝜆a(x)(2 − 2 cos(𝜃)).

In conclusion, by applying Theorem 1 with {Xn}n = { 1
n+1

(An + Cn)}n and {Yn}n = { 1
n+1

Bn}n, we deduce the spectral
distribution of the complete (nonsymmetric) matrix-sequence, that is,{ 1

n + 1
An

}
n
+
{ 1

n + 1
Bn

}
n
+
{ 1

n + 1
Cn

}
n
∼𝜆a(x)(2 − 2 cos(𝜃)).

4.2.1 Minimal hypothesis

In the previous section, we actually proved that 1
n+1
||Bn||2 = O(1), so we still have to exploit the full power of Theorem 1.

Suppose that b(x) is a function on [0, 1] with a single discontinuity point in zero of order 𝛼, in the sense that

|b(x)x−𝛼| ≤ C, ∀x > 0,

where C > 0 is a constant. To ensure that the matrix Bn is well defined, we have to check at least that every element is
finite. In the case 𝛼 > −2 we have|||||∫

x1

x0

𝜑1(x)b(x)
||||| ≤ C ∫

x1

x0

𝜑1,n(x)x𝛼 dx = C
h ∫

h

0
x𝛼+1 dx < ∞.

As a consequence, if 𝛼 > −2 then the matrices Bn are well defined. Furthermore, if 𝛼 > −1 then the function |b(x)| belongs
to L1(0, 1) and this case has already been addressed above. Here we want to explore the case −2 < 𝛼 < −1. With reference
to the chain of equalities and inequalities in (15), we have

1
n + 1

||Bn||2 ≤ ∫
x1

x0

|b(x)|𝜑1,n(x) dx + ∫
xn+1

xn

|b(x)|𝜑n,n(x) dx

+
n−1∑
i=1

∫
xi+1

xi

2|b(x)|(𝜑i+1,n(x) + 𝜑i,n(x)) dx

≤ ∫
x1

x0

|b(x)|𝜑1,n(x) dx + 2∫
xn+1

x1

|b(x)| dx

≤ C
h ∫

h

0
x𝛼+1 dx + 2C ∫

1

h
x𝛼 dx = O(n−𝛼−1). (16)

With the same computation, it is easy to show that if 𝛼 = −1 then 1
n+1
||Bn||2 = O(log(n)). Observe that − 3

2
< 𝛼 leads

to 1
n+1
||Bn||2 = o(

√
n) and therefore, by Theorem 1, we conclude again that

{ 1
n + 1

An

}
n
+
{ 1

n + 1
Bn

}
n
+
{ 1

n + 1
Cn

}
n
∼𝜆a(x)(2 − 2 cos(𝜃)).
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4.3 Finite differences: A second-order approximation for a linear PDE in q dimensions

In this subsection, we extend to the q-dimensional setting the study carried out in Subsection 4.1 and we indicate a
general framework for treating q-dimensional problems, including also a systematic recipe for extending the results of
Subsection 4.2. One of the main contributions relies on the statement that no substantial difference is encountered when
passing from 1 to q space dimensions. Of course, the q-dimensional GLT analysis involves several technicalities, but it
is conceptually identical to the one-dimensional GLT analysis. The most important technicality which is encountered
when passing from 1 to q space dimensions is the multiindex language, which allows one to maintain the one-dimensional
notation by simply turning some letters (n, i, j, etc.) in boldface (n, i, j, etc.). Regarding notation we remind that ◦ will
indicate the componentwise product between matrices of the same size, while ⊗ will indicate the Kronecker product
between matrices of arbitrary possibly different sizes.

Before starting, let us outline the main general ideas of a q-dimensional GLT analysis. Consider for example a linear
second-order PDE such as {

−∇ ⋅ A∇u + b ⋅ ∇u + cu = f , in (0, 1)q,
u = 0, on 𝜕((0, 1)q), (17)

where A ∶ [0, 1]q → Rq×q is a symmetric matrix of functions ahk. As in the one-dimensional case, we should assume at
least ahk ∈ C1([0, 1]q) to ensure the well-posedness of problem (17). For the existence and uniqueness of the solution,
we should assume all the coefficient to be bounded, the matrix A(x) to be symmetric and positive definite with the least
eigenvalue greater than a fixed value 𝜆0 > 0, and that 0 is not an eigenvalue of the corresponding differential operator.41

For the case of unbounded coefficients, we again point to the references in Section 4.1. For the GLT analysis, we only
need the conditions that ahk are continuous a.e. on [0, 1]q. b ∶ [0, 1]q → Rq is a vector of real-valued functions bk(x) on
[0, 1]q such that |bk(x)(x1 … xq)𝛼| is bounded by the same constant for all indices k for some exponent 1

q
+ 1

2
> 𝛼. We also

require that c is a real-valued a.e. continuous function on [0, 1]q. We now observe that (17) is equivalent to

⎧⎪⎨⎪⎩
−

q∑
h,k=1

𝜕

𝜕xh

(
ahk

𝜕u
𝜕xk

)
+

d∑
k=1

bk
𝜕u
𝜕xk

+ cu = f , in (0, 1)q,

u = 0, on 𝜕((0, 1)q).
(18)

Assume we discretize (18) by a local method; to fix the ideas, here we will assume that such method is a finite dif-
ference (FD) scheme. The resulting discretization matrices An are parametrized by a multiindex n = (n1,… ,nq), where
ni is related to the discretization step hi in the ith direction, and ni → ∞ if and only if hi → 0 (usually, hi ∼ 1∕ni). In
order to simplify the notation, we choose ni = n for some n ∈ N , that is, n = (n,… ,n) and, consequently, {An}n is a
matrix-sequence. The matrix An can be decomposed according to the terms of the PDE as follows:

An =
q∑

h,k=1
Kn,hk(ahk) +

q∑
k=1

Hn,k(bk) + In(c),

where Kn,hk(a), Hn,k(b), and In(c) are the matrices resulting from the considered FD discretization of the differential
operators

