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Abstract

Non-stationary signals are ubiquitous in real life. Many techniques have
been proposed in the last decades which allow decomposing multi-
component signals into simple oscillatory mono-components, like the
groundbreaking Empirical Mode Decomposition technique and the Iter-
ative Filtering method. When a signal contains mono-components that
have rapid varying instantaneous frequencies like chirps or whistles, it
becomes particularly hard for most techniques to properly factor out
these components. The Adaptive Local Iterative Filtering technique has
recently gained interest in many applied fields of research for being
able to deal with non-stationary signals presenting amplitude and fre-
quency modulation. In this work, we address the open question of how
to guarantee a priori convergence of this technique, and propose two
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new algorithms. The first method, called Stable Adaptive Local Iter-
ative Filtering, is a stabilized version of the Adaptive Local Iterative
Filtering that we prove to be always convergent. The stability, however,
comes at the cost of higher complexity in the calculations. The second
technique, called Resampled Iterative Filtering, is a new generalization
of the Iterative Filtering method. We prove that Resampled Iterative
Filtering is guaranteed to converge a priori for any kind of signal. Fur-
thermore, we show that in the discrete setting its calculations can be
drastically accelerated by leveraging on the mathematical properties of
the matrices involved. Finally, we present some artificial and real-life
examples to show the power and performance of the proposed methods.

Keywords: iterative filtering, adaptive local iterative filtering, empirical
mode decomposition, convergence analysis, nonstationary signals, signal
decomposition.
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1 Introduction

Real life signals are, in general, non-stationary, meaning that their features,
including frequencies and amplitudes of their components, are varying over
time. We mention, for instance, in Engineering, the analysis and mitigation
of multipath-corrupted measurements for the differential Global Navigation
Satellite System (GNSS) vehicle navigation which represents a challenge for
the usage of GNSS in big cities [1]; in Medicine, the automatic assessment of
patients’ general physical health from physiological time series like the arterial
blood pressure without the assistance of practitioners [2]; in Physics, the study
of plasma instabilities [3], the forecast of the ionospheric “Space Weather” to
reduce the impact on satellites and telecommunications of solar storms [4],
the analysis of earthquakes, and possibly their prediction, via the satellite
measurements of the Earth’s magnetic field [5], gravitational-wave signals of
astrophysical origin, as measured in the Advanced LIGO-Virgo collaboration,
which are strongly affected by rapid noise excesses, a.k.a. glitches [6]. The anal-
ysis and decomposition of non-stationary signals is an active research direction
in both Mathematics and Signal Processing.

In general, the problem can be expressed in mathematical terms as the blind
decomposition of a signal g(x) into a combination of non-stationary purely
oscillating components, called Intrinsic Mode Functions (IMFs), as in

g(x) := ϵ(x) +

M∑
j=1

aj(x)gj(x), gj(x) = cos(αj(x))

where α′
i(x) > δ > 0 are the instantaneous frequency functions, ϵ(x) is a

low-intensity noise and aj(x) are bounded and slowly oscillating amplitude
functions. Several methods have been developed over the years dealing with
different specifications of the above formulation, e.g. for components that are
stationary (α′

i(x) constant) or not amplitude-modulated (aj(x) constant), and
so on.

Classical methods based on Fourier and wavelets transform proved to be
limited in handling non-stationary signals, especially the ones whose features
change quickly over time [7]. In the last decades, many new techniques have
been proposed to overcome such limitations. Among them, the Iterative Filter-
ing (IF) algorithm [8] was proposed a decade ago as an alternative technique
to the celebrated Empirical Mode Decomposition (EMD) technique [9] and its
variants [10–13]. The EMD and its variants, in fact, were missing a rigorous
mathematical analysis, due to the usage of a number of heuristic and ad hoc
elements. Some results have been presented in the literature [14–16], but a
complete rigorous mathematical analysis is still missing nowadays.

The EMD-like methods are based on the iterative computation of the signal
moving average via envelopes connecting its extrema. The computation of the
signal moving average allows to split the signal itself into a small number
of IMFs, which are separated in frequencies and almost uncorrelated [17].
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The IF method has been developed following the same structure as EMD but
with a key difference: the moving average is now obtained through an iterated
convolutional filtering operation on the signal, with the aim to single out all
its non-stationary components, starting from the highest frequency one.

The IF algorithm structure allowed the development of a complete math-
ematical analysis [18–20]. On the other hand, this method is “rigid” in the
sense that it allows to extract only IMFs which are amplitude modulated, but
almost stationary in frequencies. This is a clear limitation if the signal contains
chirps or whistles, which are components with quickly changing instantaneous
frequencies. For this reason in [19] the authors proposed a generalization of IF
called Adaptive Local IF (ALIF). ALIF does not suffer any more of the rigidity
of IF in extracting IMFs containing rapidly varying instantaneous frequen-
cies. However, this new technique looses most of the mathematical background
of IF. Even if the algorithm gained visibility since its introduction five years
ago, see for instance [21–31], an initial mathematical analysis has been only
recently developed [32, 33], and additional research on extensions, variations,
and stabilization methods is currently ongoing, as in [34].

Due to the missing theoretical background of the ALIF method, we intro-
duce in this paper two new algorithms for which such analysis is possible. The
first, called the Stable ALIF (SALIF) method, is always convergent, even in
the presence of noise, but it presents an increased computational cost with
respect to ALIF. The second, called the Resampled IF method (RIF), is actu-
ally a modification of the IF algorithm preserving its convergence property
and at the same time sporting the same flexibility as ALIF. Furthermore, the
RIF method can be made, in the discrete case, highly computationally effi-
cient via the FFT computation of the convolutions, in what is called the Fast
Resampled IF method (FRIF).

The rest of this paper is structured as follows. Section 2 is a review of
the IF method, its properties, and the theory behind it, and actually presents
some new results on its stability. Section 3 exhibits the ALIF algorithm, with
a discussion on why the method lacks results and a proper theoretical analysis,
and introduces the new SALIF method. Here we also compare the features
of all three algorithms, stressing their strength and weaknesses. Section 4 is
dedicated to the RIF algorithm, its analysis, properties, and acceleration via
FFT, in what is called the FRIF technique. In this section, we show how RIF
combines the convergence and stability of IF with the flexibility of ALIF, and
how it can be made computationally efficient. In Section 5 we compare those
algorithms on artificial and real data, reporting the efficiency and accuracy of
each method. Eventually, in Section 6, we draw conclusions and suggest future
lines of research.

2 Iterative Filtering

Throughout this document, a signal is supposed to be a real function g : R→
R. The Iterative Filtering (IF) method mimics the EMD algorithm in the
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application of a moving average that captures the main trend of the signal
and allows us to decompose it into simple IMFs. If we call L(g) the moving
average, then both EMD and IF algorithms extract the first IMF as

S(g) = g − L(g), IMF1 = lim
m→∞

Sm(g), (1)

where S is called the ‘sifting operator’. The moving average L(g) is designed
in a way that identifies and flattens the most oscillating component of g, so
that S(g) can extract it. The sequence Sm(g) thus refines the component until
convergence to the wanted mode function. It is important to recall here that
IF convergence of the limit in (1) has been proved [14, 19], and more details
are given in the following section. For EMD, even though many attempts have
been made over the years [14–16], this proof is still missing.

Repeating iteratively the same procedure on r = g− IMF1, we can extract
all the IMFs until r becomes a trend signal, meaning that it possesses at most
two extrema.

In the EMD method, the moving average operator L(g) depends completely
on the shape of a given signal g, so it changes at each computation of S(g)
inside the algorithm.

In the IF method a fixed filter k(x) is chosen independently from the signal.
Here we report the definition of filter.

Definition 1 A filter k(x) is an even, nonnegative, bounded and measurable real
function with compact support and unit mass, meaning

∫
R k(z) dz = 1.

For each IMF, a length L is computed based on the signal, so that the
resulting L(g) can be rewritten as the convolution of g with a scaled version
of k(x), i.e.

L(g)(x) =
∫
R
g(z)k

(
x− z

L

)
1

L
dz,

We point out that the length L can potentially be recomputed at every
iteration m in the sequence Sm(g). However, in IF and its generalizations,
for each IMF the length L is computed only in the first iteration and kept
unchanged in the subsequent ones.

A generalization of the IF method is called Adaptive Local Iterative Filter-
ing (ALIF), where the moving average utilizes the convolution with a family
of filters kx(z) as in

L(g)(x) =
∫
R
g(z)kx(x− z) dz,

where kx(z) has support contained in [−ℓ(x), ℓ(x)], i.e. it varies with x, and it
is derived from a fixed filter k(z). The function ℓ(x) will be detailed in Section
3.1.
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Following [19], we can rewrite the same expression as

L(g)(x) =
∫ L

−L
g(x+ t(x, z))k(z) dz, (2)

where t(x, z) is a measurable function. The last formulation will be reconsid-
ered in Section 4 and it will be shown to encapsulate also a different algorithm,
the Resampled IF method.

The family of filters kx(z), or equivalently the function t(x, z), is recom-
puted for each IMF, in order to extract different components of the same
signal. In the following sections we report the most common choice for the
filters, analyzing their properties and presenting an overview of the resulting
methods and the rationale behind them.

2.1 Continuous IF

The IF method separates amplitude modulated IMFs from the signal which
are quasi-stationary in frequency, starting from the highest frequencies.

Given a signal g : R → R in L2(R), the main idea of the method is to
use a filter k(z) so that the convolution k ⋆ g smooths out the most oscillating
component. Notice that since k(z) is nonnegative, and has unit mass and
compact support, the convolution can be seen as a local averaging of the signal.
The result is thus subtracted from the signal to capture the fluctuating part,
and the iterated sifting on the resulting signal progressively refines the quality
of the extracted IMF.

Following (1), we iteratively apply the sifting S(·) to the signal through
convolution with the filter kL(z) as in

L(g)(x) =
∫
R
g(z)kL(x− z)dz, S(g) = g − L(g), (3)

for an opportune length L dependent on g, where kL(z) := k(z/L)/L and k(z)
is a fixed filter. Notice that kL(z) is still a filter by Definition 1 and by taking
the Fourier Transform, we get

Ŝ(g) = ĝ − L̂(g) = ĝ(1− k̂L) =⇒ Ŝm(g) = ĝ(1− k̂L)
m. (4)

Once Sm(g) converges, it is stored as IMF1, and the process restarts with the
remaining signal g ← g − IMF1. The method thus extracts IMFs of progres-
sively lower frequencies, until the remaining signal is a trend signal, which
corresponds, conventionally, to a signal which contains 2 or less extrema [8].

