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Abstract
The theory of spectral symbols links sequences of matrices with measurable

functions expressing their asymptotic eigenvalue distributions. Usually, a sequence
admits several spectral symbols, and it is not clear if a canonical one exists. Here
we present a way to connect the sequences with the space of probability measure,
so that each sequence admits a uniquely determined measure. The methods used
are similar to those employed in the theory of Generalized Locally Toeplitz (GLT)
sequences: a goal of this present contribution is in fact that of explaining how the
two concepts are connected.

1 Introduction

A Matrix Sequence is an ordered collection of complex valued matrices with in-
creasing size, and is usually denoted as {An}n, where An ∈ Cn×n. We will refer to
the space of matrix sequences with the notation

E := {{An}n : An ∈ Cn×n}.

It is often observed in practice that matrix sequences {An}n, generated by dis-
cretization methods applied to linear differential equations possess a Spectral Sym-
bol, that is a measurable function describing the asymptotic distribution of the eigen-
values of An. We recall that a spectral symbol associated with a sequence {An}n is a
measurable functions k : D⊆ Rn→ C satisfying

lim
n→∞

1
n

n

∑
i=1

F(λi(An)) =
1

l(D)

∫
D

F(k(x))dx
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for every continuous function F : C→ C with compact support, where D is a mea-
surable set with finite Lebesgue measure l(D)> 0 and λi(An) are the eigenvalues of
An. In this case we write

{An}n ∼λ k(x).

We can also consider the singular values of the matrices instead of the eigenvalues.
In the same setting, if

lim
n→∞

1
n

n

∑
i=1

F(σi(An)) =
1

l(D)

∫
D

F(|k(x)|)dx

for every continuous function F : R→ C with compact support, where σi(An) are
the singular values of An, then {An}n possesses a Singular Value Symbol, and we
write

{An}n ∼σ k(x).

The space of matrix sequences is a complete pseudometric space when endowed
with a pseudometric inducing the Approximating Classes of Sequences (acs) con-
vergence, that we will redefine in the next section. One fundamental property of
this metric is that it identifies sequences that differ by a sequence admitting zero as
singular value symbol (called zero distributed sequences). In particular, it has been
shown that such sequences share the same singular value symbol, but the distance
between two sequences with the same singular value symbol is not usually zero.

The main observation of this note is that for any measurable function k(x), the
operator

φ(F) :=
∫

D
F(k(x))dx φ : Cc(C)→ C

is linear and continuous and can be represented by an unique probability measure
µ . We call µ a Spectral Measure, and we associate it with any sequence {An}n that
has k(x) as spectral symbol. It turns out that if a sequence admits a spectral measure,
then it is uniquely determined, differently from the spectral symbols. The space of
probability spectral measures is moreover a complete metric space with the Lévy-
Prokhorov distance π , and it correspond to a pseudometric d′ on matrices called
Modified Optimal Matching distance. The main result is that d′ identifies sequences
admitting the same spectral symbol, differently from the acs distance.

Theorem 1. If {An}n ∼λ f (x), then

{Bn}n ∼λ f (x) ⇐⇒ d′({An}n,{Bn}n) = 0.

A different approach to the uniqueness problem for the spectral symbol is em-
bodied in the theory of GLT sequences. For specific sequences, called Generalized
Locally Toeplitz (GLT) sequences, we can choose one of their symbols, and denote
it as GLT Symbol of the sequence

{An}n ∼GLT k(x,θ).
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In the case of diagonal matrix sequences, the choice of one symbol can be seen
as a particular sorting of their eigenvalues, as expressed in the following theorem,
proved in the last section, and which represents a generalization of the results in [3].

Theorem 2. Given a diagonal sequence {Dn}n and one of its spectral symbols k :
[0,1]→ C, then

{PnDnPT
n } ∼GLT k(x)⊗1

for some Pn permutation matrices.

The paper is organized in the following way: In Section 2 we recall basic def-
initions like the acs convergence, the optimal matching distance d and the theory
of GLT sequences. Moreover, we define the modified optimal matching distance d′

since it is a slight variation of d, and we discuss how it is connected to dacs. In
Section 3 we introduce the spectral measures and we study their relationships with
the spectral symbols. In particular, we notice how the vague convergence and the
Lévy-Prokhorov distance π on the probability measures lead to a reformulation of
the definition of spectral symbol/measure. In Section 4, we prove that the pseudo-
metrics π and d′ are actually equivalent, and we explain how this fact leads to the
proofs of the above reported theorems.

2 Prerequisites

2.1 Complete Pseudometrics

The space of matrix sequences that admit a spectral symbol on a fixed domain D
has been shown to be closed with respect to a notion of convergence called the
Approximating Classes of Sequences (acs) convergence. This notion and this result
are due to Serra-Capizzano [11], but were actually inspired by Tilli’s pioneering
paper on LT sequences [12]. Given a sequence of matrix sequences {Bn,m}n,m, it is
said to be acs convergent to {An}n if there exists a sequence {Nn,m}n,m of "small
norm" matrices and a sequence {Rn,m}n,m of "small rank" matrices such that for
every m there exists nm with

An = Bn,m +Nn,m +Rn,m, ‖Nn,m‖ ≤ ω(m), rk(Rn,m)≤ nc(m)

for every n > nm, and

ω(m)
m→∞−−−→ 0, c(m)

m→∞−−−→ 0.