− 𝜕

𝜕xh

(
a 𝜕u
𝜕xk

)
, b 𝜕u

𝜕xk
, cu,

respectively. It usually turns out that, after a suitable normalization that we ignore in this discussion, the matrix-sequence
{Hn,k(b) + In(c)}n associated with the lower order differential operators of the PDE (18) is zero-distributed and the GLT
analysis of {An}n reduces to the GLT analysis of the matrix-sequence{ q∑

h,k=1
Kn,hk(ahk)

}
n
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associated with the higher order differential operator of the PDE (18). Moreover, the sequences {Kn,hk(ahk)}n often turns
out to be GLT sequences of the form

Kn,hk(ahk) = Dn(ahk)Tn(phk) + Zn,hk, {Zn,hk}n∼𝜎0,

where phk is the (separable) trigonometric polynomial that represents the FD formula used to discretize the derivative
− 𝜕2u

𝜕xh𝜕xk
. In conclusion, we have

{Kn,hk}n∼GLTahk(x)phk(𝜽) (19)

and, consequently,

{An}n ∼GLT

q∑
h,k=1

ahk(x)phk(𝜽) = 1(A(x)◦H(𝜽))1T , (20)

where

Hhk = phk, h, k = 1,… , q.

From (20) and Theorem 1, we arrive at the distribution relation

{An}n∼𝜆

q∑
h,k=1

ahk(x)phk(𝜽) = 1(A(x)◦H(𝜽))1T .

In particular, with respect to the original result by Golinskii and the second author,17,theorem 3.4 Theorem 1 allows us to
relax the assumptions on A(x) under which the previous relation holds. More specifically, the coefficients of A(x) can now
be supposed to be unbounded.

We note the formal analogy between the expression of the symbol 1(A(x)◦H(𝜽))1T and the expression of the higher
order differential operator 1(A◦Hu)1T in Equation (18). Because of this analogy, and especially because of (19), the matrix
H(𝜽) in the Fourier variables 𝜽 is usually referred to as the “symbol of the (negative) Hessian operator,” although this
terminology is clearly not rigorous from the mathematical viewpoint. If we change the FD formulas to discretize the
derivative − 𝜕2u

𝜕xh𝜕xk
, the symbol remains the same except for the matrix H(𝜽), which now collects the (separable) trigono-

metric polynomials associated with the new FD formulas—or with the “formulas” associated with the considered local
method, which may be for example the finite element (FE) method or the isogeometric analysis (IgA). The only possible
difference when passing from FDs to other local methods consists in the choice of the proper scaling, which depends only
on the fact that either a Galerkin method (FEs, Galerkin IgA, etc.) or a collocation method (FDs, collocation IgA, etc.) is
used: We remark that a slightly different situation occurs when considering finite volumes (see References 42 and 43 for
a GLT analysis of matrix-sequences arising in the context of discretizations by finite volumes). This discussion motivates
why we do not generalize explicitly the analysis in Subsection 4.2: It would be a plain combination of the analysis for
finite elements in one dimension and the analysis in the present subsection.

4.3.1 FD discretization of convection–diffusion–reaction equations

We consider the classical central FD discretizations of Equation (18). We choose n ∈ Nq and we set h = 1
n+1

and xj = jh
for j = 0,… ,n + 1.* Let ek be the kth vector of the canonical basis of Rq and notice that xj + shkek = xj+sek . Then, for
j = 1,… ,n, we can approximate the terms appearing in (18) as follows:

*Operations involving q-indices in Zq must be interpreted in the componentwise sense. In the present case, given n = (n1,… ,nq), the vector of
discretization steps h = 1

n+1
and the grid points xj = jh are given by h =

(
1

n1+1
,… ,

1
nq+1

)
= (h1,… , hq) and xj = (j1h1,… , jqhq).
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𝜕

𝜕xk

(
akk

𝜕u
𝜕xk

)|||||x=xj

≈
akk

𝜕u
𝜕xk

(xj+ek∕2) − akk
𝜕u
𝜕xk

(xj−ek∕2)

hk

≈ akk(xj+ek∕2)
u(xj+ek ) − u(xj)

h2
k

− akk(xj−ek∕2)
u(xj) − u(xj−ek )

h2
k

(21)

𝜕

𝜕xh

(
ahk

𝜕u
𝜕xk

)|||||x=xj

≈
ahk

𝜕u
𝜕xk

(xj+eh) − ahk
𝜕u
𝜕xk

(xj−eh)

2hh

≈ ahk(xj+eh)
u(xj+eh+ek ) − u(xj+eh−ek )

4hhhk
− ahk(xj−eh)

u(xj−eh+ek ) − u(xj−eh−ek )
4hhhk

(22)

bk
𝜕u
𝜕xk

||||x=xj

≈ bk(xj)
u(xj+ek ) − u(xj−ek )

2hk
, (23)

cu|x=xj = c(xj)u(xj), (24)

for h, k = 1,… , q, h ≠ k. The evaluations u(xj) of the solution of Equation (18) at the grid points xj are approximated by
the values uj, where uj = 0 for j ∈ {0,… ,n + 1}∖{1,… ,n}, and the vector u = (u1,… ,un)T is the solution of the linear
system

−
q∑

k=1
akk(xj+ek∕2)

uj+ek − uj

h2
k

− akk(xj−ek∕2)
uj − uj−ek

h2
k

−
q∑

h,k=1
h≠k

ahk(xj+eh)
uj+eh+ek − uj+eh−ek

4hhhk
− ahk(xj−eh)

uj−eh+ek − uj−eh−ek

4hhhk

+
q∑

k=1
bk(xj)

uj+ek − uj−ek

2hk
+ c(xj)uj = f (xj), j = 1,… ,n. (25)

We now want to understand the structure of the matrix An associated with the linear system (25). This is clearly
important for the GLT analysis of the next paragraph. Luckily, the multiindex language allows us to provide a compact
and easy-to-manage expression of this matrix. First, we note that An admits the following natural decomposition:

An =
q∑

k=1

1
h2

k

(
diagj=1,…,nakk(xj+ek∕2)