We report in Algorithm 1 an overview of the IF method. At the end of the
title line of Algorithm 1, we report on the left of the equality sign the output
of the code, the variable IMFs, the name of the algorithm, IF, and in between
parenthesis the inputs, which are g and δ variables. The same applies to all
subsequent pseudocode algorithms.
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Algorithm 1 (IF Algorithm) IMFs = IF(g, δ)

Inputs: g real L2 function, δ > 0 stopping parameter
Output: IMFs is a set of L2 simple oscillatory functions
IMFs = {}
initialize the remaining signal r = g
while the number of extrema of r is ≥ 2 do

compute the length function L, depending on r
g1 = r
m = 1
while ∥gm − gm−1∥ > δ do

gm+1 = gm −
∫
R gm(z)k

(
x−z
L

)
dz
L

m = m+ 1
end while
IMFs = IMFs ∪ {gm}
r = r − gm

end while

All the algorithms in this document have the same structure as Algorithm
1, as all methods perform an iterative extraction of IMFs from a signal (referred
to as ‘outer loop’, corresponding to the ‘while’ condition in line 3) through an
iterative sifting process for each individual component (referred to as ‘inner
loop’, corresponding to the ‘while’ condition in line 7).

The filter k(z) is fixed independently from the signal so that the conver-
gence of the inner loop is assured. This has been proved for filters k(z) with

certain conditions on their Fourier transform k̂(ξ) :=
∫
R k(z)e−i2πzξ dz.

Theorem 1 [14, Corollary 3.2] Given a filter k(z), if |1 − k̂(ξ)| < 1 or k̂(ξ) = 0,
then Sm(g) in (3) converges when m→ ∞ for any g(z) ∈ L2(R) and L > 0.

Since k has compact support, its Fourier transform k̂(ξ) is an analytic even
function over R with a finite number of zeros in any compact real subset.
Additionally, k̂(0) = 1 = ∥k̂(z)∥∞, so the condition of Theorem 1 is satisfied,
for example, by a double convoluted filter k = ω⋆ω, where ω is a generic filter,
since k̂ = |ω̂|2.

Call IMFj the components generated in order by Algorithm 1. If rj is the
remaining signal that is being considered in the j-th step of the outer loop,
then IMFj = Smj (rj), where mj is the number of iterations of the inner loop,
determined by the stopping criterion. Given the tolerance δ > 0, we can rewrite
the stopping criterion as

∥Sm+1(rj)− Sm(rj)∥L2 < δ. (5)
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From Theorem 1 we know that the stopping criterion is always met for a big
enough number of iterations, and we can give a bound on mj and a better
description of IMFj .

Theorem 2 [20, Theorem 2] Given a double convoluted filter k(z), a fixed tolerance
δ > 0, and a signal g(z) ∈ L2(R), let S(g) be the sifting operation in (3) with any
L > 0. If m(g) is the smallest positive integer such that

mm

(m+ 1)m+1
<

δ

∥g∥L2
, (6)

then ∥SM+1(g) − SM (g)∥L2 < δ for all M ≥ m(g). As a consequence the j-th
component IMF generated by Algorithm 1 is the inverse Fourier transform of (1 −
k̂(ξ))mj r̂j(ξ) where rj is the remaining signal that is being considered in the j-th step
of the outer loop, and mj ≤ m(rj) is the number of iterations in the inner loop.

Note that the left hand side of (6) is decreasing in m, and for big m it is
approximately m−1. This shows in particular that mi = O(∥ri∥L2/δ).

Both Theorems 1 and 2 are based on the relation (4). Since k̂ is analytic

and k̂(0) = 1, there must exist a minimal positive frequency ξ0 that is a zero

of k̂. From (4) we see that as m goes to infinity, the sifting operator Sm tends

to cancel all frequencies of the signal that are not close to a zero of k̂L and in

particular all frequencies lower than ξ0. Since k̂L(ξ) = k̂(Lξ), the first positive

zero of k̂L is ξ0/L, so we can compute the length L by solving ξ0/L = ξ∗,
where ξ∗ represents the highest frequency of the signal. Sm will thus extract
the oscillating components of the signal with frequencies near ξ∗, and obtain
the first IMF.

The computation of the filter length L is an important step of the algo-
rithm, since it assures the extraction of the highest frequencies. Following [8],
when using the double averaging filter one can choose L = 2ν/h where ν is a
tuning parameter that is usually fixed at 1.6 and h is the number of extreme
points of the signal on [0, 1]. This is an approximation of the average highest
frequency contained in g. Another way is to fix a tolerance η > 0 and take
L = ξ0/ξ

∗ where ξ∗ is the greatest frequency for which |ĝ(ξ)| > η. Nonethe-
less, we can prove that Algorithm 1 produces only a finite number of ‘relevant’
IMFs with norm greater than a fixed tolerance η > 0.

Theorem 3 [20, Theorem 3] Let g ∈ L2(R) be a bounded signal with ŝ bounded
and supported inside an interval [b,B], k(z) a double convoluted filter, and δ > 0,
η > 0 fixed tolerances. Then Algorithm 1 produces only a finite number of IMFs with
∥IMF∥∞ > η.

The theorem does not prove that there are only a limited number of IMFs,
but from the proof in [20] one can extract something more that is worth citing.
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Proposition 4 Suppose that the hypotheses of Theorem 3 are met and consider the
notations of Theorem 2. Then there exists a scalar γ > 0 such that if Ij := {ξ :

(1− k̂Lj
(ξ))mj > 1− γ} and

ÎMFj
TH

= χIj r̂j + (1− k̂Lj
(ξ))mj (1− χIj )r̂j ,

then for every generated IMFj we have ∥IMFj − IMFTHj ∥ ≤ η/2. As a consequence,
if Lj is chosen as ξ0/ξ

∗ where ξ∗ is the greatest frequency for which |r̂j(ξ)| > η/2,
and if we stop the Algorithm 1 when ∥r̂∥∞ ≤ η/2, then the method produces a finite
number of IMFs.

In the hypothesis of Theorem 3 we have required that ĝ has compact sup-
port, and for any j, |r̂j | ≤ |ĝ| from Theorem 2. This means that in Algorithm
1, the lengths Lj are also bounded in an interval, from which the sets Ij of
Proposition 4 have measure greater than a same nonzero constant. As a con-
sequence, the latest result tells us that a finite number of Ij form a partition

of the whole support of ĝ, and ÎMFj ≈ ÎMFj
TH
≈ ĝ|Ij , so the IMFs represent

an approximated banded splitting of the frequencies of the signal. Since Ij is
a neighbourhood of the highest frequency detected in r̂j , then IMFj presents
progressively smaller frequencies for increasing j.

Eventually, we can prove a more general version of Theorem 3, if we define
the ‘relevant’ IMFs as those with big L2 norm.

Proposition 5 Let g ∈ L2(R), k(z) a double convoluted filter, and δ > 0, η > 0
fixed tolerances. Then Algorithm 1 produces only a finite number of IMFs with L2

norm greater than η.

Proof From Theorem 2 we know

ÎMFj = (1− k̂Lj
)mj

[
1− (1− k̂Lj−1

)mj−1

]
. . .
[
1− (1− k̂L1

)m1

]
ĝ,

that we rewrite as ÎMFj = sj · ĝ, where sj is a nonnegative function bounded by 1
and one can prove by induction that

M∑
j=1

sj = 1−
[
1− (1− k̂LM

)mM

]
. . .
[
1− (1− k̂L1

)m1

]
≤ 1, ∀M ≥ 1.

Since 0 ≤ s2j ≤ sj ≤ 1, one concludes that the same holds for the sum of s2j . As a
consequence, ∑

j

∥IMFj∥2L2 =
∑
j

∥ÎMFj∥2L2 =
∑
j

∥sj ĝ∥2L2

=
∑
j

∫ ∞

0
sj(x)

2|ĝ(x)|2dx

=

∫ ∞

0
|ĝ(x)|2

∑
j

sj(x)
2dx
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≤
∫ ∞

0
|ĝ(x)|2dx = ∥ĝ∥2L2 = ∥g∥2L2 <∞,

from which we conclude that the algorithm produces only a finite number of
IMFs with L2 norm greater than a fixed tolerance η > 0. □

Given a double convoluted filter, we know that the conditions of Theorem

1 are satisfied, and in particular |1− k̂L(ξ)| ≤ 1, so from (4) we infer that the
sifting operator is a linear contraction on the Fourier transform of its argument.
This is enough to prove that the inner loop Algorithm 1 behaves well under
perturbation. Actually, if the perturbation doesn’t change the choices for the
lengths and the number of iterations in the inner loops, one can prove that the
resulting perturbed IMFs are very close to the original ones.

Corollary 6 Let h ∈ L2(R) be a perturbation of the signal g ∈ L2(R). If k(z) is a

filter such that either |1− k̂| < 1 or k̂ = 0, then for the sifting operation S(g) in (3)
with any L > 0 we have

∥Sm(g + h)− Sm(g)∥L2 ≤ ∥h∥L2 .

Let now Lj , mj , IMFj be the length, number of inner iteration and IMF generated by
Algorithm 1 with input g(z) in the j-th outer loop. If Lj , mj coincide with those gen-
erated by the same algorithm with input g(z)+h(z), and if we call the corresponding
IMFs as IMF∗

j , then ∑
j

∥IMF∗
j − IMFj∥2L2 ≤ ∥h∥2L2 .

Proof From (4) and the linearity of the sifting operator,

∥Sm(g + h)− Sm(g)∥L2 = ∥Sm(h)∥L2 = ∥Ŝm(h)∥L2

= ∥(1− k̂L)
mĥ∥L2 ≤ ∥ĥ∥L2 = ∥h∥L2 .

From the proof of Proposition 5, we know that ÎMFj = sj · ĝ and ÎMF∗
j = sj · (ĝ+ ĥ),

where sj is a nonnegative function bounded by 1 and
∑
j sj ≤ 1. As a consequence,∑

j

|ÎMFj − ÎMF∗
j | =

∑
j

sj |ĥ| ≤ |ĥ|

and thus∑
j

∥IMF∗
j − IMFj∥2L2 =

∑
j

∥ÎMFj − ÎMF∗
j∥

2
L2

≤

∥∥∥∥∥∥
∑
j

|ÎMFj − ÎMF∗
j |

∥∥∥∥∥∥
2

L2

≤ ∥ĥ∥2L2 = ∥h∥2L2 .