In this case, we will use the notation {Bn,m}n,m
acs−−→ {An}n.

This notion of convergence has been shown to be metrizable on the whole space
E . Given a matrix A ∈ Cn×n, we can define the function
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p(A) := min
i=1,...,n+1

{
i−1

n
+σi(A)

}
,

where σ1(A)≥ σ2(A)≥ ·· · ≥ σn(A) are the singular values of A, and by convention
σn+1(A) = 0. The function p(A) is subadditive, so we can introduce the pseudomet-
ric dacs on the space of matrix sequences

dacs ({An}n,{Bn}n) = limsup
n→∞

p(An−Bn).

It has been proved ([6],[8]) that this distance induces the acs convergence already
introduced. In other words,

dacs ({An}n,{Bn,m}n,m)
m→∞−−−→ 0 ⇐⇒ {Bn,m}n,m

acs−−→ {An}n.

One fundamental property of this metric is that it identifies sequences whose dif-
ference admits zero as singular value symbol (called zero distributed sequence).
In particular, it has been shown that such sequences share the same singular value
symbol, in case one of them admits singular value symbol.

Lemma 1. Let {An}n,{Bn}n ∈ E . We have

{An−Bn}n ∼σ 0 ⇐⇒ dacs ({An}n,{Bn}n) = 0.

In this case, if k : D ⊆ Rn → C where D is a measurable set with finite Lebesgue
measure l(D)> 0, then

{An}n ∼σ k(x) ⇐⇒ {Bn}n ∼σ k(x).

In [2], has been first proved that the pseudometric dacs on the space of matrix
sequences is complete. In Theorem 2.2 of [4], we find sufficient conditions for a
pseudometric on E to be complete. Here we need a different result, but the proof is
almost identical.

Lemma 2. Let dn be pseudometrics on the space of matrices Cn×n bounded by the
same constant L > 0 for every n. Then the function

d({An}n,{Bn}n) := limsup
n→∞

dn(An,Bn)

is a complete pseudometric on the space of matrix sequences.

2.2 Optimal Matching Distance

Let v,w ∈ Cn be vectors with components

v = [v1,v2, . . . ,vn], w = [w1,w2, . . . ,wn].
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We recall the pseudometric on Cn called Optimal Matching Distance defined in
Bhatia’s book [5].

Definition 1. Given v,w ∈Cn, the pseudometric of the optimal matching distance is
defined as

d(v,w) := min
σ∈Sn

max
i=1,...,n

|vi−wσ(i)|,

where Sn is the symmetric group of permutation of n objects.

Given A ∈ Cn×n, let Λ(A) ∈ Cn be the vector of the eigenvalues. We can extend the
distance d to matrices in the following way.

Definition 2. Given A,B ∈ Cn×n, we define

d(A,B) := d(Λ(A),Λ(B)).

Notice that the order of the eigenvalues in Λ(A) and Λ(B) does not affect the quan-
tity d(A,B). It is easy to see that d is still a pseudometric on Cn×n. This is still not
enough for our purposes, since we want a distance that sees two matrices differing
for few eigenvalues as very similar. For this reason, we modify the previous metric,
and we introduce a new function d′ called Modified Optimal Matching Distance.

Definition 3. Given v,w ∈Cn, the modified optimal matching distance is defined as

d′(v,w) := min
σ∈Sn

min
i=1,...,n+1

{
i−1

n
+ |v−wσ |↓i

}
,

where
|v−wσ |= [|v1−wσ(1)|, |v2−wσ(2)|, . . . , |vn−wσ(n)|]

and |v−wσ |↓i is the i-th greatest element in |v−wσ |, with the convention |v−
wσ |↓n+1 := 0.

Given A,B ∈ Cn×n, we define

d′(A,B) := d′(Λ(A),Λ(B))

and if {An}n,{Bn}n ∈ E , we can also define

d′({An}n,{Bn}n) := limsup
n→∞

d′(An,Bn).

Notice that d′(v,w) ≤ 1 for every v,w ∈ Cn, so d′(A,B) ≤ 1 for every pair of
matrices of the same size, and d′({An}n,{Bn}n) ≤ 1 for every pair of sequences
{An}n,{Bn}n ∈ E . We referred to d′ as a distance, but we need to prove it.

Lemma 3. The function d′ is a complete pseudometric on E .

Proof. Let us prove that d′ is a pseudometric on Cn. First, it is easy to see that
d′(v,w) is always a finite nonnegative real number, and it is symmetric since
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d′(v,w) = min
σ∈Sn

min
i=1,...,n+1

{
i−1

n
+ |v−wσ |↓i

}
= min

σ∈Sn
min

i=1,...,n+1

{
i−1

n
+ |w− vσ−1 |↓i

}
= d′(w,v).