)
K+

n,kk (26)

+
q∑

k=1

1
h2

k

(
diagj=1,…,nakk(xj−ek∕2)

)
K−

n,kk

+
q∑

h,k=1
h≠k

1
hhhk

(
diagj=1,…,nahk(xj+eh)

)
K+

n,hk

+
q∑

h,k=1
h≠k

1
hhhk

(
diagj=1,…,nahk(xj−eh)

)
K−

n,hk

+
q∑

k=1

1
hk

(
diagj=1,…,nbk(xj)

)
Hn,k +

(
diagj=1,…,nc(xj)

)
,

where the matrices K±
n,hk and Hn,k are defined by their action on a generic vector u ∈ RN(n), as follows:
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(K±
n,kku)j = uj − uj±ek

, (27)

(K±
n,hku)j =

uj±(eh−ek) − uj±(eh+ek)

4
, (28)

(Hn,ku)j =
1
2
(−uj−ek + uj+ek ), (29)

j = 1,… ,n, k, h = 1,… , q, h ≠ k (it is understood that ui = 0 whenever i ∉ {1,… ,n}). Using the multiindex language,
it is not difficult to see that

K±
n,kk =

(
k−1
⊗
r=1

Inr

)
⊗ K±

nk
⊗

(
q
⊗

r=k+1
Inr

)
, k = 1,… , q, (30)

K±
n,hk = ∓1

2

(
h−1
⊗
r=1

Inr

)
⊗ J±nh

⊗

(
k−1
⊗

r=h+1
Inr

)
⊗ Hnk ⊗

(
q
⊗

r=k+1
Inr

)
, 1 ≤ h ≠ k ≤ q, (31)

Hn,k =
(

k−1
⊗
r=1

Inr

)
⊗ Hnk ⊗

(
q
⊗

r=k+1
Inr

)
, k = 1,… , q, (32)

where K±
n , Hn (see Equations (10) and (11)), In are the matrices associated with the first-order FD discretizations of

constant-coefficient one-dimensional diffusion equations and J±n are the n × n Jordan nilpotent matrices

J±n = In − K±
n .

Since K±
n = Tn(1 − e±i𝜃), Hn = i Tn(sin 𝜃), and J±n = Tn(e±i𝜃), from (30)–(32) and the relation

Tn1(f1)⊗…⊗ Tnq(fq) = Tn(f1 ⊗…⊗ fq),

we deduce that

K±
n,kk = Tn(1 − e±i𝜃k ), k = 1,… , q, (33)

K±
n,hk = ∓ i

2
Tn(e±i𝜃h sin 𝜃k), 1 ≤ h ≠ k ≤ q, (34)

Hn,k = i Tn(sin 𝜃k), k = 1,… , q, (35)

and in particular,

K+
n,kk + K−

n,kk = Tn(2 − 2 cos 𝜃k), k = 1,… , q, (36)

K+
n,hk + K−

n,hk = Tn(sin 𝜃h sin 𝜃k), 1 ≤ h ≠ k ≤ q. (37)

If H ∶ [0, 1]q → Rq×q is the symmetric matrix of continuous functions defined by

(H(𝜽))kk = 2 − 2 cos 𝜃k, k = 1,… , q, (38)
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(H(𝜽))hk = sin 𝜃h sin 𝜃k, 1 ≤ h ≠ k ≤ q, (39)

then we prove

{n−2An}n∼GLTf (𝝂), (40)

{n−2An}n∼𝜎, 𝜆f (𝝂), (41)

where

f (𝝂)(x,𝜽) = 𝝂(A(x)◦H(𝜽))𝝂T =
q∑

h,k=1
𝜈h𝜈kahk(x)(H(𝜽))hk. (42)

Despite the technicalities intrinsic to any q-dimensional analysis, the proof of Equations (40)–(41) is essentially the
same as in the one-dimensional case. It consists of the following steps. Throughout this proof, C denotes a generic constant
independent of n. From now on, we assume to have a single discretization parameter n that varies in the infinite set of
indices such that n + 1 = 𝝂n ∈ Nq, where 𝝂 = (𝜈1,… , 𝜈q) ∈ Qq is an a priori fixed vector with positive components. The
relation n + 1 = 𝝂n should be kept in mind while reading the proof.

Step 1. Decompose An as follows:

An = Kn + Bn + Cn, (43)

where

Bn =
q∑

k=1

1
hk

(
diagj=1,…,nbk(xj)

)
Hn,k (44)

is the FD convection matrix, resulting from the FD discretization of the first-order term in Equation (18), while

Cn =
(

diagj=1,…,nc(xj)
)

(45)

is the matrix resulting from the FD discretization of the lower order term (the reaction term). We show that

||n−2Bn||2 = o(
√

N(n)) (46)

and

{n−2Cn}n∼GLT0. (47)

To prove Equation (46), we can notice that the matrices Hn,k are elementwise disjoint, meaning that

[Hn,k]i,j ≠ 0 ⇒ [Hn,h]i,j = 0 ∀h ≠ k.

Consequently, for every q-uple of diagonal matrices Dk of size N(n), we have

‖‖‖‖‖
q∑

k=1
DkHn,k

‖‖‖‖‖
2

2

=
q∑

k=1

‖‖DkHn,k‖‖2
2 .
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Let us keep in mind that the functions bk(x) satisfy

|bk(x)(x1 … xd)𝛼| ≤ C, ∀x > 0, ∀k,

where C > 0 is a constant.

||n−2Bn||22 =
‖‖‖‖‖

q∑
k=1

1
n2hk

(
diagj=1,…,nbk(xj)

)
Hn,k

‖‖‖‖‖
2

2

= 1
n2

q∑
k=1

𝜈2
k
‖‖‖( diagj=1,…,nbk(xj)

)
Hn,k
‖‖‖2

2

≤ 2
n2

q∑
k=1

𝜈2
k

n∑
j=1

b2
k(xj) (48)

≤ 2C2

n2

q∑
k=1

𝜈2
k

n∑
j=1

(j1h1 ⋅… ⋅ jqhq)−2𝛼

=

(
2C2

n2−2q𝛼N(𝝂)−2𝛼

q∑
k=1

𝜈2
k

) q∏
k=1

nk∑
j=1

j−2𝛼. (49)

If 𝛼 < 1∕2, then |bk(x)(x1 … xd)1/2| ≤ |bk(x)(x1 … xq)𝛼| ≤ C, so we explore the case 𝛼 ≥ 1∕2.