□

The IF method has also been empirically shown (but never formally proved)
to be able to extract amplitude modulated components of the signals, i.e., of
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the form s(x) := 2a(x) cos(ξsx+ϕ) for slow-varying smooth functions a(x). A
tentative explanation can be given by looking at its Fourier transform

ŝ(z) = ̂[2a(x) cos(ξsx)](z) = [â(y) ⋆ (δξs + δ−ξs)(y)] (z) = â(z − ξs) + â(z + ξs)

and noticing that â is a fast decaying function. Since the IF algorithm extracts
components with frequency in a neighborhood of ±ξs, it is thus reasonable that
it also captures a good approximation of the whole component s(z). Further
studies are needed on this subject, so we postpone its analysis to a future work.

2.2 Discrete IF

In the discrete setting, the IF algorithm has the advantage of a fast implemen-
tation based on FFT, in what is called Fast Iterative Filtering (FIF), and an
advanced theoretical analysis [18, 20].

In practical applications we always study the signal g(x) on an interval,
say [0, 1]. Outside this interval, the signal is usually not known, so we have to
impose some boundary conditions, discussed for example in [35, 36]. In partic-
ular, in [36] the authors show how any signal can be pre-extended and made
periodic at the boundaries, for example, by reflecting the signal on both sides
and making it decay. Therefore, for simplicity and without losing generality,
we will assume that the signals to be decomposed are 1-periodic. For a more
detailed discussion on this matter we refer the interested reader to [35, 36].

In a discrete setting, a signal is usually given as a vector of sampled values
g = [gi]i=0,...,n−1 where gi = g(xi) and xi = i/n for i ∈ Z. As a consequence,
one can discretize the IF moving average (3) with a simple quadrature formula

L(g)(xi) =
∫
R
g(z)kL(xi − z) dz ≈ 1

nM

∑
j∈Z

gjkL(xi − xj). (7)

Since the filter kL(z) has compact support, the above formula is always well
defined. Here M is a normalizing constant depending on kL(z) and n defined
as

M :=
1

n

∑
j∈Z

kL(xi − xj) ≈
∫
R
kL(z) dz = 1

ensuring that the quadrature formula actually performs a local convex com-
bination of the signal points gi, akin to the averaging operation performed by
the convolution in the continuous case.

We have previously seen that L is inversely proportional to the target
frequency of the extracted IMF, and if we fix k(z) to be a filter with ξ0 = 1
as first positive zero of its Fourier transform, then 1/L ≤ 2π usually indicates
that we already have a slowly oscillating signal g with two or less extrema, i.e.,
a trend signal. From now on, both in the arguments and in results, we always
suppose that 1/L > 2π. As a consequence, (7) can be expressed through a
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Hermitian circulant matrix K with first row

k1 :=
1

nLM

[
k(0), k

(
1

nL

)
, . . . , k

( s

nL

)
, 0 . . . 0, k

( s

nL

)
, . . . , k

(
1

nL

)]
where s = ⌊nL⌋ < ⌊n/6⌋. The sampling vector of S(g) on the points
x0, x1, . . . , xn−1, that we indicate as S(g), is thus rewritten as a matrix-vector
multiplication

S(g)(xi) = gi − L(g)(xi) =⇒ S(g) = (I −K)g. (8)

We can see in Algorithm 2 a full overview of the method.

Algorithm 2 (Discrete IF Algorithm) IMFs = dIF(g, δ)

Inputs: g ∈ Rn discretized signal, δ > 0 stopping parameter
Output: IMFs is a set of discretized simple oscillatory components in Rn
IMFs = {}
initialize the remaining signal r = g
while the number of extrema of r is ≥ 2 do

compute L and the matrix K
g1 = r
m = 1
while ∥gm − gm−1∥ > δ do

gm+1 = (I −K)gm
m = m+ 1

end while
IMFs = IMFs ∪ {gm}
r = r − gm

end while

When the filter k is double convoluted, the matrixK can actually be proved
to acquire many crucial properties.

Proposition 7 ([20, Corollary 1, Corollary 3]) Given a double-convoluted filter k,
then the IF matrix K in (8) and I − K are both Hermitian, circulant and positive
semidefinite matrices with spectrum belonging to the interval [0, 1]. In particular, the
limit

lim
m→∞

(I −K)mg

converges for any vector g.

In particular, this ensures the convergence of the sequence gm generated
by the inner loop of Algorithm 2, since gm = (I −K)mg1.

Analogously to the continuous case, the stopping criterion of the inner loop
is set as the step in which ∥gm+1 − gm∥ falls below a certain tolerance δ > 0
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and we can provide a bound on the number of iterations of the corresponding
inner loop. For alternative stopping criteria see for example [8].

Theorem 8 Given a fixed tolerance δ > 0, and a discrete signal g, let S(g) be the
sifting operation in (8) where K is any n×n Hermitian matrix with spectrum in [0, 1]
and eigendecomposition K = UDUT . Suppose m(g) is the smallest positive integer
m such that

mm

(m+ 1)m+1
< max

{
δ

∥g∥ ,
δ√

n− 1− p∥UT g∥∞

}
, (9)

where p is the number of eigenvalues 1 in K. Then ∥SM+1(g)−SM (g)∥ < δ for all
M ≥ m(g).

As a consequence, if we consider a double convoluted filter, then the j-th IMF
generated by Algorithm 2 is (I − K)mjrj where rj is the remaining signal that is
being considered in the j-th step of the outer loop, and mj ≤ m(rj) is the number of
iterations in the inner loop.

Proof The bound on the right hand side of (9) with ∥UT g∥∞ is proved in [20,
Theorem 5]. From the hypothesis, I −K is Hermitian and its spectrum is contained
in [0, 1]. Since the real function f(λ) := (1 − λ)mλ has maximum on [0, 1] given by
λ = (m+ 1)−1, we get

∥Sm(g)− Sm+1(g)∥ = ∥(I −K)mKv∥ = ∥U(I −D)mDUT g∥ ≤ mm

(m+ 1)m+1
∥g∥.

The relation (9) then follows from the observation that its left hand side is decreasing
in m. From Proposition 7 if k(z) is a double convoluted filter, then in Algorithm 2
the matrix K is Hermitian and its spectrum is contained in [0, 1]. □

The IF method is fast since K is a circulant matrix, thus the multiplication
(I−K)gm can be performed very efficiently through an FFT. Actually, in [20]
we can find an even faster implementation, the so called FIF (Fast Iterative
Filtering) algorithm, based on the relation

DFT(gm+1) = (1−DFT(k1))
◦m ◦DFT(g1),

where ◦ stands for the Hadamard (or element-wise) product between vectors,
DFT and iDFT stand for Discrete Fourier Transform and its inverse, and k1

is the first row of K. Since the stopping criterion

∥gm+1 − gm∥2 = ∥DFT(gm+1)−DFT(gm)∥2 ≤ δ

can be checked on DFT(gm), we can further accelerate the method by com-
puting the DFTs of g1 and k1 and gm = iDFT(DFT(gm)) outside the inner
loop, thus avoiding iterated computations of Fourier transforms. We report
here the natural consequence of the latter arguments.
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Proposition 9 [20, Corollary 4] In Algorithm 2 the j-th extracted IMF is

iDFT
(
(1−DFT(kj))

◦mj ◦DFT(rj)
)

where rj is the remaining signal that is being considered in the j-th step of the outer
loop, mj is the number of iterations in the inner loop and kj is the first row of the
matrix K generated in the j-th step of the outer loop.

A full overview of the FIF method will be given later on, when we will general-
ize it into the Fast Resampled IF (FRIF). As a consequence of the last result,
we can again prove that the number of generated ‘relevant’ IMF is finite.

Proposition 10 Let g be a discrete signal, k(z) a double convoluted filter, and δ > 0,
η > 0 fixed tolerances. Then Algorithm 1 produces only a finite number of IMFs with
norm greater than η.

The proof uses that DFT(k1) is the vector of eigenvalues forK and Proposition
7, but the resulting argument is totally analogous to the continuous counter-
part Proposition 5, so we omit it. For the same reasons, we report here the
discrete version of Corollary 6 without proof. In particular it shows that even
the discrete version of IF behaves well under small perturbations of the signal.

Corollary 11 Let h be a perturbation of the signal g, and let S(g) be as in (8) where
K is any n× n Hermitian matrix with spectrum in [0, 1]. Then

∥Sm(g + h)− Sm(g)∥ ≤ ∥h∥.

Let now Lj , mj , IMFj be the length, number of inner iteration and IMF generated
by the j-th outer loop of Algorithm 2 with input g, δ > 0 and a double convoluted
filter k(z). If Lj , mj coincide with those generated by the same algorithm with input
g + h, and if we call IMF ∗

j the corresponding IMFs, then∑
j

∥IMF ∗
j − IMFj∥2 ≤ ∥h∥2.

Proposition 9 tells us that the method tends to isolate the components of
g with frequencies near the zeros of DFT(k1), that correspond to the zero
eigenvalues of K. When the number of sampling points n is big, the DFT of
the samples approximate the FFT of continuous functions well enough, letting
us to follow the same paradigm of continuous IF for the choice of the length
L. In particular, we want again that ξ0 = Lξ∗ where ξ0 is the smallest positive
zero of k̂(ξ) and ξ∗ is the highest relevant frequency of DFT(g) (notice that
we may not have access to the continuous signal, but only to its sampling).
Alternatively, L can be empirically estimated from the number h of extreme
points in g and computed as L = 2⌊nν/h⌋/n where ν is a tuning parameter
that is usually fixed at 1.6.
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3 ALIF and Variations

The IF method has been shown efficient and robust in extracting components
that are approximately stationary in frequency, but it comes short when deal-
ing with frequency modulations. Suppose that g : R→ R is a signal in L2(R)
composed by a finite number of components as in

g(x) = e(x) +

s∑
j=1

aj(x) cos(αj(x)) (10)

where e(x) is a low-norm noise signal, the amplitudes aj(x) and the instan-
taneous frequencies fj(x) := α′

j(x) (see [19]) are continuous real nonnegative
functions. Moreover suppose that fj(x) is decreasing in j for any fixed x ∈ R.
In this case, the IF algorithm would detect a frequency ξ∗ near the maximum
value of f1(x), and would end up extracting only a portion of the relative com-
ponent. The focus on ξ∗ is determined by the length L of the filter, so here we
would need a different length for each different point x ∈ R in some way linked
to the function f1(x). In physical terms, since the dominant frequency of the
signal g(x) changes depending on x, we need to adapt the moving average
locally to the signal.

This reasoning has led to the formulation in [19] of the Adapted Local
Iterative Filtering (ALIF) method, in which the signal is convoluted with an
opportune filter that can change depending on the point and that emulates an
adapted moving average. In other words, we need a family of filters kx(z) so
that the moving average of the signal g(x) is

L(g)(x) =
∫ 1

0

g(z)kx(x− z) dz,

where ideally the length ℓ(x) of kx(z) depends on the greatest instanta-
neous frequency of g(x), represented by f1(x). Now we describe the algorithm
resulting from the most common choice for the filter family kx(z).