Moreover, given any τ ∈ Sn, we have

d′(v,w) = min
σ∈Sn

min
i=1,...,n+1

{
i−1

n
+ |v−wσ |↓i

}
= min

σ∈Sn
min

i=1,...,n+1

{
i−1

n
+ |vτ −wστ |↓i

}
= d′(vτ ,w),

so we can permute the elements of the vectors as we like. Let v,w,z ∈ Cn and let us
sort their elements in such a way that

d′(v,w) = min
i=1,...,n+1

{
i−1

n
+ |vi−wi|

}
,

d′(w,z) = min
i=1,...,n+1

{
i−1

n
+ |w− z|↓i

}
,

meaning that the permutation realizing the minimum in both cases is the identity,
and that |vi−wi| ≥ |v j −w j| whenever i ≤ j. Moreover, let s,r,q be the greatest
indices that satisfy

d′(v,w) =
s−1

n
+ |vs−ws|, d′(w,z) =

r−1
n

+ |wq− zq|.

Let I,J be two sets of indices defined as

I = {1,2, . . . ,s−1} , J = { j : |w j− z j|> |wq− zq|}.

Notice that #I = s−1 and #J = r−1. Let us consider two cases.

• Suppose I∪ J = {1, . . . ,n}. We obtain that

#I +#J = r+ s−2≥ n

and hence

d′(v,z)≤ 1≤ s−1
n

+
r−1

n
≤ d′(v,w)+d′(w,z).

• Suppose I∪J 6= {1, . . . ,n}. Let k be the index not belonging to I∪J that maximizes
|vi− zi|. If we consider the identity permutation, we deduce that

d′(v,z)≤ min
i=1,...,n+1

{
i−1

n
+ |v− z|↓i

}
,
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but the number of indices such that |vi−zi| is greater than |vk−zk| is at most #I∪J≤
r+ s−2, and consequently

d′(v,z)≤ r+ s−2
n

+ |vk− zk|.

The index k does not belong to I or to J, so

|vk−wk| ≤ |vs−ws|, |wk− zk| ≤ |wq− zq|.

From the latter we infer that

d′(v,z)≤ r+ s−2
n

+ |vk− zk|

≤ s−1
n

+ |vk−wk|+
r−1

n
+ |wk− zk|

≤ s−1
n

+ |vs−ws|+
r−1

n
+ |wq− zq|

= d′(v,w)+d′(w,z).

This shows that d′ is a pseudometric on Cn and consequently it is a pseudometric
even on Cn×n. Thanks to Lemma 2, we can conclude that d′ is a complete pseudo-
metric on E . ut

In the general case, the two pseudometrics have no common features, but, when
dealing with diagonal matrices, we can prove the following lemma.

Lemma 4. Given {Dn}n,{D′n}n ∈ E sequences of diagonal matrices, there exists a
sequence {Pn}n of permutation matrices such that

d′({D′n}n,{Dn}n) = dacs({D′n}n,{PnDnPT
n }n).

Proof. Let vn and v′n be the vectors of the ordered diagonal entries of Dn and D′n,
so that

vn
i := [Dn]i,i, v′ni := [D′n]i,i.

Let τn ∈ Sn be the permutations satisfying

d′(D′n,Dn) = min
σ∈Sn

min
i=1,...,n+1

{
i−1

n
+ |v′n− vn

σ |
↓
i

}
= min

i=1,...,n+1

{
i−1

n
+ |v′n− vn

τn |
↓
i

}
.

Let also Pn be the permutation matrices associated to τn. We know that
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p(D′n−PnDnPT
n ) = min

i=1,...,n+1

{
i−1

n
+σi(D′n−PnDnPT

n )

}
= min

i=1,...,n+1

{
i−1

n
+ |v′n− vn

τn |
↓
i

}
= d′(D′n,Dn).

As a consequence

dacs({D′n}n,{PnDnPT
n }n) = limsup

n→∞

p(D′n−PnDnPT
n )

= limsup
n→∞

d′(D′n,Dn) = d′({D′n}n,{Dn}n).

ut

2.3 GLT Matrix Sequences

A matrix sequence {An}n may have several different singular value symbols, even
on the same domain. For specific sequences, called Generalized Locally Toeplitz
(GLT) sequences, we can choose one of their symbols, and denote it as GLT Symbol
of the sequence

{An}n ∼GLT k(x,θ).

where the chosen symbols have all the same domain D = [0,1]× [−π,π]. If we
denote with MD the set of measurable functions on D, and with G the set of GLT
sequences, then the choice of the symbol can be seen as a map

S : G →MD.

Both G and MD are C algebras and pseudometric spaces with the distances dacs and
dm, inducing respectively the acs convergence and the convergence in measure. In
[9] and in [2] several properties of the map S are proved.

Theorem 3.