• If 𝛼 = 1∕2, then, due to Equation (48), we obtain

||n−2Bn||22 ≤
(

2C2

n2−qN(𝝂)−1

q∑
k=1

𝜈2
k

) q∏
k=1

nk∑
j=1

j−1

≤
(

2C2

n2−qN(𝝂)−1

q∑
k=1

𝜈2
k

) q∏
k=1

(
1 + log(nk)

)
(50)

= O(logq∕2(n)nq∕2−1). (51)

• If 𝛼 > 1∕2, then referring to Equation (48) and due to (13), we obtain

||n−2Bn||22 ≤
(

2C2

n2−2q𝛼N(𝝂)−2𝛼

q∑
k=1

𝜈2
k

) q∏
k=1

nk∑
j=1

j−2𝛼

≤
(

2C2

n2−2q𝛼N(𝝂)−2𝛼

q∑
k=1

𝜈2
k

) q∏
k=1

−n−2𝛼+1
k + 2𝛼
2𝛼 − 1

≤ 2C2

N(𝝂)−2𝛼

( q∑
k=1

𝜈2
k

)( 2𝛼
2𝛼 − 1

)q
n−2+2q𝛼. (52)

We conclude that

𝛼 ≥ 1∕2 ⇒ ||n−2Bn||2 = O(n−1+q𝛼). (53)

Observe that 1
q
+ 1

2
> 𝛼 implies ||n−2Bn||22 = o(nq∕2) = o(

√
N(n)). Noticing that

{Cn}n∼GLTc(x), {n−1In}n∼GLT0
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and using the structure of algebra of GLT sequences, we infer that property Equation (47) is met.
Step 2. Consider the matrix Kn. By Equations (27) and (43)–(45), we know that

Kn =
q∑

k=1

1
h2

k

(
diagj=1,…,nakk(xj+ek∕2)

)
K+

n,kk

+
q∑

k=1

1
h2

k

(
diagj=1,…,nakk(xj−ek∕2)

)
K−

n,kk

+
q∑

h,k=1
h≠k

1
hhhk

(
diagj=1,…,nahk(xj+eh)

)
K+

n,hk

+
q∑

h,k=1
h≠k

1
hhhk

(
diagj=1,…,nahk(xj−eh)

)
K−

n,hk. (54)

In view of axiom GLT 3, all the diagonal matrix-sequences that appear in Equation (54) belong to the class of GLT
sequences. More precisely, we observe

{diagj=1,…,nakk(xj±ek∕2)}n∼GLTakk(x), (55)

{diagj=1,…,nahk(xj±eh
)}n∼GLTahk(x). (56)

Using the identities Equations (36)–(37) and axiom GLT 4, we thus obtain

{n−2Kn}n ∼GLT

q∑
k=1

𝜈2
k akk(x)(2 − 2 cos 𝜃k) +

q∑
h,k=1
h≠k

𝜈h𝜈kahk(x) sin 𝜃h sin 𝜃k, (57)

that can be rewritten as

{n−2Kn}n ∼GLT𝝂(A(x)◦H(𝜽))𝝂T .

Now n−2(Kn + Cn) are Hermitian matrices, and since {n−2Cn}n is zero-distributed, by axioms GLT 4 and GLT 1 we infer

{n−2Kn + n−2Cn}n ∼GLT,𝜎,𝜆𝝂(A(x)◦H(𝜽))𝝂T .

Due to (46), even the sequence {n−2Bn}n is zero-distributed, and hence again by axioms GLT 4 and GLT 1 we obtain

{n−2An}n = {n−2Kn + n−2Bn + n−2Cn}n ∼GLT,𝜎𝝂(A(x)◦H(𝜽))𝝂T .

Finally, using Theorem 1 we conclude that

{n−2An}n = {n−2Kn + n−2Bn + n−2Cn}n ∼ 𝜆𝝂(A(x)◦H(𝜽))𝝂T .

4.4 A basic application in a preconditioning context

We start this subsection by coming back to the one-dimensional finite difference discretization for the problem (6) with
the same assumptions on the functions a(x), b(x), c(x), f(x), as indicated in Subsection 4.1. After making the usual scaling
by h2, the matrix arising from the discretization of the second-order operator is An = An(a) as in Equation (7), while
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the matrices arising from the discretization of the lower order operators are Bn = Bn(b), Cn = Cn(c) as in Equation (8).
Now let

Zn = Zn(a, b, c, h) = An(a) + Bn(b) + Cn(c)

be the global discretization matrix and let us consider the standard real-imaginary part representation.26 Then

ℜ(Zn) = An(a) + Cn(c) +ℜ(Bn(b)), ℑ(Zn) = ℑ(Bn(b)),
Bn(b) = −hdiag(b1,… , bn) Tn(i sin(𝜃)).

From Subsection 4.1, we recall that

{An(a)}n ∼GLTa(x)(2 − 2 cos(𝜃)), {Bn(b)}n ∼GLT0, {Cn(c)}n ∼GLT0,

and {Zn(a, b, c, h)}n ∼ 𝜆a(x)(2 − 2 cos(𝜃)).
Now we make the problem even less Hermitian by considering the preconditioning by the positive definite Toeplitz

matrices An(1) = Kn = Tn(2 − 2 cos(𝜃)) (see Equation (9)) of the matrices Zn(a, b, c, h). It is evident that {Kn}n∼GLT2 −
2 cos(𝜃) and hence, by the algebra structure of GLT sequences,{

K−1
n Zn(a, b, c, h)

}
n∼GLTa(x).