3.1 Linear Adaptive Local IF

When we talk about the ALIF method, we usually refer to Linear ALIF. Given
now a signal g(z), let us fix a filter k(z) with support [−1, 1] and nonnegative

Fourier transform k̂(ξ) with ξ0 as smallest positive zero. Analogously to IF, if
we know the highest instantaneous frequency f(x) of g(z) (i.e., f1(x) in (10)),
then we can compute the positive length function ℓ(x) := ξ0/f(x) and form
the filter family kx(z) as

kx(z) := k

(
z

ℓ(x)

)
1

ℓ(x)
,
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following the same kind of stretching already performed in IF for kL(z). Notice
that now kx(z) is a filter with support [−ℓ(x), ℓ(x)] for every x ∈ [0, 1]. The
resulting sifting operation will thus be

S(g)(x) = g(x)−
∫
R
g(z)k

(
x− z

ℓ(x)

)
dz

ℓ(x)
(11)

The ALIF algorithm then follows the same steps as IF (Algorithm 1). After a
length function ℓ(x) is computed from the signal, the sifting operation (11) is
then applied to g(x) iteratively until convergence to an IMF, where the con-
vergence is determined by a stopping criterion, usually based on the norm of
the difference gm+1−gm or the number of iterations themselves. The IMFs are
thus iteratively extracted by repeating the same procedure on the remaining
signal g(x)− IMF until it becomes a trend signal. In Algorithm 3 we report an
overview of the method. The operation S(g) = g−L(g) is designed to catch the

Algorithm 3 (ALIF Algorithm) IMFs = ALIF(g, δ)

Inputs: g real L2 function, δ > 0 stopping parameter
Output: IMFs is a set of L2 simple oscillatory functions
IMFs = {}
initialize the remaining signal r = g
while the number of extrema of r is ≥ 2 do

compute the length function ℓ(x), depending on r
g1 = r
m = 1
while ∥gm − gm−1∥ > δ do

gm+1 = gm −
∫
R gm(z)k

(
x−z
ℓ(x)

)
dz
ℓ(x)

m = m+ 1
end while
IMFs = IMFs ∪ {gm}
r = r − gm

end while

fluctuation part of the signal locally presenting the highest frequency, as indi-
cated by the length function. The identification of ℓ(x) in signals containing
noise is always possible through a preliminary time-frequency representation
(TFR) algorithm and then using the acquired information to design the opti-
mal ℓ(x) (see [37] for a comprehensive review of modern TFR techniques). This
procedure is really important for ALIF algorithm, but it is also a research topic
per se. This is why, from now on, we assume that the length function can be
computed accurately and we postpone the analysis of how actually compute
it to a future work.

Conceptually, the ALIF method separates non-stationary components of
the signal starting from the highest frequencies. For example, on real data,
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the method first extract high frequency noise IMFs, and then starts to pro-
duce clean components. The method, albeit being very powerful and having
already been utilized in a variety of applications, still lacks a theoretical analy-
sis proving the convergence of the inner loop limm→∞ Sm(g), except for a few
notorious cases [19, 32, 34]. Moreover, the method is also missing a rigorous
study of the produced IMFs. Their quantity or quality cannot be predicted a
priori at this point. The local adaptation of the filter through the length func-
tion ℓ(x) makes the nice analysis of IF impossible to reproduce in this context.
Nevertheless, some tentative studies have been conducted when dealing with
discretized signals.

In the next sections, we report some of the available convergence results
for the discrete version of the algorithm.

3.2 Discrete ALIF

Using the same notations as Section 2.2, let g = [g0 g1 . . . gn−1] be the sam-
pling gi = g(xi) on the points xi = i/n, and suppose we have no other
information on the continuous signal g(x). In particular, we do not know g(x)
outside the interval [0, 1], but we can always suppose through an opportune
extension that the function is continuous and supported on this interval (see
[35, 36]). As a consequence, one can discretize the relation (11) with a simple
quadrature formula

S(g)(xi) = g(xi)−
∫ 1

0

g(z)kxi(xi − z) dz ≈ gi −
1

Min

n−1∑
j=0

gjkxi(xi − xj),

where Mi is the normalizing constant

Mi = max

{
1,

1

n

n−1∑
j=0

kxi
(xi − xj)

}
≈ max

{
1,

∫ xi

xi−1

kxi
(z) dz

}
= 1

ensuring that the moving average is discretized into a sub-convex combination
(recall that the signal is supposed to be 0 outside [0, 1]). In turn, this lets us
write the sampling vector of S(g) as a matrix-vector multiplication. In fact, if
we assume all the indexes start from zero,

S(g) := [S(g)(xi)]i=0,...,n−1 = (I −K)g, (12)

Ki,j =

[
1

Min
kxi

(xi − xj)

]n−1

i,j=0

,

where K is, by construction, a nonnegative matrix, whose rows add up to 1
since each of them represents the discretization of a filter function kxi

. This is
also the reason whyK is a row stochastic matrix. In the Linear ALIF paradigm,
we fix a filter k(z) (usually, double convoluted) and compute a length function
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ℓ(x) that usually depends on the relative positions of local extrema in g(z) if
the signal does not contain noise, or through more complex TFR algorithms.
We thus produce our family of filters kx(z) = k(z/ℓ(x))/ℓ(x) and iteratively
perform the discrete moving average and sifting operation as shown in (12).
The resulting method is reported in Algorithm 4.

Algorithm 4 (Discrete ALIF Algorithm) IMFs = dALIF(g, δ)

Inputs: g ∈ Rn discretized signal, δ > 0 stopping parameter
Output: IMFs is a set of discretized simple oscillatory components in Rn
IMFs = {}
initialize the remaining signal r = g
while the number of extrema of r is ≥ 2 do

compute ℓ(x) and the matrix K
g1 = r
m = 1
while ∥gm − gm−1∥ > δ do

gm+1 = (I −K)gm
m = m+ 1

end while
IMFs = IMFs ∪ {gm}
r = r − gm

end while

Notice that in the inner loop of the algorithm we again impose a stopping
condition, usually for when the norm of gm+1− gm gets too small. Even so, it
is evident that the convergence of the internal loop is not guaranteed, since it
depends on the spectral properties of the matrix I −K. Since

gm+1 = Sm(g1) = (I −K)mg1,

we find that a necessary condition for the convergence with any initial g1 is

|1− λi(K)| ≤ 1, ∀i = 1, . . . , n. (13)

If the zero eigenvalue of K has equal geometric and algebraic multiplicities,
and it is the only eigenvalue for which |1−λi(K)| = 1, then the condition is also
sufficient. Recent studies [32, 34] show that for large n and continuous functions
k(z), ℓ(x), almost all eigenvalues of the matrix K belong or are close to the
interval [0, 1], but this is still not enough to establish the convergence of the
method. In fact, it has been ascertained experimentally (see for example [34])
that the relation (13) may not hold, especially with a fast changing function
ℓ(x). The most common problem seems to lie in the presence of eigenvalues in
K with negative real part.
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Despite all the drawbacks, the method has empirically shown to be robust,
producing significant IMFs and managing to decompose the signals made from
both artificial and real data, in a successful way.

In the next section, we propose a modification to the matrix K of ALIF
that ensures the convergence of the inner loop, and that is designed to produce
similar IMFs.

3.3 Stable ALIF

Suppose now that the first inner loop of discrete ALIF (Algorithm 4) converges
to IMF1 = Sm1(g) = (I − K)m1(g), where m1 is the first index for which
the stopping criterion is satisfied. If the initial g had more than one distinct
component, then m1 must be big enough in order to identify the correct fre-
quency. In this case, the algorithm must produce an approximated projection
of the signal g on the null space of K, including also smaller components from
eigenspaces close to the null space.

As stated before, for the inner loop of the ALIF to converge, we need that
I − K has eigenvalues in the unit open complex ball, or equal to 1, that is
K must at least have eigenvalues with nonnegative real part. Since this is not
always attained, we instead opt to substitute K with a different matrix. In
what follows, the norms ∥ · ∥, ∥ · ∥1, ∥ · ∥∞, are respectively the induced 2, 1
and ∞ norm on the matrices.

Proposition 12 Given a n × n complex matrix K ̸= 0, let A = c2KTK with
∥cK∥ ≤ 1 and c ̸= 0 a real scalar. Then A is a positive semidefinite matrix with
spectrum inside [0, 1] and ker(A) = ker(K). Moreover, if λn(M) has the smallest
absolute value among the eigenvalues of M then

λn(A) ≤ c2|λn(K)|2.

In particular if K is row stochastic, the proposition holds with c−1 =
max{1,

√
∥K∥1}.

Proof The matrix c2KTK is positive semidefinite and 1 ≥ ∥cK∥2 = c2∥K∥2 =
c2∥KTK∥, so its spectrum is contained in [0, 1]. Moreover, ker(K) ⊆ ker(MK) for
any matrix M , but the singular values of KTK are the square of those in K (it can
be proved using the SVD of K), so their kernels have the same dimension. Since
c ̸= 0, we conclude that ker(c2KTK) = ker(K).

In positive semidefinite matrices, the singular values are equal to the eigenvalues,
so λn(A) = σn(c

2KTK) = c2σn(K)2 where σn(M) is the smallest singular value of
M . The relation σn(K)2 ≤ |λn(K)|2 is a classic corollary of the equivalent definition
σn(K)2 = min∥y∥=1 y

∗K∗Ky.

Suppose now that c−1 = max{1,
√

∥K∥1}. From the classic inequality ∥M∥2 ≤
∥M∥1∥M∥∞, and since K is row stochastic, we find that

0 < c∥K∥ ≤ c
√

∥K∥1 ≤ 1.

□
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From this result we can see thatA := c2KTK still presents exactly the same
zero eigenvalues of K, so we are able to extract the relative components from
the signal by considering the sifting operation S(g) = (I−c2KTK)g. Moreover,
Theorem 8 proves that the iterated sifting Sm(g) always converges and gives
a bound on the number of iterations needed for getting ∥Sm(g) − Sm+1(g)∥
lower than a fixed tolerance δ > 0.