1. S is an homomorphism of C algebras. Given {An}n,{Bn}n ∈ G and c ∈ C, we have
that

S({An +Bn}n) = S({An}n)+S({Bn}n),

S({AnBn}n) = S({An}n) ·S({Bn}n),

S({cAn}n) = cS({An}n).

2. The kernel of S are exactly the zero-distributed sequences.
3. S preserves the distances. Given {An}n,{Bn}n ∈ G we have

dacs ({An}n,{Bn}n) = dm(S({An}n),S({Bn}n)).
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4. S is onto. All measurable functions are GLT symbols.
5. GLT symbols are singular value symbols:

{An}n ∈ G =⇒ {An}n ∼σ S({An}n)

6. The graph of S is closed in G ×MD. If {Bn,m}n,m are sequences in G that converge
acs to {An}n, and their symbols converge in measure to k(x,θ), then S({An}n) =
k(x,θ).

The diagonal sampling sequences are denoted as {Dn(a)}n, where a : [0,1]→ C
is a measurable function, and

Dn(a) = diag
i=1,...,n

a
(

i
n

)
=


a
( 1

n

)
a
( 2

n

)
. . .

a(1)


It is easy to verify that when a : [0,1]→C is an almost everywhere (a.e.) continuous
function, we have {Dn(a)}n ∼σ ,λ a(x). Furthermore, if a(x) is continuous, we know
that these sequences have as GLT symbol

{Dn(a)}n ∼GLT a(x)⊗1,

where a⊗1 : [0,1]× [−π,π]→C is a function constant in the second variable. This
is not true for every a(x) measurable, so we resort to the following result.

Lemma 5. Given any a : [0,1]→ C measurable function, and am ∈ C([0,1]) con-
tinuous functions that converge in measure to a(x), there exists an increasing and
unbounded map m(n) such that

{Dn(am(n))}n ∼GLT a(x)⊗1 {Dn(am(n))}n ∼λ a(x)

Proof. Easy corollary of Lemma 3.4 and Theorem 3.1 in [3]. ut

3 Spectral Measures

3.1 Radon measures

Let {An}n ∈ E be a sequence with a spectral symbol k(x) with domain D. By defi-
nition, we have

lim
n→∞

1
n

n

∑
i=1

G(λi(An)) =
1

l(D)

∫
D

G(k(x))dx.

Let φ : Cc(C)→ C be the functional defined as
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φ(G) :=
1

l(D)

∫
D

G(k(x))dx.

The latter is a continuous and linear map, and if we restrict it to real valued com-
pacted supported functions, it is also a positive operator, since

G(x)≥ 0 ∀x ∈ C =⇒ φ(G) =
1

l(D)

∫
D

G(k(x))dx≥ 0.

Let us now recall Riesz Theorem ([1]).

Theorem 4 (Riesz). Let φ : Cc(X)→ R be a positive linear and continuous func-
tion, where X is an Hausdorff and locally compact space. There exists an uniquely
determined Radon positive measure µ such that

φ(F) =
∫

X
Fdµ ∀F ∈Cc(X).

If G ∈Cc(C) is a complex valued map, we can always decompose it into G = G1 +
iG2 where G1 and G2 are real valued and supported on a compact. Since φ is linear,
we get

φ(G) = φ(G1)+ iφ(G2) =
∫
C

G1dµ + i
∫
C

G2dµ =
∫
C

Gdµ

so φ induces an unique measure µ . We can thus define a Spectral Measure.

Definition 4. Given {An}n ∈ E , we say that it has a spectral measure µ if

lim
n→∞

1
n

n

∑
i=1

G(λi(An)) =
∫
C

Gdµ

for every G ∈Cc(C).

Let Gm ∈Cc(C) be a sequence of nonnegative real valued maps such that ‖Gm‖∞≤ 1
and

Gm(x) = 1 ∀ |x| ≤ m.

We find that ∫
C

Gmdµ = lim
n→∞

1
n

n

∑
i=1

Gm(λi(An))≤ 1

and hence

µ(C) = lim
m→∞

µ ({x : |x| ≤ m})≤ limsup
m→∞

∫
C

Gmdµ ≤ 1.

This proves that all the measures we consider are finite. Since all the finite mea-
sures over the Borelian set are Radon, we will now simply say "measure" instead of
"Radon measure". We showed that any measurable function induces a finite mea-
sure, but we can actually prove that it induces a probability measure, and also that
any probability measure is induced by a function.
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Lemma 6. Let D⊆ Rn be a measurable set with finite non zero measure. Then, for
any k ∈MD there exists a probability measure µ such that

1
l(D)

∫
D

G(k(x))dx =
∫
C

Gdµ ∀G ∈Cc(C).

Let J be the real interval [0,1]. Then for every probability measure µ there exists a
measurable function k ∈MJ such that∫ 1

0
G(k(x))dx =

∫
C

Gdµ ∀G ∈Cc(C).

Proof.
Given k ∈MD, we already showed that Riesz Theorem identifies an unique finite
measure µ such that

1
l(D)

∫
D

G(k(x))dx =
∫
C

Gdµ ∀G ∈Cc(C).