In particular, we have
{

K−1
n Zn(a, b, c, h)

}
n∼𝜎a(x). However, for the convergence of a preconditioned Krylov method, it

would be useful to have information on the eigenvalues and Theorem 1 is a possible tool. In the present context, the
problem in using Theorem 1 relies on the fact the K−1

n is dense, and consequently it is difficult to evaluate any Schatten
norm of the imaginary part of the matrix K−1

n Zn(a, b, c, h). To work around this problem, we consider a symmetrization
trick very popular for handling proofs in a preconditioning setting. In fact, K−1

n Zn(a, b, c, h) is similar to

K−1∕2
n Zn(a, b, c, h)K−1∕2

n

so that for proving the eigenvalue distribution of {K−1
n Zn(a, b, c, h)}n we can focus on the sequence

{K−1∕2
n Zn(a, b, c, h)K−1∕2

n }n.

Now Kn is positive definite and {Kn}n is a GLT sequence with symbol 2 − 2 cos(𝜃). Therefore, the inverse of Kn and its
square root are well defined and, again by the powerful properties of the GLT sequences (specifically, axioms GLT 3,
GLT 4, GLT 5, GLT 6) the matrix-sequences {K−1

n }n, {K−1∕2
n }n, and

{K−1∕2
n Zn(a, b, c, h)K−1∕2

n }n

are GLT sequences with symbols 1∕(2 − 2 cos(𝜃)), 1∕
√

2 − 2 cos(𝜃), and a(x), respectively. As a consequence, the singular
value distribution results for the sequences {K−1

n }n, {K−1∕2
n }n, and

{K−1∕2
n Zn(a, b, c, h)K−1∕2

n }n

are obvious. The difficulty is that we are interested in the eigenvalue distribution of {K−1∕2
n Zn(a, b, c, h)K−1∕2

n }n and the
involved matrices are non-Hermitian. Hence, in order to apply Theorem 1 in the most convenient way, we consider the
real-imaginary part representation of K−1∕2

n Zn(a, b, c, h)K−1∕2
n , that is,

K−1∕2
n Zn(a, b, c, h)K−1∕2

n = K−1∕2
n (An(a) + Cn(c) +ℜ(Bn(b)))K−1∕2

n

− ihK−1∕2
n ℑ

(
diag(b1,… , bn) Tn(i sin(𝜃)

)
K−1∕2

n .
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It is evident that Rn = K−1∕2
n (An(a) + Cn(c) +ℜ(Bn(b)))K−1∕2

n is symmetric and that {Rn}n ∼GLT a(x). Therefore it
remains to study a proper Schatten norm of

Sn = −hK−1∕2
n ℑ

(
diag(b1,… , bn)Tn(i sin(𝜃)

)
K−1∕2

n ,

which is a simplified task since the perturbation matrix i Sn is skew-Hermitian (and hence normal) so that the singular
values are the moduli of the eigenvalues. Indeed the key point here is that the matrix Sn is not easy to evaluate in terms of
entries, but the spectrum can be evaluated and in fact this has been already done in References 22, theorems 3.1 and 3.7
(see also Reference 21). In these theorems, under the assumption that b is bounded, it is proved that the sequence {Sn}n
is properly clustered at zero in the eigenvalue sense and is spectral bounded. This means that for every 𝜖 > 0, there exists
a nonnegative integer number N𝜖 such that the number of eigenvalues exceeding in modulus 𝜖 are bounded by N𝜖 , and
the spectral norm of Sn is bounded by a constant C independent of n. We are now in the position of applying Theorem 1
and in fact, for every 𝜖 > 0, we obtain

||Sn||22 ≤ ||Sn||2N𝜖 + (n − N𝜖)𝜖2 ≤ C2N𝜖 + (n − N𝜖)𝜖2,

so that ||Sn||2 = o(
√

n) by the arbitrariness of 𝜖. In conclusion, setting Xn = Rn, Yn = i Sn, and recalling that
K−1∕2

n Zn(a, b, c, h)K−1∕2
n = Rn + i Sn, Theorem 1 implies that {K−1∕2

n Zn(a, b, c, h)K−1∕2
n }n∼𝜆a(x), that is, by similarity,{

K−1
n Zn(a, b, c, h)

}
n∼𝜆a(x). (58)

Before briefly giving the results in the multidimensional setting, we introduce a pair of general and useful tools for gen-
eralizing relation (58). The considered tools do not depend on the dimensionality of the underlying differential operator
and hence they can be applied verbatim in the context of discretized PDEs.

Theorem 4. Let Sn be either a Hermitian matrix or a skew-Hermitian matrix of size n and consider P+
n , P−

n two positive
definite matrices of size n. Take the preconditioned matrices F+

n = [P+
n ]−1Sn, F−

n = [P−
n ]−1Sn and sort the eigenvalues of vF±n

in nondecreasing order, with v = 1 if Sn is Hermitian and v = −i if Sn is skew-Hermitian, that is,

𝜆1(vF±n ) ≤ · · · ≤ 𝜆n(vF±n ).

Under the assumption that P+
n ≥ P−

n (i.e., P+
n − P−

n is positive semidefinite) we have

|𝜆j(vF+
n )| ≤ |𝜆j(vF−

n )|, j = 1,… ,n. (59)

Proof. The proof consists in applying the minimax characterization

𝜆j(vF±n ) = min
dim(V)=j

max
x∈V , x≠0

x∗vSnx
x∗P±n x

and in observing that x∗P+
n x ≥ x∗P−

n x > 0, because P+
n − P−

n is positive semidefinite and P+
n , P−

n are positive definite. ▪

Corollary 4. Under the very same assumptions and notations as in Theorem 4, we have

||F+
n,S||p ≤ ||F−

n,S||p
for any p ∈ [1,∞], where

F±n,S = [P±n ]−1∕2Sn[P±n ]−1∕2.