Corollary 13 If A = c2KTK respects the hypotheses of Proposition 12 and S(v) :=
(I − A)v, then limm→∞ Sm(v) converges for every v. Moreover, given δ > 0 there
exists a smallest m0 for which

∥Sm(v)− Sm+1(v)∥ ≤ δ, ∀m ≥ m0

and m0 is upper bounded by the minimum m for which

mm

(m+ 1)m+1
< max

{
δ

∥v∥ ,
δ√

n− 1− p∥UTv∥∞

}
,

where p is the dimension of the eigenspace of A relative to the eigenvalue 1, and
A = UDUT is an eigendecomposition of the matrix A.

We call the resulting method Stable ALIF (SALIF), and report the full
method in Algorithm 5.

Algorithm 5 (Stable Discrete ALIF Algorithm) IMFs = SALIF(g, δ)

Inputs: g ∈ Rn discretized signal, δ > 0 stopping parameter
Output: IMFs is a set of discretized simple oscillatory components in Rn
IMFs = {}
initialize the remaining signal r = g
while the number of extrema of r is ≥ 2 do

compute ℓ(x), the matrix K and the scalar c
g1 = r
m = 1
while ∥gm − gm−1∥ > δ do

gm+1 = (I − c2KTK)gm
m = m+ 1

end while
IMFs = IMFs ∪ {gm}
r = r − gm

end while

Even though the method lets us extract the components relative to the
kernel of K, at the same time, we lose control over the components relative to
eigenspaces near the null one. In [32, 34], it has been shown that under special
conditions on ℓ(x) and big enough n, the matrix K is close to a Hermitian

matrix K̃. As already stated, this is not enough to ensure the convergence of
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the method, and the estimated difference K − K̃ is too large to bring forth a
formal justification of the method, but it gives some insight on Algorithm 5.

From Proposition 12, we see that the order of the smallest eigenvalue of
KTK is approximately the square of the smallest one in K. If K were a Her-
mitian matrix, this same relation would hold for every eigenvalue, thus raising
the number of components near a fixed zero eigenvalue. As a consequence,
the algorithm requires more iterations to attain the same accuracy as ALIF,
since it must separate eigenspaces that are now closer. In particular, it takes
a bigger index m to get λi((I − A)m) = (1 − λi(A))m close to zero since
λi(A) ∼ λi(K)2 ≪ λi(K) when λi(K) is already small.

Experimental evidences support this theory, showing how SALIF takes
more iterations than ALIF to converge to a clear component. Moreover, the
iterative step in the SALIF algorithm gm+1 = (I − KTK)gm takes at least
double the number of flops with respect to the respective step in the ALIF
algorithm, and since the number of iterations is usually much smaller than
n, computing KTK or its eigendecomposition beforehand does not in gen-
eral improve the speed of the method. As we will show in the experiments,
ref. Section 5, the stability of SALIF is probably the main factor leading to
more accurate component extraction than ALIF, at the cost of an increased
computational cost.

The SALIF method is called ‘stable’ for a number of reasons. First, as
we already seen in Corollary 13, the convergence of the inner loop is always
guaranteed. Secondly, we can again prove that the method is robust under
small perturbations. In fact, even with a perturbed matrix K, we can retain
the same conclusions of Proposition 12 by an opportune choice of the scalar
c (∥cK∥ ≤ 1 is still enough). Moreover, Corollary 11 can be generalized to
the SALIF method, showing how a perturbation in the signal propagates into
the IMFs. To prove it, we first need an auxiliary result, that also shows how
SALIF produces only a finite number of relevant IMFs, i.e. with norm greater
than a fixed tolerance η > 0.

Proposition 14 Let g be a discrete signal and δ > 0, η > 0 fixed tolerances. Then
the IMFs produced by Algorithm 5 satisfy∑

j

∥IMFj∥2 ≤ ∥g∥2.

In particular, the algorithm outputs only a finite number of IMFs with norm greater
than η.

Proof Suppose that at the j-th step of the outer loop of Algorithm 5, mj is the
number of iterations of the inner loop, rj the remainder signal being considered and

A = c2KTK the generated matrix, so that

rj+1 = rj − IMFj , IMFj = (I −A)mjrj .
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If A = UDUT is an eigendecomposition of A, we know from Proposition 12 that D
has all diagonal elements nonnegative and upper bounded by 1. As a consequence,

∥IMFj∥2 = ∥(I −A)mjrj∥2 = ∥U(I −D)mjUT rj∥2

= ∥UT rj −
[
I − (I −D)mj

]
UT rj∥2

≤ ∥UT rj∥2 − ∥
[
I − (I −D)mj

]
UT rj∥2

= ∥rj∥2 − ∥U
[
I − (I −D)mj

]
UT rj∥2

= ∥rj∥2 − ∥rj − (I −A)mjrj∥2 = ∥rj∥2 − ∥rj+1∥2,

where the inequality comes from the relation (1 − x)2 ≤ 1 − x2 that holds for all
x ∈ [0, 1]. As a consequence the norm of rj is decreasing in j and∑

j

∥IMFj∥2 ≤
∑
j

∥rj∥2 − ∥rj+1∥2 ≤ ∥r1∥2 = ∥g∥2.

□

Proposition 15 Let h be a perturbation of the signal g. Then for the sifting opera-
tion S(g) := (I −A)g with any A Hermitian matrix with spectrum in [0, 1] and any
m, we have

∥Sm(g + h)− Sm(g)∥ ≤ ∥h∥.
Let now ℓ(x)j , mj , IMFj be the length function, the number of inner iterations and
the IMF generated by the j-th outer loop of Algorithm 5 with input g. If ℓ(x)j , mj

coincide with those generated by the same algorithm with input g+h, and if we call
IMF ∗

j the corresponding IMFs, then∑
j

∥IMF ∗
j − IMFj∥2 ≤ ∥h∥2.

Proof Let A = UDUT an eigencomposition of A.

∥Sm(g + h)− Sm(g)∥ = ∥Sm(h)∥ = ∥(I −A)mh∥

= ∥U(I −D)mUTh∥ ≤ ∥UTh∥ = ∥h∥.

For the second part, if we fix all ℓ(x)j , mj generated by Algorithm 5 with input
v, then it is possible to prove by induction that the generated IMFs are linear in
the input v. In other words, calling IMFj(v) such IMFs, we have IMFj(g + h) =
IMFj(g) + IMFj(h) for every j. Notice now that the results in Proposition 14
hold even when we fix ℓ(x)j , mj in the algorithm, since all generated matrices A still
respect Proposition 12. As a consequence,∑

j

∥IMF ∗
j − IMFj∥2 =

∑
j

∥IMFj(g + h)− IMFj(g)∥2

=
∑
j

∥IMFj(h)∥2 ≤ ∥h∥2.

□
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Notice that the proofs of the last two results can be repurposed as proofs of
the corresponding results for the discrete IF algorithm. Instead, the opposite
is not possible since the IF method benefits from the representation through
the DFT (or the Fourier transform in the continuous case) that SALIF lacks
completely. In particular, the set of IMFs produced by IF can be seen in the
frequency domain as a partition of the frequencies into semi-stationary com-
ponents, described in the discrete case by the classic Fourier base. In SALIF,
though, we want to extract frequency modulated modes, that are not prone to
be described as a proper combination of frequencies.
To summarize, we have

• the IF algorithm has a well developed theory in the continuous case, its
discrete version always converges and can be efficiently implemented as
FIF, but cannot capture non-stationary components with quickly varying
frequencies,

• the ALIF algorithm has been empirically shown to be flexible enough to
extract fully non-stationary components, but an analysis of the continuous
version has never been conducted and the convergence in the discrete case
is not guaranteed,

• the SALIF algorithm is always convergent and empirically it has shown to
produce a more accurate decomposition than the ALIF algorithm, while
withholding its ability to extract non-stationary components, but it is
very slow, it lacks a full characterization of the generated decomposition
both from a mathematical and physical point of view.

In the next section, we show how to design an alternative method, that is
flexible enough to perform non-stationary analysis on the signals, but at the
same time fast and provably convergent.

4 Resampled Iterative Filtering

The linear ALIF method makes use of a length function ℓ(x) to locally stretch
a fixed filter k(z) so that the convolution with the signal g(z) smooths out the
high-frequency oscillatory behaviour. The idea behind the Resampled Itera-
tive Filtering (RIF) algorithm is to set a fixed length for the filter k(z) and
instead modify the signal through a global resampling function. In a sense, we
want to locally stretch the signal, making the component of higher frequency
approximately stationary, so that we are able to identify it through the fast
IF algorithm.

As a clarifying example, suppose the signal g(z) is a linear combination
of M non-stationary components cos(αj(z)) such that α′

1(z) > α′
2(z) > · · · >

α′
M (z) > ϵ > 0 are all continuous functions. Here the functions α′

j(z) are called
instantaneous frequencies for the components (see [19]), and since α′

j(z) >

ϵ > 0, then all the αj(z) are C1 and invertible functions. In order to extract
the highest frequency component cos(α1(z)) the ALIF method stretches the
filter accordingly to ℓ(z) := ξ0/α

′
1(z), whereas the RIF method applies the

resampling G(y) := α−1
1 (y) to the signal, obtaining g̃(y) := g(G(y)) that is
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now a linear combination of the components cos(αj(G(y))). Notice that the
first component is now the simple stationary signal cos(y) with frequency 1,
and all the others have instantaneous frequencies

(αj ◦G)′(y) = α′
j(G(y))G′(y) < α′

1(G(y))G′(y) = (α1 ◦G)′(y) = 1.

We have seen in Section 2 that the IF algorithm operates similarly to a band-
pass filter, by isolating a neighbourhood of the wanted frequency from the
rest, and in particular from the lower frequencies. The idea here is thus to use
the IF method on the resampled signal g̃(y) in order to extract the first high-
frequency stationary component, and thus separate it from the components
with lower instantaneous frequencies as in g̃(y) = I1(y) + r̃1(y) , where I1(x)
approximates a multiple of cos(y). A final resampling H(z) := G−1(z) = α1(z)
brings back all the components to the original coordinates, g(z) = g̃(H(z)) =
I1(H(z)) + r̃1(H(z)) = IMF1(z) + r1(z), where IMF1 ∼ cos(α1(x)) is now
marked and stored as the first IMF of the signal, and the method is then
iteratively applied to the reminder signal r1(z).

Following the steps described for the above example, we can now formalize
the RIF algorithm, where the resampling function G(y) is computed starting
from the length function ℓ(z) given by the ALIF algorithm with a filter k(t)
with ξ0 = 1. In particular, calling α′(z) the instantaneous frequency of the
first extracted component, we know that ℓ(z) = 1/α′(z) and we want that
(α ◦G)′(y) = 1, thus we can take G(y) = α−1(y + α(0)) and compute it as

ℓ(z) = G′(G−1(z)) and G−1(z) =

∫ z

0

1

ℓ(x)
dx. (14)

The full RIF algorithm is reported as Algorithm 6.
From the algorithm it is evident that, after the resampling, the steps are

the same as the IF algorithm. In fact, we always extract almost stationary
IMFs from the resampled signal, and then we operate the inverse sampling to
obtain the respective IMFs for the original signal. The observation that the
proposed RIF algorithm extracts almost stationary IMFs from the resampled
signal is enough to infer that the RIF internal loop always converge to some
IMF thanks to Theorem 2. In the next section we see how these properties
carry over to the discrete case.