Let us consider M > 0 and denote

χM(x) =

{
1 |x| ≤M,

0 |x|> M.

Moreover, let us fix ε > 0, so that for every M > 0 we can find GM ∈ Cc(C) such
that

χM(x)≤ GM(x)≤ χM+ε(x) ∀x ∈ C.

We infer∫
C

χM−ε dµ ≤
∫
C

GM−ε dµ =
1

l(D)

∫
D

GM−ε(k(x))dx≤ 1
l(D)

∫
D

χM(k(x))dx,

1
l(D)

∫
D

χM(k(x))dx≤ 1
l(D)

∫
D

GM(k(x))dx =
∫
C

GMdµ ≤
∫
C

χM+ε dµ

so that ∫
C

χM−ε dµ ≤ 1
l(D)

∫
D

χM(k(x))dx≤
∫
C

χM+ε dµ.

When we let ε go to zero, we obtain that the integrals coincide on the indicator
functions of closed intervals∫

C
χMdµ =

1
l(D)

∫
D

χM(k(x))dx.

The symbol k(x) is a measurable function, so it is Sparsely Unbounded, meaning
that

lim
M→∞

l({x : |k(x)|> M}) = lim
M→∞

∫
D

χ|x|>M(k(x))dx = 0.
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With the latter, we can conclude that µ is a probability measure

µ(C) = lim
M→+∞

∫
C

χ|x|≤Mdµ = lim
M→∞

1
l(D)

∫
D

χ|x|≤M(k(x))dx = 1.

Given any probability measure µ , we know that the space (C,µ) is a Standard
Probability Space, meaning that it is isomorphic to a space X = I tE, where I is
a real finite interval with the Lebesgue measure, and E = {x1,x2, . . .} is a discrete
numerable set with an atomic measure ν . In particular, the isomorphism ϕ : C→ X
satisfies

µ(U) = l⊕ν(ϕ(U)) ∀U ∈B(C).

and if the atomic measure is ν = ∑
+∞

i=1 ciδxi , then

1 = µ(C) = l⊕ν(X) = l(I)+
+∞

∑
i=1

ci.

If we call S = ν(X) = ∑
+∞

i=1 ci, then we can take I = [S,1]. Let g : [0,1]→ X be a
map defined as

g(x) :=

{
xk ∑

k−1
i=1 ci ≤ x < ∑

k
i=1 ci,

x x≥ S.

This has the same distribution as l⊕ν , since for every measurable map G : X → C
we obtain ∫

X
Gd(l⊕ν) =

+∞

∑
i=1

ciG(xi)+
∫ 1

S
G(x)dx =

∫ 1

0
G(g(x))dx.

Let now k := ϕ−1 ◦ g : [0,1]→ C be a measurable function, and G ∈ Cc(C). We
conclude that∫

C
Gdµ =

∫
X

G◦ϕ
−1d(l⊕ν) =

∫ 1

0
G(ϕ−1(g(x)))dx =

∫ 1

0
G(k(x))dx.

ut

A corollary of the latter result is that any sequence with a spectral symbol admits
a probability spectral measure, and also the opposite holds. Moreover, if we call P
the set of probability measures on C, then we can also prove that any measure µ ∈ P
is a spectral measure.

Corollary 1. All measures in P are spectral measures.

Proof. Let J be the real interval [0,1]. Given any k ∈MJ , then there exists a se-
quence of continuous functions km ∈MJ converging to k in measure. Using Lemma
5, we find that k is a spectral symbol, so every function in MJ is a spectral symbol.

Given now a measure µ ∈ P, Lemma 6 shows that it is induced by a measurable
function in MJ , so µ is also a spectral symbol. This implies that every measure in
P is a spectral measure. ut
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3.2 Vague Convergence

We notice that every matrix An can be associated to an atomic probability measure
µAn with support on its eigenvalues

µAn :=
1
n

n

∑
i=1

δλi(An).

Let us return again to the definition of spectral measure and notice that it can be
rewritten as

lim
n→∞

∫
C

GdµAn =
∫
C

Gdµ ∀G ∈Cc(C).

This is actually the definition of Vague Convergence for measures.
The space P endowed with the vague convergence is a complete metric space,

using the Lévy-Prokhorov Metric ([10])

π(µ,ν) = inf{ε > 0 | µ(A)≤ ν(Aε)+ ε, ν(A)≤ µ(Aε)+ ε ∀A ∈B(C)}

where
Aε := {x ∈ C | dist(x,A)< ε }= {x+ y | x ∈ A, |y|< ε } .

Since every matrix is associated to an atomic probability measure, we can extend
the definition of π to matrices and sequences.

Definition 5. Let A,B ∈ Cn×n and let µA,µB be the probability atomic measures
associated to their spectra, defined as

µA :=
1
n

n

∑
i=1

δλi(A), µB :=
1
n

n

∑
i=1

δλi(B).

The Lévy-Prokhorov metric on Cn×n is defined as

π(A,B) := π(µA,µB).