Proof. The Schatten p-norm of a matrix is the lp-norm of the vector of its singular values. Since F±n,S is Hermitian if and
only if Sn is Hermitian and F±n,S is skew-Hermitian if and only if Sn is skew-Hermitian, it follows that the matrices F±n,S are
normal and hence
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𝜎j(F±n,S) = |𝜆j(F±n )|, j = 1,… ,n,

because F±n,S is similar to F±n . Given the above relations, the claimed thesis follows from Equation (59). ▪

The consequences of the corollary above are quite strong. Take any {Pn}n asymptotically equivalent to {Kn}n, that is
take any {Pn}n such that each Pn is positive definite and there exist positive constants c and C independent of n for which

cKn ≤ Pn ≤ CKn.

Assume that {Pn}n is a GLT sequence with symbol 𝜙(x, 𝜃) and consider the sequence {Zn(a, b, c, h)}n. We have the
following:

• P−1
n Zn(a, b, c, h) is similar to P−1∕2

n Zn(a, b, c, h)P−1∕2
n ;

• {P−1
n Zn(a, b, c, h)}n is a GLT sequence with symbol

a(x)(2 − 2 cos(𝜃))∕𝜙(x, 𝜃)

and therefore this function is also the singular value symbol;
• {P−1

n ℜ(Zn(a, b, c, h))}n is a GLT sequence with symbol

a(x)(2 − 2 cos(𝜃))∕𝜙(x, 𝜃)

and therefore this function is both the singular value and eigenvalue symbol because

P−1
n ℜ(Zn(a, b, c, h))

is similar to the Hermitian matrix

P−1∕2
n ℜ(Zn(a, b, c, h))P−1∕2

n ;

• finally, thanks to the spectral equivalence and to the crucial Corollary 4, ||P−1∕2
n ℜ(Zn(a, b, c, h))P−1∕2

n ||p and||K−1∕2
n ℜ(Zn(a, b, c, h))K−1∕2

n ||p are asymptotically equivalent sequences with equivalence constants 1∕C and 1∕c.

As a consequence of the previous items, Theorem 1 can be applied with the same conclusions as in the basic case of
Pn = Kn and hence

{
P−1

n Zn(a, b, c, h)
}

n∼𝜆
a(x)(2 − 2 cos(𝜃))

𝜙(x, 𝜃)
. (60)

The interesting fact is that Pn can be chosen as Dn(a1/2)KnDn(a1/2), which is a positive definite matrix (the diffusion
coefficient a(x) is positive). In this way, due to the structure of algebra of GLT sequences, the resulting sequence {Pn}n is
a GLT sequence with symbol 𝜙(x, 𝜃) = a(x)(2 − 2 cos(𝜃)). Furthermore, the two sequences {Pn}n and {Kn}n are asymptot-
ically equivalent under the assumption that a(x) is positive. Consequently, looking at Equation (60), the spectral symbol
of {P−1

n Zn(a, b, c, h)}n is exactly 1, which means that the eigenvalues are clustered at 1 in a weak sense (see the analysis of
the strong clustering in Reference 44 under the additional assumptions that a(x) is two times differentiable in [0, 1] and
b(x) = c(x) identically zero). Of course, in a practical preconditioning scheme the inversion of Kn can be replaced by one
step (or few steps) of a multigrid method in order to reduce the related computational cost.

The same steps can be applied verbatim in the multidimensional case. We consider the FD scheme for problem (18).
As preconditioner, we consider, for example, the positive definite matrix coming from the same discretization to the same
problem in Equation (18) with the advection–reaction coefficients set to zero. As diffusion matrix, instead of A(x) we
consider Â(x), where Â(x) can be formally any matrix-valued function, which is positive definite a.e. The conclusions are
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that

{P−1
n An}n ∼GLT,𝜎

𝝂(A(x)◦H(𝜽))𝝂T

𝝂(Â(x)◦H(𝜽))𝝂T
(61)

and

{P−1
n An}n ∼ 𝜆

𝝂(A(x)◦H(𝜽))𝝂T

𝝂(Â(x)◦H(𝜽))𝝂T
(62)

using Theorem 1, by following exactly the same steps performed in the one-dimensional setting. Of course, the choice of
Â(x) is important from a computational viewpoint. Indeed, Â(x) has to be selected in such a way that the related linear
system is easier to solve (e.g., Â(x) with diagonal structure) and the range of the spectrum of [Â(x)]−1A(x) has minimal
convex hull, in order to have a fast convergence of the related (preconditioned) Krylov method.

5 NUMERICAL EXPERIMENTS

We now perform some numerical experiments for confirming the conclusions of Theorem 1 and for showing that the
same conclusions are observed in practice under weaker assumptions (see Conjecture 1). In particular, we consider the
following settings.

1. We consider the differential Equation (6) with unbounded coefficients a(x) = c(x) = − log(1 − x), b(x) = 1∕ 4
√

x5. We
numerically show that for the matrices arising from the FD discretization described in Section 4.1, it holds that

{An}n + {Bn}n + {Cn}n∼𝜆a(x)(2 − 2 cos(𝜃)).

2. We numerically show that for the matrices arising from the FE discretization described in Section 4.2, it holds that{ 1
n + 1

An

}
n
+
{ 1

n + 1
Bn

}
n
+
{ 1

n + 1
Cn

}
n
∼𝜆a(x)(2 − 2 cos(𝜃)).

3. We consider the differential Equation (6) with unbounded coefficients a(x) = c(x) = − log(1 − x), b(x) = 1∕ 4
√

x3. We
numerically show that for the preconditioned matrices arising from the FD discretization as described in Section 4.4,
it holds that {

K−1
n Zn(a, b, c, h)

}
n∼𝜆a(x).

4. In the case when Pn = Dn(a1/2)KnDn(a1/2), we also show that (60) holds, that is,{
P−1

n Zn(a, b, c, h)
}

n∼𝜆1.