We point out that G(x) depends on ℓ(x), so it must be computed every
time we want to extract a new component. Notice that in the inner loop RIF is
sifting the resampled signal g̃ = g◦G, and this is equivalent, from a theoretical
point of view, to applying on the original signal a resampled filter obtained
via the inverse sampling H := G−1.

SRIF (g)(x) = g̃(H(x))−
∫
R
g̃(y)k (H(x)− y) dy

= g(x)−
∫
R
g(G(y))k (H(x)− y) dy
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Algorithm 6 (Resampled IF Algorithm) IMFs = RIF(g, δ)

Inputs: g real L2 function, δ > 0 stopping parameter
Output: IMFs is a set of L2 simple oscillatory functions
IMFs = {}
initialize the remaining signal r = g
while the number of extrema of r is ≥ 2 do

compute ℓ(x) and derive the resampling G(y), G−1(x) as in (14) and the
resampled signal h = r ◦G

h1 = h
m = 1
while ∥hm − hm−1∥ > δ do

hm+1 = hm −
∫
R hm(y)k(x− y)dy

m = m+ 1
end while
IMFs = IMFs ∪ {hm ◦G−1}
r = r − hm ◦G−1

end while

= g(x)−
∫
R
g(z)k (H(x)−H(z))H ′(z)dz. (15)

It can be also shown that RIF is actually a particular ALIF method, since∫
R
g(G(y))k (H(x)− y) dy =

∫
R
g(G(H(x)− w))k (w) dw

=

∫
R
g(x+ [G(H(x)− w)− x])k (w) dw.

with t(x, y) = G(H(x)− y)− x in (2). Moreover, if we approximate at its first
order G(H(x)−w) ≈ G(H(x))−wG′(H(x)) = x−wℓ(x), where we used (14),
then ∫

R
g(G(H(x)− w)) k(w) dw ≈

∫
R
g(x− wℓ(x)) k(w) dw

=

∫
R
g(x− r) k

(
r

ℓ(x)

)
dr

ℓ(x)

=

∫
R
g(r) k

(
x− r

ℓ(x)

)
dr

ℓ(x)
(16)

where (16) shows that Linear ALIF is a first-order approximation of RIF, and
since RIF is a convergent method, we could ask whether it produces the same
output as Linear ALIF. The answer is provided in the following result.

Proposition 16 Suppose that k(z) is a filter with k(0) ̸= 0, ξ0 = 1 and at least in
C1(R). Moreover suppose that the resampling function H(z) = G−1(z) is at least in
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C2(R). In this case, the sifting operator in the RIF continuous algorithm 6 and the
one in the ALIF continuous algorithm 3 coincide if and only if ℓ(x) is a constant
function.

Proof Given a signal g(x), in Linear ALIF the sifting operator is

SALIF (g)(x) = g(x)−
∫
R
g(y)k

(
x− y

ℓ(x)

)
1

ℓ(x)
dy

= g(x)−
∫
R
g(y)k

(
H ′(x)(z − y)

)
H ′(x)dy

where 1/ℓ(x) = (G−1)′(x) = H ′(x) from (14). In RIF, the sifting operator is

SRIF (g)(x) = g(x)−
∫
R
g(z)k (H(x)−H(z))H ′(z)dz.

The two operators coincide for every starting signal g(x) if and only if

k
(
(x− y)H ′(x)

)
H ′(x) = k(H(x)−H(y))H ′(y), ∀x, y

and it is easily verified that this is true if ℓ(x) is constant, and therefore H(z) is a
linear function.

To prove the opposite implication, we now derive in y.

−k′
(
(x− y)H ′(x)

)
H ′(x)2 = −k′(H(x)−H(y))H ′(y)2+k(H(x)−H(y))H ′′(y), ∀x, y.

Substituting x = y, we conclude

−k′ (0)H ′(x)2 = −k′(0)H ′(x)2 + k(0)H ′′(x)

and in particular, H ′′(x) = 0. As a consequence H ′(x) and ℓ(x) = 1/H ′(x) are
constant functions. □

4.1 Non-stationary Error Bounds

Let us suppose that the signal g(x) is a linear combination of non-stationary
purely oscillating components as in

g(x) :=

M∑
j=1

ajgj(x), gj(x) = cos(αj(x)) (17)

where α′
1(x) > α′

2(x) > · · · > α′
M (x) > ϵ > 0 are all continuous functions and

|aj | ≤ P for any j. Moreover, suppose that g(x) and all its components gj(x)
are 1-periodic, and as a consequence αj(1) − αj(0) = 2πsj for any j, with
integer numbers s := s1 > s2 > · · · > sm > 0. Following the RIF Algorithm
6 applied to g(x), we find that in the first outer loop, we try to isolate the
highest frequency component of

h(y) :=

M∑
j=1

ajhj(y), hj(y) = cos(αj(α
−1
1 (y)), h1(y) = cos(y)
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by applying the IF Algorithm 1. Notice that h(y) and all hj(y) are now periodic
on [0, 2πs]. With an abuse of notation, let us compress the domain to [0, 1]
with a linear change of variables 2πsz = y, so that

h(z) :=

M∑
j=1

ajhj(z), hj(z) = cos(αj(α
−1
1 (2πsz)) = cos(βj(z)),

are now all 1-periodic and h1(z) = cos(2πsz). Moreover, we have already
proved in the last section that for j > 1, β′

j(z) < β′
1(z) = 2πs, so the instanta-

neous frequencies of hj are all bounded by 2πs. By Theorem 2, in the case h(z)
is an L2(R) function, the inner loop of the algorithm with filter k(z) returns

a signal whose Fourier Transform is (1 − k̂)mĥ. In the case h(z) is periodic,

an analogous relation holds, where k̂ and ĥ are now distributions, or better,
infinite vectors of their Fourier coefficients, and all the operations are to be
intended elementwise.

Proposition 4 and the above formula show that the IF Algorithm extracts
from h(z) mainly components with frequency close to the first zero ξ0 of the
Fourier Transform of the filter k(z), that we can choose thanks to the length L.
In particular the iterative sifting tends to cancel all frequencies below ξ0 = 2πs,
thus the Algorithm will extract as the first IMF the component h1(z) plus, at
most, the coefficients of the components hj(z) with frequency greater or equal
than ξ0.

In the case of stationary components, the non zero Fourier coefficients in
ĥj(z) for j > 1 are all with index strictly less than s, so that the algorithm

is able to correctly extract the first component ĥ1(z). When the components

are non-stationary, ĥj(z) may be non-zero also for high frequencies, thus the
extracted IMF gets modified. We now give an estimate for the errors incurred
in this method. The technical details are postponed to the appendix A.

Theorem 17 Suppose β : R → R is a C1 function with β′(x) ∈ [a, b] where 0 < a < b
and R := b− a. Suppose that β(x+ 1) = β(x) + 2kπ for some positive integer k and
for all x ∈ R. Let f(x) := cos(β(x)) and let f(x)N be the partial sum of its Fourier
series with coefficients up to N as in

f(x)N =
N∑

j=−N
ei2πjxdj :=

N∑
j=−N

ei2πjx
∫ 1

0
cos(β(y))e−i2πjydy.

If G := 2πN − b > 0, then

∥f(x)− f(x)N∥22 ≤ min

{(
b

G+ b+ 2π

)2

,
R2

π3G

}
.

If we apply now the above theorem with j > 1, f(z) = hj(z) and N = s−1,
we find that P∥f(x) − f(x)N∥2 is a bound on the perturbation of the IMF
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caused by the j-th component hj , and it is proportional to both

b

G+ b+ 2π
=

maxz β
′
j(z)

2πs
= max

x

α′
j(x)

α′
1(x)

and to

R = max
z

β′
j(z)−min

z
β′
j(z) = 2πs

(
max
x

α′
j(x)

α′
1(x)

−min
x

α′
j(x)

α′
1(x)

)
.

As a consequence hj affects the first IMF with an error that is inversely
proportional to the relative distance of the instantaneous frequencies of the
original components g1(x) and gj(x), and directly proportional to how close
the resampled component hj(z) is to a stationary signal.

We would like to stress that these are loose bounds, since the method
extracts only selected frequencies near the zeros of k̂, whose norm is way less
than all the higher-or-equal-than-ξ0 frequencies.

4.2 Fast Resampled Iterative Filtering

First of all we review how to possibly implement a discrete version of RIF.
As with IF, we suppose the signal g(x) is only known on [0, 1] and that it is
a 1-periodic C1 function. Consider the IF sifting operator on the resampled
signal

gm+1(G(y)) = gm(G(y))−
∫
R
gm(G(z)) k(y − z)dz,

where hm = gm◦G has domain [0,M ] and G : [0,M ]→ [0, 1] is C1. Recall that

from (14), M = G−1(1) =
∫ 1

0
ℓ(z)−1 dz, where ℓ(z)−1 represents the highest

instantaneous frequency of the signal. Since a signal with two or less extrema
on [0, 1] is considered a trend signal, we can at least assume ℓ(z)−1 > 2π and
as a consequence M > 2π.