The Lévy-Prokhorov metric on E is defined as

π({An}n,{Bn}n) := limsup
n→∞

π(µAn ,µBn).

Again, we need to prove that the latter is actually a pseudometric.

Lemma 7. The Lévy-Prokhorov metric is a pseudometric on Cn×n and a complete
pseudometric on E .

Proof. The Lévy-Prokhorov metric is an actual metric on the space of probability
measures, so all the properties can be transferred to the space of matrices Cn×n,
except for the identity of matrices with zero distance, since two different matrices
may have the same eigenvalues. Thus it is a pseudometric on Cn×n, and by Lemma
2, it is a complete pseudometric on E . ut
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Since every matrix is associated to an atomic probability measure, we can also
use the same notation for mixed elements, like

π(A,ν) := π(µA,ν).

The considered notation is useful since the definition of spectral measure is given
by

lim
n→∞

1
n

n

∑
i=1

G(λi(An)) =
∫
C

Gdµ ∀G ∈Cc(C)

and, when µ ∈ P, it can be rewritten as

{An}n ∼λ µ ⇐⇒ π(An,µ)
n→+∞−−−−→ 0.

The distance π on E is consistent with the distance between their spectral probability
measures, as shown in the following result.

Lemma 8. If {An}n ∼λ µ and {Bn}n ∼λ ν , with {An}n,{Bn}n ∈ E and µ,ν ∈ P,
then

π({An}n,{Bn}n) = π(µ,ν) = lim
n→∞

π(An,Bn).

Proof. Using the triangular property, we infer

π(µ,ν)≤ π(µ,An)+π(An,Bn)+π(Bn,ν),

π(µ,ν)≥−π(µ,An)+π(An,Bn)−π(Bn,ν).

Thus we obtain

π(µ,ν)≤ liminf
n→∞

π(µ,An)+π(An,Bn)+π(Bn,ν) = liminf
n→∞

π(An,Bn),

π(µ,ν)≥ limsup
n→∞

−π(µ,An)+π(An,Bn)−π(Bn,ν) = limsup
n→∞

π(An,Bn).

By exploiting the latter relationships we conclude that

π({An}n,{Bn}n) = limsup
n→∞

π(An,Bn)

≤ π(µ,ν)≤
liminf

n→∞
π(An,Bn)≤ π({An}n,{Bn}n).

ut

It is noteworthy to stress the importance of the probability condition on the mea-
sures. In fact, it is possible to find a sequence that admits a spectral measure but does
not admit a spectral symbol, when the spectral measure is not a probability measure.
Moreover, the Lévy-Prokhorov metric is defined only on probability measures and
if µn ∈ P vaguely converge to a measure not in P, then the sequence µn is not even
a Cauchy sequence for π .
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4 Main Results

4.1 Connection between Measures

First of all, we prove that π and d′ are equivalent pseudometrics on E .

Lemma 9. If {An}n,{Bn}n ∈ E , then

π({An}n,{Bn}n)≤ d′({An}n,{Bn}n)≤ 2π({An}n,{Bn}n).

Proof. Let us first prove that for any A,B ∈ Cn×n, we have

π(A,B)≤ d′(A,B)≤ 2π(A,B).

Let Λ(A) and Λ(B) be ordered so that

i < j =⇒ |λi(A)−λi(B)| ≥ |λ j(A)−λ j(B)|

and
s := d′(A,B) =

k−1
n

+ |λk(A)−λk(B)|.

In particular, we deduce that

|λi(A)−λi(B)| ≤ s ∀i≥ k

and consequently, for any subset U ⊆ C, we obtain the inequality

#{λi(A) ∈U, i≥ k} ≤ #{λi(B) ∈U s, i≥ k}.

Denote with µA and µB the atomic probability measures associated with A,B. Let
U ∈B(C) be any Borelian set and denote the cardinality of the intersection with a
n-uple v as

QU (v) := #{i : vi ∈U}.

Formally, QU (v) is the number of elements of v inside v, counted with multiplicity.
We know that

µA(U) =
QU (Λ(A))

n

=
QU ({λi(A) : i≥ k})

n
+

QU ({λi(A) : i < k})
n

≤ QUs({λi(B) : i≥ k})
n

+
k−1

n

≤ QUs(Λ(B))
n

+ s = µB(U s)+ s.

We symmetrically obtain also the following relation
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µB(U)≤ µA(U s)+ s.

As a consequence

π(A,B) = inf{ε > 0 | µA(U)≤ µB(Uε)+ ε, µB(U)≤ µA(Uε)+ ε ∀U ∈B(C)}

=⇒ π(A,B)≤ s = d′(A,B).

Denote now r = π(A,B) and let T be any sub-uple of Λ(A). If we see T as a set,
then it is a finite subset of C, so it is a Borelian set. Given any ε > 0 we know that

µA(T ) =
QT (Λ(A))

n
≤ µB(T r+ε)+ r+ ε =

QT r+ε (Λ(B))
n

+ r+ ε

so we deduce that

QT (Λ(A))
n

≤ QT r(Λ(B))
n

+ r =⇒ QT (Λ(A))≤ QT r(Λ(B))+ rn.