5. We consider the differential Equation (17) in two space dimensions, with unbounded coefficients a1,1(x, y) = c(x, y) =
1∕xy, a2,2(x, y) = −xy, a1,2(x, y) = x + y, b1(x, y) = b2(x, y) = 1∕ 4

√
(xy)3. We numerically show that for the matrices

arising from the FD discretization described in Section 4.3, it holds that

{An}n∼𝜆1(A(x)◦H(𝜽))1T .

6. We consider the differential Equation (17) in two space dimensions, with unbounded coefficients a1,1(x, y) =
a2,2(x, y) = 1 + 1∕

√
x + 1∕

√
y, c(x, y) = 1∕xy, a1,2(x, y) = 0, b1(x, y) = b2(x, y) = 1∕ 4

√
(xy)3. We numerically show that

for the preconditioned matrices arising from the FD discretization as described in Section 4.4, it holds that

{P−1
n An}n∼𝜆1.



26 of 31 BARBARINO and SERRA-CAPIZZANO

The matrices Bn are the source of non-Hermitianess in every setting, so we can choose the functions b(x), b1(x, y),
b2(x, y) with values as large as possible, in order to test the validity of Theorem 1. In fact, we notice that in the experiments
the functions b always satisfy the minimal hypothesis given in the respective sections. In the bidimensional FD case, we
have also chosen a system that is not coercive or elliptic at every point, so that the related problem will be foreign to most
real applications; yet, the experiments will demonstrate that Theorem 1 holds true even when considering artificially
difficult examples. Actually, we want to test if Theorem 1 still holds when the perturbation has an o(n) Schatten 1-norm
instead of an o(

√
n) Schatten 2-norm.

1. We consider again the differential Equation (6). If b(x) has a singularity of order 𝛼 > −2 at x = 0, then we obtain
a perturbation whose Schatten 1-norm is of order o(n). Therefore, we consider again the coefficients a(x) = c(x) =
− log(1 − x) and we modify the perturbation b(x) = 1∕ 4

√
x7. We check by numerical experiments that for the matrices

arising from the FD discretization described in Section 4.1, it holds that

{An}n + {Bn}n + {Cn}n ∼ 𝜆a(x)(2 − 2 cos(𝜃)).

2. We numerically show that for the matrices arising from the FE discretization as described in Section 4.2, it holds that{ 1
n + 1

An

}
n
+
{ 1

n + 1
Bn

}
n
+
{ 1

n + 1
Cn

}
n
∼ 𝜆a(x)(2 − 2 cos(𝜃)).

3. We consider the differential Equation (17), in two space dimensions. If bk(x) have singularities of order 𝛼 > − 3
2

at
zero, then we obtain a perturbation whose Schatten 1-norm is of order o(N(n)). Therefore, we consider the coeffi-
cients a1,1(x, y) = a2,2(x, y) = 1∕

√
xy, c(x, y) = 1∕xy, a1,2(x, y) = x + y, b1(x, y) = b2(x, y) = 1∕ 4

√
(xy)5. We show that for

the matrices arising from the FD discretization described in Section 4.3, it holds that

{An}n∼𝜆1(A(x)◦H(𝜽))1T .

The aim of the experiments is to show that the chosen sequences of matrices possess the declared spectral symbols.
We will show that the portion of eigenvalues with nonnegligible imaginary part tends to zero, and that the distributions
of eigenvalues converge to the corresponding symbols.

5.1 Tables and graphs

Since all the spectral symbols in our experiments are real functions, we are interested in evaluating the number of eigen-
values with a nonnegligible imaginary part. In Table 1 we report the number of eigenvalues with imaginary part greater
than a fixed threshold and their percentage with respect to the dimension of the linear system. In particular, we fix the
thresholds 𝜀 = 10−1, 10−2 and consider each experiment from 1. to 6. with dimensions N = 50, 100, 200, 400, 800. In the
bidimensional FD context, we take n = (n,n) with n = 7, 10, 14, 20, 28, in order to obtain N(n) = n2 the closest possible
to 50,100,200,400,800. We clearly observe how the percentage of outliers tends to zero when the perturbation has order
o(
√

n), in accordance with the theory. For the case of two dimensions, since the fineness parameter is n−1 and the dimen-
sion is n2, the choice 𝜀 = 10−2 is not appropriate to see the convergence with n = 7, 10, 14, 20, 28; however also in this
case, the trend is quite clear.

In Table 2 we report the number and rate of eigenvalues with imaginary part greater than the same thresholds for
experiments from 7. to 9., and we consider the same dimensions as Table 1. We observe how the percentage of outliers
tends to zero also when the perturbation has Schatten 1-norm of order o(n) but Schatten 2-norm which is not o(

√
n),

thus violating the assumptions of Theorem 1. As expected, the convergence to zero is slower when compared with the
previous experiments. In any case, the numerical results support the generalization of Theorem 1 stated in Conjecture 1
below.

After having assessed that the imaginary parts of the eigenvalues tend to zero, let us look at the real parts of the
eigenvalues. In order to show that they converge to the spectral symbol, we plot the symbol and the eigenvalues of a chosen
set of matrices in the sequence. In Figures 1 to 4 the red line is always the increasing sampling of the spectral symbol
performed on 10,000 points. The blue lines are linear plots that connect the real parts of the eigenvalues referred to the
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T A B L E 1 Number and percentage of eigenvalues with imaginary part greater than 𝜀