We thus consider the regular grid xi := Mi/n for i = 0, . . . , n − 1. and
extend the signal cyclically on the real line, meaning that hm(sM+x) := hm(x)
for every s ∈ Z and every x ∈ [0,M). The quadrature rule on the discretization
points yields

hm+1(xi) ≈ hm(xi)−
M

nP

∑
j∈Z

hm(xj)k(xi − xj),

where P is a renormalizing constant given by

P :=
M

n

∑
j∈Z

k(xi − xj) ≈
∫
R
k(z) dz = 1

Notice that the above formula coincides with the IF moving average with
length L = 1/M , and can be expressed through a Hermitian circulant matrix
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K with first row

k1 =
M

nP

[
k(0), k

(
M

n

)
, . . . , k

(
s
M

n

)
, 0 . . . 0, k

(
s
M

n

)
, . . . , k

(
M

n

)]
where s = ⌊n/M⌋ ≤ n/6. If hm is the vector [hm(xi)]i=0,...,n−1, the sifting
operator becomes

hm+1 = (I −K)hm

where I−K is still a Hermitian and circulant matrix, so that the matrix vector
multiplication can be performed efficiently through a FFT. In particular, from
Proposition 9,

hm+1 = iDFT ((1−DFT(k1)) ◦DFT(hm)) ,

where ◦ stands for the Hadamard (or element-wise) product between vectors,
1 = DFT(e1) is the all-ones vectors, coming from DFT(Ihm) = DFT(e1) ◦
DFT(hm), and DFT, iDFT stand for Discrete Fourier Transform and its
inverse, respectively. Moreover, since

DFT(hm+1) = (1−DFT(k1)) ◦DFT(hm) = (1−DFT(k1))
◦m ◦DFT(h1)

we only need to perform two DFTs DFT(k1), DFT(h1), find the index m
satisfying the stopping condition, compute the m+1 Hadamard products and

then perform an iDFT outside of the inner loop. Calling ĥm := DFT(hm),

notice that ∥ĥm+1 − ĥm∥ = ∥hm+1 − hm∥, so the usual stopping criterion

∥hm+1 − hm∥ ≤ δ can be checked directly on ĥm, thus avoiding iterated
computations of Fourier transforms.

The resulting method is reported in Algorithm 7.
Notice that while the internal loop only consists of Hadamard multipli-

cations among vectors, and its convergence and stability properties can be
analysed with the same tools used for the IF algorithm, as in Proposition 7,
Theorem 8 and the first part of Corollary 11, in the outer loop we perform
operations that may lead to a loss in accuracy of the method. We can thus
adopt a spline interpolation to mitigate the accuracy loss, and even in this
case, the computational cost of the outer loop is still O(n log n) operations due
to the Fourier transforms.

From Proposition 7 and Theorem 8, one can state analogous convergence
results to the Discrete IF Algorithm.

Corollary 18 Given a double-convoluted filter k = ω ⋆ ω, then the inner loop of the
RIF Algorithm 6 converges for any initial function h(x). In particular, the limit

lim
m→∞

ĥm = lim
m→∞

k̂m1 ◦ ĥ1
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Algorithm 7 (Fast Resampled Iterative Filtering) IMFs = FRIF(g, δ)

Inputs: g ∈ Rn discretized signal, δ > 0 stopping parameter
Output: IMFs is a set of discretized simple oscillatory components in Rn
IMFs = {}
initialize the remaining signal r = g
while the number of extrema of r is ≥ 2 do

compute ℓ(x) based on a time-frequency representation of r, the resam-
pling function G−1(x) =

∫
ℓ(t)−1 dt via numerical integration, and the

constant M as M = G−1(1)
compute the resampled signal h through interpolation of r on the points

G(yi) where yi = Mi/n and the filter k1 that capture the highest frequency
contained in h.

h1 = h
ĥ1 = DFT(h1), k̂1 = 1−DFT(k1)
m = 1
while ∥ĥm+1 − ĥm∥ > δ do

ĥm+1 = k̂1 ◦ ĥm
m = m+ 1

end while
hm = iDFT(ĥm)
compute the IMF I through interpolation of hm on the points G−1(zi)

where zi = i/n
IMFs = IMFs ∪ {I}
r = r − I

end while

converges for any vector ĥ1, and the stopping condition is met for a m upper bounded
by m(h1), the smallest positive integer such that

mm

(m+ 1)m+1
< max

{
δ

∥ĥ1∥
,

δ
√
n− 1− p∥ĥ1∥∞

}
,

where p is the number of elements 1 in k̂1.

We have seen that the inner loops of the FRIF algorithm is provably con-
vergent, and that its computational time is comparable with the FIF method.
It’s worthwhile also to mention that the interpolations may introduce a loss in
accuracy in the solution. One can formulate a different, but equivalent, version
of the continuous algorithm that does not require a resampling of the signal,
since, as shown in (15), the sifting operator can be rewritten as

SRIF (g)(x) = g(x)−
∫
R
g(z)k (H(x)−H(z))H ′(z)dz.

The operator can be thus discretized into a diagonalizable matrix with all
the eigenvalues real, nonnegative and less than 1, for which a result similar
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to Proposition 7 can be proved. The resulting algorithm thus avoids the need
to interpolate the signal two times per IMF, but the resulting matrix is not
circulant (or even Hermitian), so we lose the fast implementation that was
possible in Algorithm 7.

In the numerical examples, we will also show that nonetheless the FRIF
algorithm produces sensible decompositions, but first let us address another
property of the method.

4.3 Anti-Aliasing Property

In the discrete setting, the resampling of the signal g(x) may in theory come
with an undersampling of the highest frequencies, leading to aliasing effects.
Here we show that in the FRIF algorithm, this is actually not a problem.

Suppose that the signal can be split into components as in (17), i.e.
g(x) presents a decomposition in components gj(x) which have instantaneous
frequencies I1(x), I2(x), I3(x), . . . , where I(x) := I1(x) has the highest instan-
taneous frequency among all the components, and recall that from (14) we
have

G−1(z) =

∫ z

0

I(x) dx, M = G−1(1) =

∫ 1

0

I(x) dx.

The resampled signal h̃(x) = g(G(x)) has thus domain [0,M ], but in the
discrete setting we treat it as a signal over [0, 1], so we are actually working
with

h(x) := h̃(Mx) = g(G(Mx)).

The signal h(x) presents now a new decomposition in components hj(x) =
gj(G(Mx)) with instantaneous frequency given by Ij(G(Mx))G′(Mx)M , and
in particular the first component has now frequency

I(G(Mx))G′(Mx)M = I(G(G−1(z)))G′(G−1(z))M

=
I(z)M

(G−1)′(z)
= M =

∫ 1

0

I(x)dx

that is surely less than ∥I(x)∥∞. Moreover, since G(z) is increasing and I(x) ≥
Ij(x)∀x, j, then

I(G(Mx))G′(Mx)M ≥ Ij(G(Mx))G′(Mx)M, ∀x

meaning that h1(x) has still the biggest instantaneous frequency among the
hj(x).

This allows to infer that the greatest instantaneous frequency of the resam-
pled signal h(x) is less than the greatest instantaneous frequency of the original
signal g(x), despite being evaluated in FRIF on the same number of points.
The resampling thus does not create artificial high frequency components, and
the FRIF algorithm does not suffer from aliasing problems.
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Fig. 1: Example 1. Left panel: the components f1 and f2, respectively first and
second row,the trend, third row, and the signal f , bottom row. Central panel:
exponential instantaneous frequencies of f1 and f2. Right panel: relative error
in norm 2 between the ground truth and IMF1 produced by ALIF, SALIF,
and FRIF algorithms.

5 Numerical Experiments

In this section we show and compare the performances of all the reviewed
techniques. In order to study the signals and their decompositions in time-
frequency, we will rely on the so called IMFogram, a recently developed
algorithm [38], which allows to represent the frequency content of all IMFs.
The IMFogram proves to be a robust, fast and reliable way to obtain the time-
frequency representation of a signal, and it has been shown to converge, in the
limit, to the well know spectrogram based on the FFT [17].

The following tests have been conducted using MATLAB® R2021a
installed on a 64–bit Windows 10 Pro computer equipped with a 11th Gen
Intel© Core® i7-1165G7 at 2.80GHz processor and 8GB RAM. All tested
examples and algorithms are freely available at 1.

5.1 Example 1

We consider the artificial signal f , plotted in the left panel, bottom row, of
Figure 1, which contains two nonstationary components with exponentially
changing frequencies f1 and f2, plus a trend f3. In particular

f1(x) = cos(20etπ + 120πt)

f2(x) = cos(20etπ + 20πt)

f3(x) = −10x+ 20

where x varies in [0, 1] and is sampled over 104 points.
The f1 and f2 components and f signal are plotted in the left panel of

Figure 1, whereas f1 and f2 frequencies are shown in the central panel.
In Table 1 we report the computational time required by ALIF, SALIF

and FRIF with a fixed stopping criterion based on (5). In the same table we
summarize the performance of the three techniques in terms of inner loop

1www.cicone.com

www.cicone.com
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iterations required to produce the two IMFs and the relative error measured
as ratio between the norm 2 of the difference between the computed IMF and
the corresponding ground truth, and the norm 2 of the ground truth itself.

Example 1 ALIF SALIF FRIF

time(s) 16.3293 26.9395 0.9107
err1 0.040260 0.117824 0.006535
err2 1.051461 0.117842 0.006543
err3 0.049352 0.000084 0.000017

num of iter IMF1 61 175 80
num of iter IMF2 500 155 4

Table 1: performance of various techniques when applied on Example 1, mea-
sured as relative errors in norm 2 and number of iterations.

From Table 1 results it is clear that FRIF proves to converge quickly to
a really accurate solution. In fact, it takes less than a second to produce a
decomposition which has a relative error which is order of magnitudes smaller
than the ones produced using ALIF and SALIF methods. Furthermore ALIF
and SALIF decompositions require more than 16 and 26 seconds, respectively,
to converge. This is confirmed by the results shown in the right panel of Figure
1, where we compare the norm 2 relative error of the IMF1 obtained using
ALIF, SALIF, and FRIF algorithms for subsequent steps in the inner loops
when we remove the stopping condition. ALIF initially tends toward the right
solution. At 35 steps the relative error reach the minimum value of 0.0262, and
then, after that, the instabilities of the method show up and drive the solution
far away from the correct one. SALIF, instead, is clearly convergent, in fact the
solution is moving steadily to the exact one. However SALIF converge rate is
slow, as proven by the relative error which is slowly decaying. In fact, after 500
inner loop steps, the relative error is still around 0.0179. Finally, FRIF quickly
converge to a really good approximation of the right solution, at 73 steps the
error is minimal with a relative error of 0.0064. After this step, the relative
error restarts growing due to the chosen stopping criterion. It is important to
remember that, in general, the ground truth is not known. This is the reason
why the stopping criterion adopted in these techniques does not rely on the
ground truth knowledge. Hence, as a consequence, FRIF, ALIF, and SALIF do
not necessarily stop when the actual best approximation of the ground truth
is achieved. For example, one can see that the ALIF algorithm doesn’t stop
in the computation of the second IMF of the signal. Studying what could be
an ideal stopping criterion and how to tune it properly is outside the scope of
this work.

5.2 Example 2

In this second example, we start from the artificial signal h which contains two
nonstationary components, h1 and h2, and a trend h3,
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Fig. 2: Example 2. Left panel: the components h1 and h2, respectively first
and second row, and the signal h, bottom row. Right panel: exponential
instantaneous frequencies of h1 and h2.