By using the fact that the map Q is integer valued, we conclude that

QT (Λ(A))≤ QT r(Λ(B))+ brnc.

The quantity QT (Λ(A)) is actually the cardinality of T seen as a sub-uple of Λ(A),
so for every subset T of k eigenvalues in A, even repeated, there are at least k−brnc
eigenvalues of B that have distance less then r from one of the elements of T .

Let us now build a bipartite graph, where the left set of nodes L contains the
elements of Λ(A), the right set of nodes R contains the elements of Λ(B), and brnc
additional nodes. Every additional node is connected to all the elements of L, and
an element of Λ(A) is connected to an element of Λ(B) if and only if their distance
is less then r. If we denote E the set of edges of the graph and N the set of its nodes,
then we can define the neighborhood of a subset of nodes P⊆ N as

N(P) := #{u ∈ N : ∃v ∈ P,(v,u) ∈ E}.

By using the previous derivations, we know that for any T ⊆ L = Λ(A) it holds

N(T )≥ #T −brnc+ brnc= #T.

Thanks to Hall’s Marriage Theorem, that can be found for example in [7], there
exists a matching for L, meaning that there exists an injective map α : L→ R such
that

(u,α(u)) ∈ E ∀u ∈ L.

Now let us consider the set

P := {u ∈ L : α(u) ∈Λ(B)}.



Spectral Measures 17

we know that #P ≥ n−brnc, and we can enumerate the eigenvalues in Λ(A) = L
and Λ(B) so that

λi(A) ∈ P, λi(B) = α(λi(A)) ∀ i≤ n−brnc.

Since u and α(u) are connected for all u ∈ L, we deduce that λi(A) and λi(B) are
connected for at least n−brnc indices. By construction,

|λi(B)−λi(A)|< r ∀ i≤ n−brnc

so

d′(A,B) = min
σ∈Sn

min
i=1,...,n+1

{
i−1

n
+ |Λ(A)−Λ(B)σ |↓i

}
≤ min

i=1,...,n+1

{
i−1

n
+ |Λ(A)−Λ(B)|↓i

}
<
brnc

n
+ r ≤ 2r = 2π(A,B).

This proves that for any A,B ∈ fCn×n we have

π(A,B)≤ d′(A,B)≤ 2π(A,B).

Given now {An}n,{Bn}n ∈ E , we conclude

π({An}n,{Bn}n) = limsup
n→∞

π(An,Bn)≤ limsup
n→∞

d′(An,Bn) = d′({An}n,{Bn}n),

d′({An}n,{Bn}n) = limsup
n→∞

d′(An,Bn)≤ limsup
n→∞

2π(An,Bn) = 2π({An}n,{Bn}n).

ut

The two distances d′ and π are equivalent, so they induce the same topology on
the space E and they respect a property of closeness given by the following lemma.

{An,m}n {An}n

µm µ

d′

λ λ

π

Lemma 10. Let {An,m}n ∼λ µm, where {An,m}n ∈ E
and µm ∈P for every m. If we consider the statements
below

1. π(µm,µ)
m→∞−−−→ 0,

2. {An}n ∼λ µ ,
3. d′({An,m}n,{An}n)

m→∞−−−→ 0,

where {An}n ∈ E and µ ∈ P, then any two of them
are true if and only if all of them are true.



18 Giovanni Barbarino

Proof.
1.3. =⇒ 2.) We know that

π(An,µ)≤ π(An,An,m)+π(An,m,µm)+π(µm,µ) ∀n,m.

Given ε > 0, we can find M such that

π(µm,µ)
m→∞−−−→ 0 =⇒ π(µm,µ)< ε ∀m > M,

d′({An,m}n,{An}n)
m→∞−−−→ 0 =⇒ d′({An,m}n,{An}n)< ε ∀m > M.

Using Lemma 9, we obtain

limsup
n→∞

π(An,m,An) = π({An,m}n,{An}n)≤ d′({An,m}n,{An}n).

We can then fix m > M and find N > 0 such that

π(An,m,An)≤ 2ε, π(An,m,µm)≤ ε ∀n > N.

We obtain that
π(An,µ)≤ 2ε + ε + ε = 4ε ∀n > N,

and hence we conclude that

π(An,µ)
n→∞−−−→ 0 =⇒ {An}n ∼λ µ.

2.3. =⇒ 1.) Thanks to Lemma 8, we know that

{An,m}n ∼λ µm, {An}n ∼λ µ =⇒ π(µm,µ) = π({An,m}n,{An}n)

and, using with Lemma 9, we conclude that

π(µm,µ) = π({An,m}n,{An}n)≤ d′({An,m}n,{An}n)
m→∞−−−→ 0.