N 50 100 200 400 800

FD-1-dim 𝜀 = 10−1 4/8% 6/6% 10/5% 12/3% 14/1.75%

𝜀 = 10−2 6/12% 8/8% 14/7% 20/5% 28/3.5%

FE 𝜀 = 10−1 4/8% 6/6% 8/4% 12/3% 14/1.75%

𝜀 = 10−2 4/8% 8/8% 12/6% 14/4.5% 26/3.25%

Prec-K 𝜀 = 10−1 2/4% 2/2% 2/1% 2/0.5% 4/0.5%

𝜀 = 10−2 6/12% 8/8% 10/5% 12/3% 16/2%

Prec-P 𝜀 = 10−1 14/28% 20/20% 30/15% 44/11% 62/7.75%

𝜀 = 10−2 32/64% 54/54% 86/43% 130/32.5% 194/24.25%

FD-2-dim 𝜀 = 10−1 4/8.16% 2/2% 2/1.02% 2/0.5% 2/0.26%

𝜀 = 10−2 8/16.33% 12/12% 30/15.31% 52/13% 92/11.74%

Prec-P-2-dim 𝜀 = 10−1 12/24.49% 18/18% 20/10.2% 22/5.5% 28/3.57%

𝜀 = 10−2 42/85.71% 82/82% 142/72.45% 256/64% 430/54.85%

Note: The coefficients used are a(x) = c(x) = − log(1 − x), b(x) = 1∕ 4
√

x5 in FD-1-dim, FE settings, and a(x) = c(x) = − log(1 − x),
b(x) = 1∕ 4

√
x3 in both the monodimensional preconditioned cases. The bidimensional coefficients are

a1,1(x, y) = a2,2(x, y) = 1 + 1∕
√

x + 1∕
√

y, c(x, y) = 1∕xy, a1,2(x, y) = 0, b1(x, y) = b2(x, y) = 1∕ 4
√
(xy)3 in the preconditioned setting, and

a1,1(x, y) = c(x, y) = 1∕xy, a2,2(x, y) = −xy, a1,2(x, y) = x + y, b1(x, y) = b2(x, y) = 1∕ 4
√
(xy)3 in the FD-2-dim setting.

T A B L E 2 Number and percentage of eigenvalues with imaginary part greater than 𝜀

N 50 100 200 400 800

FD-1-dim 𝜀 = 10−1 8/16% 12/12% 18/9% 28/7% 40/5%

𝜀 = 10−2 8/16% 14/14% 22/11% 34/8.5% 74/9.25%

FE 𝜀 = 10−1 6/12% 12/12% 18/9% 26/6.5% 40/5%

𝜀 = 10−2 4/8% 8/8% 12/6% 14/4.5% 26/3.25%

FD-2-dim 𝜀 = 10−1 12/24.29% 20/20% 30/15.31% 44/11% 58/7.4%

𝜀 = 10−2 16/32.653% 24/24% 42/21.43% 64/16% 114/14.54%

Note: The coefficients used are a(x) = c(x) = − log(1 − x), b(x) = 1∕ 4
√

x7 in FD-1-dim, FE and Prec settings and
a1,1(x, y) = a2,2(x, y) = 1∕

√
xy, c(x, y) = 1∕xy, a1,2(x, y) = x + y, b1(x, y) = b2(x, y) = 1∕ 4

√
(xy)5 in FD-2-dim settings.

specified matrix. In particular, given a n × n matrix with eigenvalues 𝜆1, 𝜆2,… , 𝜆n such thatℜ(𝜆1) ≤ ℜ(𝜆2) ≤ · · · ≤ ℜ(𝜆n),
the blue line is a piecewise linear function connecting the points

(
ℜ(𝜆i), i

n−1

)
for i = 1, 2,… ,n.

• In Figure 1, are reported the symbol and the eigenvalues of matrices referred to Experiment 1. We consider linear
systems of dimension N = 4, 8, 16, 32, 64, 128.

• In Figure 2, are reported the symbol and the eigenvalues of matrices referred to Experiment 2. We consider linear
systems of dimension N = 4, 8, 16, 32, 64, 128.

• In Figure 3, are reported the symbol and the eigenvalues of matrices referred to Experiment 9. We consider linear
systems of dimension n = (n,n) with n = 7, 10, 14, 20, 28, in order to obtain N(n) = n2 the closest possible to 50, 100,
200, 400, 800.

• In Figure 4, are reported the symbol and the eigenvalues of matrices referred to Experiment 3. We consider linear
systems of dimension N = 4, 8, 16, 32, 64, 128.
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F I G U R E 4 Plot of the real
part of eigenvalues in Prec case
against the rearranged symbol.
The used coefficients are
a(x) = c(x) = − log(1 − x),
b(x) = 1∕ 4

√
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In Figure 1, 2, and 4 we have chosen the sizes N = 4, 8, 16, 32, 64, 128 because it is difficult to distinguish the plot of
eigenvalues and the symbol plot for N ≥ 200. In all the figures, we have added a focus on particular points to observe the
behavior closer. In all the figures, we see that the eigenvalue plots converge to the respective symbols as the dimension
increases.

6 CONCLUSIONS

We have proved a result (Theorem 1) which allows one to compute the asymptotic spectral distribution of
matrix-sequences that can be written as a non-Hermitian perturbation of a given Hermitian matrix-sequence. As shown
in Corollary 3, this result provides a noteworthy extension of a previous theorem due to Leonid Golinskii and the sec-
ond author17, theorem 3.4 (see also Reference 2, corollary 4.1). In particular, as illustrated in this article, we are now able to
compute the asymptotic spectral distribution of PDE discretization matrices even in the case where the PDE coefficients
possess minimal regularity properties (only L1 in the case of finite elements!). It is also worth noting that the proof of the
new result has not involved any functional analysis argument, which means that the proof of Reference 17, theorem 3.4
can be performed through purely matrix analysis arguments as in this article; in particular, there is no need to resort to
Mergelyan's theorem.

Extensive numerical experiments have been discussed. What we have observed seems to indicate that our new result
can be made even stronger, by considering the weaker condition ||Yn||1 = o(n) used in Reference 17 and simultaneously
dropping the assumption of boundedness of the involved matrix-sequences as done in this note in Theorem 1. We therefore
state the following conjecture, which can be viewed as a generalization of Theorem 1.

Conjecture 1. Let Xn be a Hermitian matrix of size n, with {Xn}n ∼𝜆 f. If ||Yn||1 = o(n) then

{Xn + Yn}n∼𝜆f .

We refer to future articles for showing different and various applications of the result in more general contexts. For
example, discretization of systems of PDEs, multidimensional FE methods (IgA, collocation, etc.), and when the equations
are defined only on irregular domains, and consequentially the usage of nonregular grids adapted to the problem geometry
is prescribed.
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