Fig. 3: Example 2. Difference between the ground truth and the derived
decomposition via ALIF (left), SALIF (central), FRIF (right).

h1(x) = cos(20 cos(4πt)− 160πt)

h2(x) = cos(20 cos(4πt)− 280πt)

h3(x) = cos(2πt)

where x varies in [0, 1] and is sampled over 8000 points.
The h1, h2, the trend component, and h signal are plotted in the left column

of Figure 2, whereas h1 and h2 frequencies are shown in the right panel.
In Table 2 we report the performance of ALIF, SALIF and FRIF tech-

niques. In Figure 3 we show the differences between the IMFs produced by
the different methods and the known ground truth. It is evident both from the
table and the figure that the proposed FRIF method outperforms the other
approaches both from the efficiency and the accuracy point of view.

5.3 Example 3

In this example we show the robustness of the proposed FRIF approach to
noise. To do so, we consider the signal h studied in Example 2 and we perturb
it by additive Gaussian noise. In Figure 4 we plot on the left panel the per-
turbed signal when the signal to noise ratio (SNR) is of 8.6 dB. On the right
panel we report the decomposition produced by FRIF. It is evident that the
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Example 2 ALIF SALIF FRIF

time(s) 16.0005 20.2120 1.0958
err1 0.457672 0.003584 0.003426
err2 1.374017 0.003591 0.003292
err3 1.304946 0.000229 0.000908

num of iter IMF1 500 468 81
num of iter IMF2 500 8 11

Table 2: Example 2 performance of ALIF, SALIF and FRIF, measured as
relative errors in norm 2 and iteration number.

Fig. 4: Example 3. Left panel, the noisy signal compared with the noiseless
signal h defined in Example 2. The SNR is around 8.6 dB. Right panel, the
IMF decomposition derived by FRIF.

Fig. 5: Example 3. Left panel, the noisy signal with SNR around 1.3 dB com-
pared with the noiseless signal h of Example 2. Right panel, the corresponding
FRIF decomposition compared with the ground truth.

method can separate properly the random perturbation in the first row, from
the deterministic components in the following three rows.

This result is confirmed even if we increase the SNR to 1.3 dB, left panel
of Figure 5. It is evident from this figure that this level of noise is quite high.
Nevertheless FRIF method proves to be able still to separate the deterministic
signal from the additive Gaussian contribution, as shown in the left panel of
Figure 5.

5.4 Example 4

We conclude the numerical section with an example based on a real life signal.
We consider the recording of the sound emitted by a bat, shown in the left panel
of Figure 6. In the central panel, we show the associated time-frequency plot
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Fig. 6: Example 4. Left panel, sound produced by a bat. Central panel,
the corresponding IMFogram time-frequency plot where darker color means
stronger energy. Right panel, instantaneous frequency curves inferred from the
IMFogram plot. In this panel, different colors represent different instantaneous
frequency curves.

obtained using the IMFogram [38]. From this plot we observe that this signal
appears to contain three main simple oscillatory components which present
rapid changes in frequencies. Those are classical examples of the so called
chirps. By using a curve extraction method, it is possible to derive from the
IMFogram the instantaneous frequency curves plotted in the right panel of
Figure 6. As briefly mentioned earlier, the identification of these instantaneous
frequency curves is of fundamental importance for the proper functioning of
FRIF, but it is also a research topic per se. In this work, we assume that they
can be computed accurately and we postpone the analysis of how to compute
them in a robust and accurate way to future works.

By leveraging on the extracted curves, we run FRIF algorithm and derive
the decomposition shown in the left most panel of Figure 7. The first three
IMFs produced correspond to the three main chirps observed in the IMFogram,
which is depicted in the central panel of Figure 6. This is confirmed by running
IMFogram separately on the first three IMFs produced by FRIF. The results
are shown in the rightmost 3 panels of Figure 7. From these plots it becomes
clear that the algorithm is able to separate in a clean way the three chirps
contained in the signal.

6 Conclusions

In this work, we introduced the Resampled Iterative Filtering (RIF), and, in
the discrete setting, the Stable Adaptive Local Iterative Filtering (SALIF) and
Fast Resampled Iterative Filtering (FRIF), which are capable of decomposing
non-stationary signals into simple oscillatory components, even in presence of
fast changes in their instantaneous frequencies, like in chirps. We have analyzed
them from a theoretical standpoint, showing, among other things, that it is
possible to guarantee a priori their convergence. Furthermore, we have tested
them using several artificial and real-life examples.

More is yet to be said about the problem. In particular, all these meth-
ods are dependent on the computation of a length function ℓ(x) which is,
de facto, the reciprocal of the instantaneous frequency curve associated with
each component contained in the signal. This function is required to guide the
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Fig. 7: Example 4. First row, left panel, IMF decomposition produced by
FRIF. First row right panel and second row left and right panels, the IMFogram
time-frequency plots associated with the first, second, and third row in the
FRIF decomposition, respectively. In these time-frequency plots, darker color
means stronger energy.

aforementioned methods, including ALIF itself, in the extraction of physically
meaningful IMFs. The identification of instantaneous frequency curves associ-
ated with each component, which are contained in a given signal, is a research
topic per se, and it is out of the scope of the present work. This is why we
plan to study this problem in the future.

Other open problems regard the selection of an optimal stopping criterion,
including its tuning, to be used in this kind of methods, an analysis of the
number of relevant IMFs produced by SALIF and RIF, their local orthogonal-
ity, and a perturbation analysis for RIF. We plan to work in these directions
in the future.

Finally, we plan to work on the extension of the proposed techniques to
handle multidimensional and multivariate signals.

A Error Estimation for Non-Stationary
Components

Here we report the proof for Theorem 17. First, let us show a more general
result.

Proposition 19 Suppose α : R → R is a C1 function with α′(x) ∈ [a, b] where a < b
and ab ≥ 0. Call R := b− a and suppose that α(1) = α(0) + 2kπ for some integer k.
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If now dj is the j-th Fourier coefficient of eiα(x) as in

dj :=

∫ 1

0
eiα(x)e−i2πjxdx,

and if 2πj > b, then

|dj | ≤
1

π

R

2πj − b
.

Proof From the relation α(1) = α(0) + 2kπ we find that 2kπ = α(1) − α(0) =∫ 1
0 α

′(x) ∈ [a, b]. Call ψ(x) := 2πjx− α(x) and notice that

ψ′(x) = 2πj − α′(x) ∈ [q, p], p := 2πj − a ≥ q := 2πj − b > 0,

so ψ is invertible with ψ−1 in C1. We can then define the function φ(y) as φ(y) :=
(ψ−1)′(y) = 1/ψ′(ψ−1(y)) ∈ [p−1, q−1], and by the Fourier formula,

dj =

∫ 1

0
ei[α(x)−2πjx]dx =

∫ 1

0
e−iψ(x)dx =

∫ ψ(1)

ψ(0)
e−iyφ(y)dy,

where ψ(1) − ψ(0) = 2πj − (α(1) − α(0)) = 2πj − 2πk. Call s := j − k and notice

that 2πs =
∫ 1
0 ψ

′(x) ∈ [q, p] and in particular p ≥ 2πs ≥ q > 0. Now

|dj | =

∣∣∣∣∣
∫ 2πj−α(1)

−α(0)
e−iyφ(y)dy

∣∣∣∣∣ =
∣∣∣∣∣
∫ 2π

0
e−iszeiα(0)φ(sz − α(0))sdz

∣∣∣∣∣
= s

∣∣∣∣∣
∫ 2π

0
e−iszφ(sz − α(0))dz

∣∣∣∣∣
and the integral of the exponential is zero over [0, 2π], therefore we can add to

φ(y) any constant without changing the result. As a consequence,

|dj | = s

∣∣∣∣∣
∫ 2π

0
e−isz

(
φ(sz − α(0))− q−1 + p−1

2

)
dz

∣∣∣∣∣ = s

∣∣∣∣∣
∫ 2π

0
e−iszϕ(z)dz

∣∣∣∣∣
where ϕ(z) := φ(sz − α(0))− q−1+p−1

2 is a real function bounded in absolute value

by q−1−p−1

2 . Suppose z0 is the argument of
∫ 2π
0 e−iszϕ(z)dz so that

|dj | = se−iz0

∫ 2π

0
e−iszϕ(z)dz ∈ R

and its imaginary part is zero, leading to

|dj | = sℜ

(
e−iz0

∫ 2π

0
e−iszϕ(z)dz

)

= s

∫ 2π

0
cos(sz + z0)ϕ(z)dz

≤ s
q−1 − p−1

2

∫ 2π

0
|cos(sz + z0)|dz = 2s(q−1 − p−1).

Using that p ≥ 2πs and p− q = R we conclude that

|dj | ≤
R

qπ
.

□
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Corollary 20 Suppose α : R → R is a C1 function with α′(x) ∈ [a, b] where 0 <
a < b. Call R := b − a and suppose that α(1) = α(0) + 2kπ for some integer k. If
now dj is the j-th Fourier coefficient of cos(α(x)) as in

dj :=

∫ 1

0
cos(α(x))e−i2πjxdx,

and 2πj − b > 0, then

|dj | ≤
1

π

R

2πj − b
.

Proof Since 2 cos(α(x)) = eiα(x) + e−iα(x) and both α(x) and −α(x) satisfy the
hypotheses of Proposition 19, we can estimate dj through the mean of the Fourier

coefficients dj,1 and dj,2 respectively of eiα(x) and e−iα(x)

|dj | ≤
|dj,1|+ |dj,2|

2
≤ 1

2π

(
R

2πj − b
+

R

2πj + b

)
≤ 1

π

R

2πj − b
.

□

Going back to Theorem 17, notice that f(x) is a C1 periodic function
with continuous derivative f ′(x) whose Fourier coefficients are 2πindn and
|f ′(x)| = |β′(x) sin(β(x))| ≤ b. By Parseval Identity,

∥f ′(x)∥22 =

+∞∑
n=−∞

(2πn)2|dn|2 =

∫ 1

0

f ′(x)2dx ≤ b2.

The series of n2|dn|2 thus converges, and

∥f−fN∥22 =
∑

|n|>N

|dn|2 =
∑

|n|>N

(2πn)2|dn|2

(2πn)2
≤

(
b

2π(N + 1)

)2

=

(
b

G+ b+ 2π

)2

.

From Corollary 20, we already have a bound on dj leading to

∥f−fN∥22 =
∑

|n|>N

|dn|2 ≤
R2

π2

∑
|n|>N

1

(2πn− b)2
≤ R2

π2

∫ ∞

N

1

(2πx+ b)2
+

1

(2πx− b)2

=
R2

2π3

[
1

2πN + b
+

1

2πN − b

]
≤ R2

π3G
.
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