1.2. =⇒ 3.) Thanks to Lemma 8, we know that

{An,m}n ∼λ µm, {An}n ∼λ µ =⇒ π({An,m}n,{An}n) = π(µm,µ)

and, using with Lemma 9, we conclude that

d′({An,m}n,{An}n)≤ 2π({An,m}n,{An}n) = 2π(µm,µ)
m→∞−−−→ 0.

ut
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4.2 Proofs of Theorems

We can finally prove that d′ identifies two sequences if and only if they have the
same spectral symbol.

Theorem 1. If {An}n ∼λ f (x), then

{Bn}n ∼λ f (x) ⇐⇒ d′({An}n,{Bn}n) = 0.

Proof. Let µ be the probability measure associated to f (x). Let also {An,m}n and
µm be constant sequences defined as

An,m := An ∀n,m, µm := µ ∀m.

We know by hypothesis that

{An,m}n ∼λ µm, π(µm,µ)
m→∞−−−→ 0,

therefore, owing to Lemma 10, we obtain the equivalence

{Bn}n ∼λ µ ⇐⇒ d′({An,m}n,{Bn}n)
m→∞−−−→ 0,

which can be rewritten as

{Bn}n ∼λ f (x) ⇐⇒ d′({An}n,{Bn}n) = 0.

ut

The other theorem shows that the GLT symbol represents in fact an ordering of
the sequence eigenvalues. Given a sequence {An}n ∈ E with a spectral symbol k(x),
we can consider the diagonal matrices Dn ∈ Cn×n containing the eigenvalues of An.
We get again that {Dn}n ∼λ k(x), so we can focus only on diagonal sequences. A
permutation of the eigenvalues is thus formalized as the similarity PnDnPT

n with Pn
permutation matrices. In [3], we showed that a function k(x)⊗ 1 is a GLT symbol
for a diagonal sequence {Dn}n if and only if the piecewise linear functions interpo-
lating the ordered entries of Dn on [0,1] converge in measure to k(x). Thanks to the
existence of the natural order on R, we deduced that for any real diagonal sequence
{Dn}n, with a real spectral symbol k(x), there exists a sequence of permutations
{Pn}n such that

{PnDnPT
n }n ∼GLT k(x)⊗1.

We could not extend the result on the complex plane, due to the lack of a natural
ordering. Using the spectral measure theory we developed, we can now bypass the
problem, since spectral symbols with the same distribution are now identified into
an uniquely determined probability measure.



20 Giovanni Barbarino

Theorem 2. Given a measurable function k : [0,1]→ C, and a diagonal sequence
{Dn}n with spectral symbol k(x), there exists a sequence {Pn}n of permutation ma-
trices such that

{PnDnPT
n } ∼GLT k(x)⊗1.

Proof. The space of continuous functions is dense in the space of measurable func-
tions with the convergence in measure. Thus, there exist km(x) ∈ C[0,1] that con-
verge in measure to k(x). Using Lemma 5, we can find a diagonal sequence {D′n}n
with

{D′n}n ∼GLT k(x)⊗1, {D′n}n ∼λ k(x).

Theorem 1 leads to d′({Dn}n,{D′n}n) = 0 and owing to Lemma 4, there exist per-
mutation matrices {Pn}n such that

dacs
(
{D′n}n,{PnDnPT

n }n
)
= 0.

Using the fact that the GLT space is closed for the pseudometric dacs, and that the
distance of the GLT symbols is equal to the distance of the sequences for Theorem
3, we conclude that {PnDnPT

n }n ∼GLT k(x)⊗1. ut

5 Future Works

The theory of spectral measures is still a work in progress, with open questions and
many possible extensions.

For example, we have seen that the space of probability measures corresponds to
the space of sequences which admit a spectral symbol, but the sequences admitting
a general spectral measure (not necessarily a probability measure) is larger. The
difference between 1 and the mass of a spectral measure can be interpreted as the
rate of eigenvalues not converging to finite values, and consequentially we can admit
spectral symbols f : [0,1]→C∗, where C∗ =C∪{∞} is the Riemann Sphere or the
Alexandroff Compactification of C. The insight on the sequences of matrices is that
they may have a fraction of the asymptotic spectrum that diverge to ∞ in modulus,
so a spectral symbol with values on C∗ may also catch this new behaviour. The
introduction of these new functions probably leads to a variation of Corollary 1,
where a sequence admits a spectral measure if and only if it admits a spectral symbol
with values on C∗. The downside of this extension is that the distance π does not
induce the vague convergence on the space of finite measures, so we need to find a
new metric that mimics the characteristics of the Lèvy-Prokhorov metric.

All this document is focused on spectral symbols/measures, but the same analysis
can be performed using the singular values instead of the eigenvalues, leading to a
theory focused into singular value symbols/measures, that will probably have some
deep bounds with the GLT symbols. They are similar since both the GLT symbol
and the singular value symbol of a sequence are unique, but at the same time they
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are also very different since the space of measures lacks a group structure, and two
sequences with different GLT symbols may have the same singular value symbol.

Eventually, it seems that spectral measures arise naturally even in algebraic ge-
ometry (see, for example, [13]) so further connections can be also developed in
different areas of mathematics.
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